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PARAMETER SENSITIVITY ANALYSIS FOR MEAN FIELD GAMES OF

PRODUCTION

P. JAMESON GRABER AND MARCUS LAUREL

Abstract. We study a mean field game system introduced by Chan and Sircar (AMO, 2015) to
model production of an exhaustible resource. In particular, we study the sensitivity of the solution
with respect to a parameter ε, which measures the degree to which producers are interchangeable.
We prove that on some interval [0, ε0], where ε0 > 0, the solution is infinitely differentiable with
respect to ε. The result is based on a set of new a priori estimates for forward-backward systems
of linear partial differential equations.

1. Introduction

Consider the following system of nonlinear partial differential equations:

(1.1)





(i) ut +
σ2

2
uxx − ru+ F (t, ux,m; ε)2 = 0, 0 ≤ x <∞, 0 ≤ t ≤ T

(ii) mt −
σ2

2
mxx −

[
F (t, ux,m; ε)m

]
x
= 0, 0 ≤ x <∞, 0 ≤ t ≤ T

(iii) m(x, 0) = m0(x), u(x, T ) = uT (x), 0 ≤ x <∞
(iv) u(0, t) = m(0, t) = 0, 0 ≤ t ≤ T

where the data consist of a parameter ε ≥ 0, a time horizon T > 0, a smooth probability density
m0(x), a smooth function uT (x), and two positive constants σ and r, and where F (t, ux,m; ε) is
given by

(1.2) F (t, ux,m; ε) :=
1

2

(
2

2 + εξ(t)
+

εξ(t)

2 + εξ(t)

∫ ∞

0
ux(x, t)m(x, t) dx− ux(x, t)

)

for some fixed smooth function ξ : [0, T ] → [0, 1] such that ξ(T ) = 0. We assume that m0 and
uT satisfy zero- and first-order compatibility conditions so that solutions of (1.1) are classical (see
[17]).

System (1.1) models a particular kind ofmean field game for the production of exhaustible resources,
as proposed by Chan and Sircar in [8], cf. [9, 22]. In this game, players control the rate at which
they will sell from their current stock, and they must leave the game once that stock goes to zero.
The optimal strategies are determined by the market price. In equilibrium, the market price is
determined by the average of all the players’ strategies. When the demand depends linearly on the
production rate (or on the price offered), one can determine the equilibrium by solving System (1.1);
in particular, if (u,m) is the solution, then F (t, ux,m; ε) gives the equilibrium rate of production

Date: April 12, 2022.
2010 Mathematics Subject Classification. 35Q91, 35F61, 49J20.
Key words and phrases. mean field games, forward-backward systems, absorbing boundary conditions, nonlinear

partial differential equations.
Jameson Graber gratefully acknowledges support from the National Science Foundation through NSF CAREER

Award 2045027 and NSF Grant DMS-1905449. Marcus Laurel is also thankful to be partially supported by NSF
Grant DMS-1905449.

1

http://arxiv.org/abs/2108.10962v3


and m(x, t) gives the density of players whose remaining stock is x at time t. The parameter ε
measures the degree to which firms compete. If ε = 0, every firm is a monopolist, while if ε is very
large, all firms are nearly interchangeable in the eyes of consumers.

Existence and uniqueness of solutions to System (1.1) has been established under the assumptions
we make in this article, thanks to the results found in [16, 19, 17], cf. [18, 15]. In [8], Chan and
Sircar proposed a numerical method to solving (1.1) that consists of assuming the following Taylor
expansion:

u(x, t) = u(0)(x, t) + εu(1)(x, t) +
ε2

2
u(2)(x, t) + · · · ,

m(x, t) = m(0)(x, t) + εm(1)(x, t) +
ε2

2
m(2)(x, t) + · · · .

(1.3)

Formally, u(k) and m(k) can be derived by differentiating System (1.1) k times with respect to ε,

letting ε = 0, and then solving. Notice that setting ε = 0 decouples the system. Thus u(k) and m(k)

are computed by solving two equations separately, avoiding the computational difficulties arising
from the forward/backward-in-time coupling.

To establish rigorously the accuracy of this numerical method, one must answer the question: is
the solution to System (1.1) differentiable with respect to ε? In the present article, we provide
an affirmative answer to this question under generic assumptions on the data. In particular, we
establish that there exists ε0 > 0 small enough such that for every k ∈ N, the solution to System
(1.1) is k times differentiable with respect to ε for 0 ≤ ε ≤ ε0. See Theorem 1.1 below. More
precisely, we establish that the difference between the solution and its kth order Taylor expansion
is bounded by Ckε

k+1 for some constant Ck. On the other hand, the constants Ck that appear in
our analysis blow up very fast as k → ∞, and for this reason we conjecture that the infinite series
expansion does not in fact converge (see Remark 4.1).

While the numerical method of Chan and Sircar gives a practical application, our work is also
motivated by the theory of forward-backward linear systems of equations, which turn out to be
of fundamental importance in mean field game theory. In their seminal work [3], Cardaliaguet et
al. show that one can established well-posedness of the master equation by the following steps: (1)
solve the mean field game system, (2) linearize the system by formally differentiating with respect
to the measure variable m, and, most crucially, (3) proving estimates on solutions to linearized
systems, which have as a corollary that the solution from step 1 is differentiable with respect to
the initial measure. We do not study the master equation in this article. However, our sensitivity
analysis follows exactly the same steps, where instead of linearizing with respect to an infinite-
dimensional measure variable, we differentiate with respect to ε. At an abstract level, the system
of linear equations we study has the form
(1.4)



(i) wt +
σ2

2
wxx − rw +Ψ+ F (0)(ε)

(
G(t, wx, µ; ε)− wx

)
= 0, 0 ≤ x <∞, 0 ≤ t ≤ T

(ii) µt −
σ2

2
µxx −

(
F (0)µ

)
x
=
[
Φ+

1

2

(
G(t, wx, µ; ε) − wx

)
m(0)

]
x
, 0 ≤ x <∞, 0 ≤ t ≤ T

(iii) µ(x, 0) = 0, w(x, T ) = 0, 0 ≤ x <∞
(iv) w(0, t) = µ(0, t) = 0, 0 ≤ t ≤ T,

where F (0), u(0),m(0),Ψ, and Φ are given functions, and

(1.5) G(wx, µ; ε) := β
(
εξ(t)

) ∫ ∞

0

(
u(0)x µ+m(0)wx

)
dx.
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with β a known function such that β(ε) → 0 as ε→ 0. Our main mathematical contribution in this
article is a set of a priori estimates on solutions to System (1.4). (See Section 2.) The estimates
share three types in common with [3, Section 3.3]: (1) “energy estimates,” derived by expanding
d
dt 〈w,µ〉 and using the duality between equations (i) and (ii); (2) standard Schauder estimates on
parabolic equations; and (3) estimates on µ in the space dual to a certain Hölder space. Since the
coupling depends on integral terms involving the unknowns, the energy estimates are considerably
more technical than for standard mean field games. In particular, they require a fourth type of

estimate, namely (4) estimates on
∫ T
0

(∫∞

0 µ(x, t) dx
)2

dt; see Section 2.1. Additionally, because

the boundary conditions in our model are of Dirichlet type, the estimates on µ in the dual of a
Hölder space require additional care compared to similar estimates on a torus; see Section 2.3. All
of our results hold in one space dimension, on which the problem was originally posed by Chan and
Sircar (cf. [22]). In higher space dimensions, the Dirichlet boundary conditions pose an additional
difficulty for the purposes of regularity, since there would be a corner in the domain, although the
interior estimates are expected to hold as in the one-dimensional case. This is a technical aspect
we do not address in the present work.

Mean field games were introduced circa 2006 by Lasry and Lions [27] and by Caines, Huang, and
Malhamé [23]. Since then, both theory and applications have been well-studied. For a general
exposition, we refer the reader to the texts [2, 5, 6]. Economic models are a common application
of mean field game theory. See e.g. the overviews in [1, 28, 13], and for the particular example
of exhaustible resource production see [8, 9, 22]. When the equilibrium strategy depends on the
distribution of controls, as is often the case for economics applications, we give the name mean field
game of the controls [4] (or extended mean field games [12]) to the resulting mathematical model.
The theory of partial differential equations for mean field games of controls has been developed
in [4, 25, 24, 14, 12, 20]. The present work is, to the best of our knowledge, the first study of
parameter sensitivity for a mean field game of controls. Some of the estimates presented here will
be useful in a forthcoming study of the master equation for a mean field game of controls with
absorbing boundary conditions [21].

The remainder of this article is organized as follows. In the rest of this introduction, we define
some notation and present the main result. Section 2 is the core of the paper and provides a priori
estimates on systems of equations with the abstract form (1.4). In Section 3 we prove existence
and uniqueness of solutions to (1.4). Finally, in Section 4, we prove the main result.

1.1. Notation. Throughout this manuscript, Lp(D) (1 ≤ p ≤ ∞) will denote the usual Lebesgue
space on a domain D with standard norm, denoted either by ‖·‖Lp(D) or simply ‖·‖p. We will

often consider the space-time domain D = (0,∞)× [0, T ], on which we consider the space Lp
tL

q
x of

functions f = f(x, t) such that the map t 7→
∥∥f(·, t)

∥∥
q
is in Lp(0, T ). The norm is given by

(1.6) ‖f‖Lp
tL

q
x
=
∥∥∥t 7→

∥∥f(·, t)
∥∥
q

∥∥∥
p
.

For α ∈ (0, 1) the space Cα = Cα
(
[0,∞)

)
denotes the space of Hölder continuous functions u such

that the following norm is finite:

(1.7) ‖u‖Cα :=‖u‖∞ + sup

{∣∣u(x)− u(y)
∣∣

|x− y|α : x, y ≥ 0, x 6= y

}
.
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If k is an integer, Ck+α = Ck+α
(
[0,∞)

)
denotes the space of k times differentiable functions u such

that dku
dxk ∈ Cα. It is a Banach space with the norm

(1.8) ‖u‖Ck+α =

∥∥∥∥∥
dku

dxk

∥∥∥∥∥
Cα

+‖u‖∞ ,

which by standard interpolation results is equivalent to the norm
∥∥∥dku
dxk

∥∥∥
Cα

+
∑k−1

j=0

∥∥∥dju
dxj

∥∥∥
∞
.

For α, β ∈ (0, 1) the space Cα,β = Cα,β
(
[0,∞) , [0, T ]

)
denotes the space of all Hölder continuous

functions u such that the following norm is finite:

(1.9) ‖u‖Cα,β :=‖u‖∞ + sup

{∣∣u(x, t)− u(y, s)
∣∣

|x− y|α +|t− s|β
: x, y ≥ 0, t, s ∈ [0, T ], x 6= y, t 6= s

}
.

If j, k are integers, we can also define Cj+α,k+β analogously. In particular, the space C2+α,1+α/2

denotes the standard Hölder space for parabolic equations (cf. [26]); its norm can be written

(1.10) ‖u‖C2+α,1+α/2 =‖u‖∞ +

∥∥∥∥
∂u

∂t

∥∥∥∥
Cα,α/2

+

∥∥∥∥∥
∂2u

∂x2

∥∥∥∥∥
Cα,α/2

.

Given any function f(x, t; ε), we denote the k-th partial derivative of f(x, t; ε) with respect to ε by

(1.11) f (k) = f (k)(x, t; ε) :=
∂k

∂εk
[
f(x, t; ε)

]
,

with the convention that f (0) = f .

In studying System (1.4), we will frequently suppress notation and write G(ux,m; ε), G(ε), or even
G to denote G(t, ux,m; ε), provided that no ambiguity arises. Analogous statements hold for other
functionals that depend on multiple arguments.

1.2. Statement of the main result. Throughout this paper, we assume that conditions hold
on the data so that System (1.1) has a unique solution (u,m) satisfying u,m ∈ C2+α,1+α/2 for
some α ∈ (0, 1). Sufficient conditions are provided in [17], cf. [16]. We will denote this solution by

(u(0),m(0)). In addition to smoothness, we will also need to assume the initial density m0 has finite
first moment

∫∞

0 xm0(x) dx <∞.

Formally, if we differentiate (1.1) k times with respect to ε, we obtain the system

(1.12)





(i) u
(k)
t +

σ2

2
u(k)xx − ru(k) + Jk

(
x, t, u(k)x ,m(k); ε

)
= 0, 0 ≤ x <∞, 0 ≤ t ≤ T

(ii) m
(k)
t − σ2

2
m(k)

xx − (Kk)x
(
x, t, u(k)x ,m(k); ε

)
= 0, 0 ≤ x <∞, 0 ≤ t ≤ T

(iii) m(k)(x, 0) = 0, u(k)(x, T ) = 0, 0 ≤ x <∞
(iv) u(k)(0, t) = m(k)(0, t) = 0, 0 ≤ t ≤ T,

where

(1.13) Jk
(
x, t, u(k)x ,m(k); ε

)
:=

k∑

j=0

(
k

j

)
F (j)

(
x, t, u(j)x ,m(j); ε

)
F (k−j)

(
x, t, u(k−j)

x ,m(k−j); ε
)
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and

(1.14) Kk

(
x, t, u(k)x ,m(k); ε

)
:=

k∑

j=0

(
k

j

)
F (j)

(
x, t, u(j)x ,m(j); ε

)
m(k−j)(x, t).

For clarity, we note that the full expression for F (k) is given by

(1.15) F (k)
(
x, t, u(k)x ,m(k); ε

)
=

1

2
ξ(t)kα(k)(εξ(t)) − 1

2
u(k)x (x, t)

+
1

2

k∑

i=0

k−i∑

j=0

(
k

i

)(
k − i

j

)
ξ(t)iβ(i)

(
εξ(t)

) ∫ ∞

0
u(j)x (x, t)m(k−i−j)(x, t) dx,

where

(1.16) α(ε) :=
2

2 + ε
and β(ε) :=

ε

2 + ε
,

so that for k ∈ N with k ≥ 1,

(1.17) α(k)(ε) =
2(−1)kk!

(2 + ε)k+1
and β(k) = −α(k).

The reader may wonder why, in writing F (k), Jk, and Kk, we have suppressed the arguments u(j)

and m(j) for j < k. This is because we will be arguing inductively as follows: to prove that u(k)

and m(k) exist, we may assume that u(j) and m(j) are known functions for j < k.

We now state our main result.

Theorem 1.1. There exists ε0 > 0 small enough (see Equation (2.5)) such that for each k ∈ N and

all ε ∈ [0, ε0], System (1.12) has a unique classical solution (u(k),m(k)), which satisfies the identity

(1.18) (u(k),m(k)) =
(∂ku
∂εk

,
∂km

∂εk

)

where (u,m) is the solution to (1.1). That is, the formal differentiation carried out on u and m to
obtain System (1.12) is justified. Moreover, there exists a constant Ck > 0 such that for ε ∈ [0, ε0],

(1.19)

∥∥u(·, ·; ε) −∑k
j=0

εj

j!u
(j)(·, ·; 0)

∥∥
C2+α,1+α/2

≤ Ckε
k+1,

∥∥m(·, ·; ε) −∑k
j=0

εj

j!m
(j)(·, ·; 0)

∥∥
C2+α,1+α/2

≤ Ckε
k+1,

where α is sufficiently small.

2. A priori estimates

In this section we present our main mathematical contribution by proving new a priori estimates for
a coupled forward-backward system of linear partial differential equations (1.4). It turns out that
a useful first step for such systems is to prove “energy estimates,” which are derived by expanding
d
dt 〈w,µ〉 and using the duality between equations (i) and (ii). However, because of the integral
term G appearing in (1.4), the energy estimates are not useful without certain a priori estimates

on the quantity
∫ T
0

(
µ(x, t) dx

)2
dt, where µ is the solution to the Fokker-Planck type equation

(1.4)(ii). We derive these estimates first in Section 2.1, which may have independent interest to the
reader interested in Fokker-Planck equations with a source. Section 2.2 then provides the desired
energy estimates, which we apply throughout the rest of the section. In section 2.3 we arrive at
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further estimates for the Fokker-Planck equation in the dual to a Hölder space. Finally, in Section
2.4 we give a priori estimates that establish full parabolic regularity.

2.1. A priori estimates on Fokker-Planck equations with a source. In this subsection, we
collect some estimates on the Fokker-Planck equation (1.4)(ii), in particular with respect to the L1

norm and first moment in the space variable. These results have very little to do with the particular
structure of the coupled system (1.4) and can be stated abstractly for a Fokker-Planck equation
with a source. The proofs of these results are given in Appendix A.

Proposition 2.1. Let µ solve

(2.1)





(i) µt −
σ2

2
µxx − (bµ)x = νx, 0 ≤ x <∞, 0 ≤ t ≤ T

(ii) µ(x, 0) = µ0(x), 0 ≤ x <∞
(iii) µ(0, t) = 0, 0 ≤ t ≤ T,

where µ0 ∈ L1([0,∞)), b ∈ L∞([0,∞)× [0, T ]) and ν ∈ L∞
t

(
[0, T ];L1

x

(
[0,∞)

))
are known functions.

Additionally, assume xµ0 ∈ L1([0,∞)) and xν ∈ L∞
t

(
[0, T ];L1

x

(
[0,∞)

))
. Then

(a) µ ∈ L∞
t

(
[0, T ];L1

x

(
[0,∞)

))
with

‖µ‖L∞

t (L1
x)

≤ C
(
‖µ0‖L1 +‖ν‖L∞

t (L1
x)

)
,

where the constant C ∈ (0,∞) depends only on σ, ‖b‖∞, and T ;

(b) and

sup
0≤τ≤T

∫ ∞

0
x|µ(x, τ)|dx ≤ C

(∥∥(1 + x)µ0
∥∥
L1 +‖ν‖L∞

t (L1
x)

+‖xν‖L∞

t (L1
x)

)
,

where the constant C ∈ (0,∞) depends only on σ and ‖b‖∞, and T .

Proof. See Appendix A.1. �

The following proposition could be stated for an abstract Fokker-Planck equation like (2.1); never-
theless, it is given in the form below to make it more obvious how it may be applied later on.

Proposition 2.2. Define the constant

(2.2) C0 := 384c′ ln(2)
(
1 +
∥∥u(0)x

∥∥2
∞

)3
,

where c′ is as in (A.5), and suppose µ satisfies (ii) of System (1.4) with Φ ∈ L∞
t (L1

x). If λ > C0,
then

(2.3)

∫ T

0
e−λt

(∫ ∞

0
|µ|dx

)2

dt ≤
C1

∥∥Φ
∥∥2
L∞

t (L1
x)

C0
+ C2

∫ T

0
e−λt

∫ ∞

0
w2
xm

(0) dxdt,

where the constants C1, C2 ∈ (0,∞) depend only on
∥∥u(0)x

∥∥
∞
.

In particular, if T <∞, then there is no restriction on λ, and for λ ∈ (0, C0],

(2.4)

∫ T

0
e−λt

(∫ ∞

0
|µ|dx

)2

dt ≤
C1

∥∥Φ
∥∥2
L∞

t (L1
x)
e2C0T

C0
+ C2e

2C0T

∫ T

0
e−λt

∫ ∞

0
w2
xm

(0) dxdt,

with C1 and C2 as in (2.3).
6



Proof. See Appendix A.1. �

2.2. Energy estimates. By energy estimates we mean specifically an estimate on the quantity∫ T
0 e−rt

∫∞

0 |wx|2m(0) dxdt. Before stating our result, we first define an upper bound on the pa-
rameter ε that we will need in the proof. With β as in (1.16) and C0 as in (2.2), let ε0 > 0 be such
that

(2.5) β(ε0) <
1 + 3

∥∥u(0)x

∥∥2
∞

96e2C0T
(∥∥F (0)

∥∥2
∞

+
3

4

∥∥u(0)x

∥∥2
∞

) and β(ε0) <
1

10
.

Note that such a ε0 is possible to obtain, because limε→0+ β(ε) = 0. The necessity of this assumption
is a consequence of the method of proof for the energy estimate. Specifically, the upper bounds are
motivated by (2.16), (2.17), and the value of C2, the constant appearing in Proposition 2.2—see
the proof of Proposition 2.2 for an explicit value.

Proposition 2.3. Suppose (w,µ) satisfies (1.4) with Ψ ∈ L∞ and Φ ∈ L∞
t (L1

x). Let ε0 satisfy
(2.5). Then for ε ∈ [0, ε0] the following energy estimate is valid

(2.6)

∫ T

0
e−rt

∫ ∞

0
|wx|2m(0) dxdt ≤ C1

∥∥Φ
∥∥
L∞

t (L1
x)

∥∥wx

∥∥
∞

+ C2

(∥∥Φ
∥∥2
L∞

t (L1
x)

+
∥∥Ψ
∥∥
∞

)
,

where C1 ∈ (0,∞) is a constant that depends only on r; and C2 ∈ (0,∞) is a constant that depends

only on
∥∥u(0)x

∥∥
∞
, σ, r, and T . As an immediate corollary,

(2.7)

∫ T

0

∫ ∞

0
|wx|2m(0) dxdt ≤ C ′

1

∥∥Φ
∥∥
L∞

t (L1
x)

∥∥wx

∥∥
∞

+ C ′
2

(∥∥Φ
∥∥2
L∞

t (L1
x)

+
∥∥Ψ
∥∥
∞

)
,

with C ′
1 = erTC1 and C ′

2 = erTC2.

Proof. We begin by observing

d

dt

∫ ∞

0
e−rtwµ dx =

∫ ∞

0
e−rt

((
wt − rw

)
µ− wµt

)
dx(2.8)

=

∫ ∞

0
e−rt

{
µ
(−σ2

2
wxx − F (0)(G− wx)−Ψ

)

+ w
(σ2
2
µxx +

[
F (0)µ

]
x
+
[
Φ+

1

2
(G− wx)m

(0)
]
x

)}
dx

= −e−rt

∫ ∞

0

(
F (0)Gµ +Ψµ+Φwx +

1

2
wx(G− wx)m

(0)
)
dx.

The first equality follows via differentiation under the integral sign, the second equality follows
from substituting in the equations for wt − rw and µt given by System (1.4), and the last equality

7



follows via integration by parts. Next, unpacking G, (2.8) implies

− d

dt

∫ ∞

0
e−rtwµ dx = e−rtβ(εξ)

(∫ ∞

0
F (0)µ dx

)(∫ ∞

0

(
wxm

(0) + u(0)x µ
)
dx

)
(2.9)

+ e−rt

∫ ∞

0

(
Ψµ+Φwx

)
dx− 1

2
e−rt

∫ ∞

0
w2
xm

(0) dx

+
1

2
e−rtβ(εξ)

(∫ ∞

0
wxm

(0) dx

)(∫ ∞

0

(
wxm

(0) + u(0)x µ
)
dx

)
.

We then have the following three estimates. First,
(∫ ∞

0
F (0)µ dx

)(∫ ∞

0

(
wxm

(0) + u(0)x µ
)
dx

)
(2.10)

=

(∫ ∞

0
F (0)µ dx

)(∫ ∞

0
wxm

(0) dx

)
+

(∫ ∞

0
F (0)µ dx

)(∫ ∞

0
u(0)x µ dx

)

≤
(∫ ∞

0
F (0)µ dx

)2

+
1

2

(∫ ∞

0
wxm

(0) dx

)2

+
1

2

(∫ ∞

0
u(0)x µ dx

)2

≤
(∥∥F (0)

∥∥2
∞

+
1

2

∥∥u(0)x

∥∥2
∞

)(∫ ∞

0
|µ|dx

)2

+
1

2

∫ ∞

0
w2
xm

(0) dx,

where the first inequality follows by two applications of Young’s inequality, and the last inequality
via the Cauchy-Schwarz inequality. Second, let δ > 0 to be chosen later. Then

∫ ∞

0

(
Ψµ+Φwx

)
dx ≤

∥∥Ψ
∥∥
∞

∫ ∞

0
|µ|dx+

∥∥Φ
∥∥
L1
x
‖wx‖∞(2.11)

≤ 1

2δ
+
δ

2

∥∥Ψ
∥∥2
∞

(∫ ∞

0
|µ|dx

)2

+
∥∥Φ
∥∥
L1
x
‖wx‖∞ .

The last inequality above follows from a generalized Young’s inequality. Third and last,
(∫ ∞

0
wxm

(0) dx

)(∫ ∞

0

(
wxm

(0) + u(0)x µ
)
dx

)
(2.12)

=

(∫ ∞

0
wxm

(0) dx

)2

+

(∫ ∞

0
wxm

(0) dx

)(∫ ∞

0
u(0)x µ dx

)

≤
∫ ∞

0
w2
xm

(0) dx+
1

2

(∫ ∞

0
wxm

(0) dx

)2

+
1

2

(∫ ∞

0
u(0)x µ dx

)2

≤ 3

2

∫ ∞

0
w2
xm

(0) dx+
1

2

∥∥u(0)x

∥∥2
∞

(∫ ∞

0
|µ|dx

)2

.

The first inequality follows via the Cauchy-Schwarz inequality and Young’s inequality. The last
inequality follows via another application of the Cauchy-Schwarz inequality. Together with (2.9),
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the above three estimates imply

− d

dt

∫ ∞

0
e−rtwµ dx ≤ e−rt

(
β(εξ)

(∥∥F (0)
∥∥2
∞

+
3

4

∥∥u(0)x

∥∥2
∞

)
+
δ

2

∥∥Ψ
∥∥
∞

)(∫ ∞

0
|µ|dx

)2

(2.13)

+
1

2
e−rt

(5
2
β(εξ)− 1

) ∫ ∞

0
w2
xm

(0) dx+ e−rt
( 1

2δ
+
∥∥Φ
∥∥
L1
x

∥∥wx

∥∥
∞

)
.

To make future calculations less cluttered define

(2.14) f(t) := 2β(εξ)
(∥∥F (0)

∥∥2
∞

+
3

4

∥∥u(0)x

∥∥2
∞

)
+ δ
∥∥Ψ
∥∥
∞
.

Now, because w(x, T ) = µ(x, 0) = 0, integrating the left-hand side of (2.13) in time and rearranging
the inequality, we obtain

∫ T

0

(
1− 5

2
β(εξ)

)
e−rt

∫ ∞

0
w2
xm

(0) dxdt ≤
∫ T

0
f(t)e−rt

(∫ ∞

0
|µ|dx

)2

dt(2.15)

+

∫ T

0
e−rt

(1
δ
+ 2
∥∥Φ
∥∥
L1
x

∥∥wx

∥∥
∞

)
dt,

Note that β(εξ), and subsequently f(t), converges to 0 uniformly in t as ε and δ go to 0. Let δ1 > 0
to be determined shortly. We can take ε and δ small enough such that

(2.16) β(εξ) <
δ1

4
(∥∥F (0)

∥∥2
∞

+
3

4

∥∥u(0)x

∥∥2
∞

) and δ <
δ1

2
∥∥Ψ
∥∥
∞

.

That is,
∥∥f
∥∥
L∞

t
< δ1 for ε and δ small enough. Consequently, by Proposition 2.2,

∫ T

0

(
1− 5

2
β(εξ)− δ1C2

)
e−rt

∫ ∞

0
w2
xm

(0) dxdt(2.17)

≤ δ1C1

∥∥Φ
∥∥2
L∞

t (L1
x)

+

∫ T

0
e−rt

(1
δ
+ 2
∥∥Φ
∥∥
L1
x

∥∥wx

∥∥
∞

)
dt,

for some constants C1, C2 ∈ (0,∞) which depend only on
∥∥u(0)x

∥∥
∞
, σ, and T . We now choose

δ1 < 1/(4C2). If necessary, we may take ε smaller so that β(εξ) < 1/10 as well. This, together
with (2.16), demonstrates that by choosing ε0 as in Equation (2.5), we find for all ε ∈ [0, ε0] that

(2.18) 1− 5

2
β(εξ)− δ1C2 <

1

2
.

Subsequently,

(2.19)

∫ T

0
e−rt

∫ ∞

0
w2
xm

(0) dxdt ≤
C1

∥∥Φ
∥∥2
L∞

t (L1
x)

2C2
+ 2

∫ T

0
e−rt

(1
δ
+ 2
∥∥Φ
∥∥
L1
x

∥∥wx

∥∥
∞

)
dt.

To clean things up, the restriction on δ1 implies δ < 1/
(
8C2‖Ψ‖∞

)
, and we can restrict δ from

below so that δ > 1/
(
16C2‖Ψ‖∞

)
. As such, we find that

(2.20)

∫ T

0
e−rt

∫ ∞

0
w2
xm

(0) dxdt ≤
C1

∥∥Φ
∥∥2
L∞

t (L1
x)

2C2
+ 32C2

∥∥Ψ
∥∥
∞
r−1 + 4r−1‖Φ‖L∞

t (L1
x)
‖wx‖∞ ,

after estimating
∫ T
0 e−rt dt ≤ r−1. This yields the desired result. �
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As a consequence of the above energy estimate, we find that the maximum of w is controlled
partially by the square root of the maximum of wx.

Corollary 2.4. Suppose (w,µ) satisfies System (1.4) with Ψ ∈ L∞ and Φ ∈ L∞
t (L1

x). Let ε0 satisfy
(2.5). Then for ε ∈ [0, ε0],

(2.21) |w(x, t)| ≤ C1κ
(
1 +
∥∥wx

∥∥
∞

)1/2
+ C2‖Ψ‖∞ for all x, t ∈ [0,∞) × [0, T ],

where C1 ∈ (0,∞) is a constant depending only on
∥∥u(0)x

∥∥
∞
, σ, r, and T ; C2 ∈ (0,∞) is a constant

depending only on r, and T ; and κ ∈ [0,∞) is a constant depending solely on
∥∥Φ
∥∥
L∞

t (L1
x)

and
∥∥Ψ
∥∥
∞

in such a way that κ = 0 whenever
∥∥Φ
∥∥
L∞

t (L1
x)

=
∥∥Ψ
∥∥
∞

= 0.

Proof. Begin by defining

(2.22) f(t) :=
∥∥F (0)

∥∥
∞
β(εξ)

∫ ∞

0

∣∣∣wxm
(0) + u(0)x µ

∣∣∣dx.

System (1.4) implies

(2.23)
∣∣∣wt +

σ2

2
wxx − rw − F (0)wx

∣∣∣ ≤ f(t) +
∥∥Ψ
∥∥
∞
.

Set

(2.24) v(x, t) := e−rtw(x, t) −
∫ T

t
e−rs

(
f(s) +

∥∥Ψ
∥∥
∞

)
ds,

and hence (2.23) implies

(2.25) vt +
σ2

2
vxx − F (0)vx ≥ 0.

Using the standard maximum principle on v, we find that

(2.26) e−rtw(x, t) ≤
∫ T

0
e−rs

(
f(s) +

∥∥Ψ
∥∥
∞

)
ds.

A similar argument, where we define

(2.27) v(x, t) := e−rtw(x, t) +

∫ T

t

(
f(s) +

∥∥Ψ
∥∥
∞

)
ds

instead, shows that

(2.28) e−rtw(x, t) ≥ −
∫ T

0
e−rs

(
f(s) +

∥∥Ψ
∥∥
∞

)
ds.

As such,

(2.29)
∣∣∣e−rtw(x, t)

∣∣∣ ≤
∫ T

0
e−rs

(
f(s) +

∥∥Ψ
∥∥
∞

)
ds for all (x, t) ∈ [0,∞) × [0, T ].
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Using several careful applications of the Cauchy-Schwarz inequality we estimate

∫ T

0
e−rsf(s) ds ≤

∥∥F (0)
∥∥
∞

(∫ T

0
e−rs

∫ ∞

0

∣∣∣wxm
(0)
∣∣∣dxds+

∫ T

0
e−rs

∫ ∞

0

∣∣∣u(0)x µ
∣∣∣dxds

)
(2.30)

≤
∥∥F (0)

∥∥
∞

∫ T

0
e−rs

(∫ ∞

0
w2
xm

(0) dx

)1/2(∫ ∞

0
m(0) dx

)1/2

ds

+
∥∥F (0)

∥∥
∞

(∫ T

0
e−rs ds

)1/2(∫ T

0
e−rs

(∫ ∞

0

∣∣∣u(0)x µ
∣∣∣dx

)2

ds

)1/2

≤
∥∥F (0)

∥∥
∞

∫ T

0
e−rs

(∫ ∞

0
w2
xm

(0) dx

)1/2

ds

+
∥∥F (0)

∥∥
∞

∥∥u(0)x

∥∥
∞
r−1/2

(∫ T

0
e−rs

(∫ ∞

0
|µ|dx

)2

ds

)1/2

≤
∥∥F (0)

∥∥
∞

(∫ T

0
e−rs ds

)1/2(∫ T

0
e−rs

∫ ∞

0
w2
xm

(0) dxds

)1/2

+
∥∥F (0)

∥∥
∞

∥∥u(0)x

∥∥
∞
r−1/2

(
C1‖Φ‖2L∞

t (L1
x)

+ C2

∫ T

0
e−rs

∫ ∞

0
w2
xm

(0) dxds

)1/2

≤ C

(
‖Φ‖2L∞

t (L1
x)

+

∫ T

0
e−rs

∫ ∞

0
w2
xm

(0) dxds

)1/2

.

Note that the fourth inequality follows from Proposition 2.2, so that C1, C2 ∈ (0,∞) are constants

that depend only on
∥∥u(0)x

∥∥
∞
, σ, and T . Also, the constant C can be given by

(2.31) C :=
∥∥F (0)

∥∥
∞
r−1/2

(
1 +
∥∥u(0)x

∥∥
∞
(C1 + C2)

1/2
)
.

Therefore, combining this estimate with (2.29) we obtain

(2.32) |w(x, t)| ≤ CerT

(
‖Φ‖2L∞

t (L1
x)

+

∫ T

0
e−rs

∫ ∞

0
w2
xm

(0) dxds

)1/2

+ r−1erT
∥∥Ψ
∥∥
∞

for all (x, t) ∈ [0,∞) × [0, T ]. Now, using the energy estimate, established in Proposition 2.3,

there exist constants C3, C4 ∈ (0,∞), depending only on
∥∥u(0)x

∥∥
∞
, σ, r, and T such that for

κ′ :=‖Φ‖2L∞

t (L1
x)

+‖Ψ‖∞,

|w(x, t)| ≤ CerT
(
‖Φ‖2L∞

t (L1
x)

+ C3κ
′ +C4‖Φ‖L∞

t (L1
x)

∥∥wx

∥∥
∞

)1/2
+ r−1erT

∥∥Ψ
∥∥
∞

(2.33)

≤ C
(
‖Φ‖2L∞

t (L1
x)

+ C3κ
′ + C4‖Φ‖L∞

t (L1
x)

)1/2(
1 +
∥∥wx

∥∥
∞

)1/2
+ r−1erT

∥∥Ψ
∥∥
∞

for all (x, t) ∈ [0,∞) × [0, T ], which is the desired result. �
11



2.3. Estimates in the dual of C1+α. In this subsection we want to provide a priori estimates on
µ, the solution to (ii) of System (1.4), in the space

(2.34) Cα/4([0, T ]; (C1+α)∗)

for a given α ∈ (0, 1). Such estimates are required to deduce the time-regularity of integral terms
involving µ. We first use duality methods to obtain estimates on µ in the space

(2.35) Cα/4([0, T ]; (C1+α
⋄ )∗),

where C1+α
⋄ is the space of all φ ∈ C1+α such that φ(0) = 0. These estimates rely on corresponding

estimates for the primal problem, which are found in Appendix A.2.

Proposition 2.5. Let (w,µ) satisfy (1.4). Let ε0 satisfy (2.5). Then for ε ∈ [0, ε0] there exists a

constant κ ∈ [0,∞) and a constant C ∈ (0,∞), depending exclusively on
∥∥u(0)x

∥∥
∞
, σ, λ, α, and T ,

such that

(2.36)
∥∥µ
∥∥
Cα/4([0,T ]; (C1+α

⋄ )∗)
≤ Cκ

(
1 +
∥∥wx

∥∥
∞

)1/2
.

Moreover, the constant κ depends solely on
∥∥Φ
∥∥
L∞

t (L1
x)

and
∥∥Ψ
∥∥
∞

in such a way that κ = 0 whenever∥∥Φ
∥∥
L∞

t (L1
x)

=
∥∥Ψ
∥∥
∞

= 0.

Proof. Fix some t1 ∈ [0, T ]. Consider the dual PDE to µ,

(2.37)





−ψt − σ2

2 ψxx + F (0)ψx + λψ = 0, (x, t) ∈ [0,∞)× [0, t1]

ψ(x, t1) = ϕ(x) ∈ C1+α
⋄ ([0,∞)), x ∈ [0,∞)

ψ(0, t) = 0, t ∈ [0, t1],

for some λ > 0. By Lemma A.2, we have

(2.38) ‖ψ‖C1+α,α/2 ,‖ψ‖Cα/4([0,T ];C1+α/2(D)) ≤ C0‖φ‖C1+α

for some constant C0 depending only on λ, α, and
∥∥∥F (0)

∥∥∥
∞
.

We write ψ̃(x, t) := e−λtψ(x, t), so that the above equation implies

(2.39) − ψ̃t −
σ2

2
ψ̃xx + F (0)ψ̃x = 0.

We observe that

d

dt

∫ ∞

0
ψ̃(x, t)µ(x, t) dx =

∫ ∞

0

(
ψ̃tµ+ ψ̃µt

)
dt

=

∫ ∞

0

(
− σ2

2
ψ̃xx + F (0)ψ̃x

)
µ dx

+

∫ ∞

0
ψ̃

(
σ2

2
µxx +

[
F (0)µ

]
x
+
[
Φ+

1

2
(G− wx)m

(0)
]
x

)
dx

= −
∫ ∞

0
ψ̃x

(
Φ+

1

2
(G− wx)m

(0)
)
dx.

(2.40)
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The first equality follows via differentiation under the integral sign, the second equality follows

from substituting in the equations for ψ̃t and µt, and the last equality follows via integration by
parts. Consequently, with t2 ∈ [0, t1] arbitrary, we have

∫ ∞

0
ψ̃(x, t1)µ(x, t1) dx−

∫ ∞

0
ψ̃(x, t2)µ(x, t2) dx(2.41)

= −
∫ t1

t2

∫ ∞

0
ψxe

−λt
(
Φ+

1

2
(G− wx)m

(0)
)
dxdt

≤‖ψx‖∞
∫ t1

t2

∫ ∞

0
e−λt

∣∣∣Φ+
1

2
(G −wx)m

(0)
∣∣∣dxdt

≤ C0

∥∥ϕ
∥∥
C1+α

∫ t1

t2

e−λt
(
η1(t) + η2(t)

)
dt,

where we have used (2.38), and where

(2.42) η1(t) :=

∫ ∞

0

∣∣Φ
∣∣dx and η2(t) :=

1

2

∫ ∞

0
|G− wx|m(0) dx.

By assumption and the fact that e−λt ∈ Cα/2([0, T ]), we find

(2.43)

∫ t1

t2

e−λtη1(t) dt ≤
1

λ

∥∥Φ
∥∥
L∞

t (L1
x)

∣∣∣e−λt1 − e−λt2
∣∣∣ ≤ C1

∥∥Φ
∥∥
L∞

t (L1
x)
|t1 − t2|α/2,

where the constant C1 depends on λ and α.

Turning our attention now to η2, we first use the Cauchy-Schwarz inequality to write

(2.44)

∫ t1

t2

e−λtη2(t) dt ≤
(∫ t1

t2

e−λtη2(t)
2 dt

)1/2(∫ t1

t2

e−λt dt

)1/2

.

Then η2(t)
2 can be estimated in the following way.

η2(t)
2 ≤ 1

4

(∫ ∞

0
|u(0)x µ|dx+ 2

∫ ∞

0
|wx|m(0) dx

)2

≤ 1

2

(∫ ∞

0
|u(0)x µ|dx

)2

+ 2

(∫ ∞

0
|wx|m(0) dx

)2

≤ 1

2

∥∥u(0)x

∥∥
∞

(∫ ∞

0
|µ|dx

)2

+ 2

∫ ∞

0
w2
xm

(0) dx.

The first inequality follows from a combination of using the triangle inequality, unpacking the
definition of G, and recalling that

∫∞

0 m(0) dx ≤ 1. The second inequality uses the fact that(∑n
k=1 xk

)2 ≤ n
∑n

k=1 x
2
k. The third inequality is a consequence of the Cauchy-Schwarz inequality.

Using this initial estimate on η2, we find that

∫ t1

t2

e−λtη2(t)
2 dt ≤ 1

2

∥∥u(0)x

∥∥
∞

∫ t1

t2

e−λt

(∫ ∞

0
|µ|dx

)2

dt+ 2

∫ t1

t2

e−λt

∫ ∞

0
w2
xm

(0) dxdt(2.45)

≤ C2κ
′ + C3

∥∥Φ
∥∥
L∞

t (L1
x)

∥∥wx

∥∥
∞

13



where the constants C2, C3 ∈ (0,∞) depend only on
∥∥u(0)x

∥∥
∞
, σ, λ, and T , and we define

(2.46) κ′ :=‖Ψ‖∞ +‖Φ‖2L∞

t (L1
x)
.

The second inequality in (2.45) is a consequence of Proposition 2.2, followed by an application of
Proposition 2.3. Returning to (2.44), it follows that

∫ t1

t2

e−λtη2(t) dt ≤
(
C2κ

′ + C3

∥∥Φ
∥∥
L∞

t (L1
x)

∥∥wx

∥∥
∞

)1/2
(∫ t2

t1

e−λt dt

)1/2

(2.47)

≤ C1

(
C2κ

′ + C3

∥∥Φ
∥∥
L∞

t (L1
x)

∥∥wx

∥∥
∞

)1/2
|t1 − t2|1/2

with C1 as in (2.43). Hence (2.41) and the two estimates in (2.43) and (2.47) show that
∫ ∞

0
ψ̃(x, t1)µ(x, t1) dx−

∫ ∞

0
ψ̃(x, t2)µ(x, t2) dx(2.48)

≤ C
((
κ′ +

∥∥Φ
∥∥
L∞

t (L1
x)

)1/2
+
∥∥Φ
∥∥
L∞

t (L1
x)

)(
1 +
∥∥wx

∥∥
∞

)1/2|t1 − t2|α/2
∥∥ϕ
∥∥
C1+α
⋄

,

where

(2.49) Cα := C0C1

(
(C2 + C3)

1/2 + 1
)
.

Now, call

(2.50) κ :=
(
κ′ +

∥∥Φ
∥∥
L∞

t (L1
x)

)1/2
+
∥∥Φ
∥∥
L∞

t (L1
x)
,

and set t2 = 0, so that µ(x, t2) = 0. Hence (2.48) implies

(2.51)

∫ ∞

0
µ(x, t1)ϕ(x) dx ≤ CκeλT

(
1 +
∥∥wx

∥∥
∞

)1/2
Tα/2

∥∥ϕ
∥∥
C1+α
⋄

.

In particular, since t1 and ϕ were arbitrary, we have

(2.52)
∥∥µ
∥∥
L∞

t (C1+α
⋄ )∗

≤ Cακ
(
1 +
∥∥wx

∥∥
∞

)1/2
,

with C ′
α := CeλTTα/2.

Again let t1, t2 ∈ [0, T ] be arbitrary and without loss of generality take t1 ≥ t2. Then
∫ ∞

0
ψ̃(x, t1)

(
µ(x, t1)− µ(x, t2)

)
dx =

∫ ∞

0
ψ̃(x, t1)µ(x, t1) dx−

∫ ∞

0
ψ̃(x, t2)µ(x, t2) dx(2.53)

+

∫ ∞

0

(
ψ̃(x, t2)− ψ̃(x, t1)

)
µ(x, t2) dx.

For the last integral, we estimate
∫ ∞

0

(
ψ̃(x, t2)− ψ̃(x, t1)

)
µ(x, t2) dx ≤

∥∥ψ̃
∥∥
Cα/4([0,t1];C

1+α/2
⋄ )

∥∥µ
∥∥
L∞

t (C1+α/2)∗
|t1 − t2|α/4(2.54)

≤ C ′
α/2κ

∥∥ϕ
∥∥
C1+α
⋄

(1 +
∥∥wx

∥∥
∞
)1/2|t1 − t2|α/4,

where the last inequality follows from (2.52) and (2.38). Combining this with what we found in
(2.48), the equation in (2.53) implies

(2.55)

∫ ∞

0
e−λt1ϕ(x)

(
µ(x, t1)−µ(x, t2)

)
dx ≤ (C ′

α/2+CαT
α/4)κ

∥∥ϕ
∥∥
C1+α
⋄

(1+
∥∥wx

∥∥
∞
)1/2|t1−t2|α/4.
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Hence, as t1, t2, and ϕ were arbitrary,

(2.56)
∥∥µ
∥∥
Cα/4([0,T ];(C1+α)∗)

≤ (C ′
α/2 + CαT

α/4)κ(1 +
∥∥wx

∥∥
∞
)1/2.

This is the desired result. �

Notice that any φ ∈ C1+α can be written as the sum of a constant and an element of C1+α
⋄ , since

φ− φ(0) ∈ C1+α
⋄ . Therefore the following proposition will complete our estimates of µ in the dual

of C1+α.

Proposition 2.6. Let (w,µ) satisfy (1.4). Define

(2.57) η(t) :=

∫ ∞

0
µ(x, t) dx.

Let ε0 satisfy (2.5). Then for ε ∈ [0, ε0] and α ∈
(
0, 1/6

]
, there exists a constant κ ∈ [0,∞), and a

constant C ∈ (0,∞), depending solely on
∥∥u(0)x

∥∥
∞
, σ, λ, α and T such that for all ε ∈ [0, ε0]

(2.58) ‖η‖Cα([0,T ]) ≤ Cκ
(
1 +
∥∥wx

∥∥
∞

)5/6
.

Moreover, the constant κ depends exclusively on
∥∥Φ
∥∥
L∞

t (L1
x)

and
∥∥Ψ
∥∥
∞

in such a way that κ = 0

whenever
∥∥Φ
∥∥
L∞

t (L1
x)

=
∥∥Ψ
∥∥
∞

= 0.

Proof. We begin by applying (A.30) with the identifications µ := µ, b := F (0), and

ν := Φ + 1
2(G− wx)m

(0) to get

(2.59) µ(x, t) = I1(x, t) + I2(x, t),

where

I1(x, t) :=

∫ t

0

∫ ∞

0

(
∂S

∂x
(x− y, t− s) +

∂S

∂x
(x+ y, t− s)

)
F (0)(y, s)µ(y, s) dy ds,

I2(x, t) :=

∫ t

0

∫ ∞

0

(
∂S

∂x
(x− y, t− s) +

∂S

∂x
(x+ y, t− s)

)
ν(y, s) dy ds.

(2.60)

Our first step will be to prove a bound on the functional

(2.61) f(t) :=

∫ ∞

0
|µ(x, t)|dx.

By (A.35) and Hölder’s inequality, we have

(2.62)

∫ ∞

0

∣∣ν(x, t)
∣∣ dx ≤

∥∥Φ
∥∥
L1
x
+
∥∥u(0)x

∥∥
∞
f(t) + 2

(∫ ∞

0
|wx|2m(0) dx

)1/2

.

We apply (2.62) and (A.4) to (2.59) and get

(2.63) f(t) ≤
∫ t

0
(t− s)−1/2

(
C1f(s) + g(s)

)
ds,

where

(2.64) C1 = c′
(∥∥u(0)x

∥∥
∞

+
∥∥F (0)

∥∥
∞

)
and g(s) =

∥∥Φ
∥∥
L1
x
+ 2

(∫ ∞

0
|wx|2m(0) dx

)1/2

,
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and c′ is as in (A.5). Multiply both sides of (2.63) by e−λt for some λ > 0 to be chosen. Define
fλ(t) = e−λtf(t) and gλ(t) = e−λtg(t). We see

(2.65) fλ(t) ≤
∫ t

0
(t− s)−1/2e−λ(t−s)

(
C1fλ(s) + gλ(s)

)
ds.

We wish to estimate
∫ t
0 (t− s)−1/2e−λ(t−s)gλ(s) ds. Since

(2.66)

∫ t

0
(t− s)−1/2e−λ(t−s) ds =

∫ t

0
s−1/2e−λs ds ≤ λ−1/2

∫ ∞

0
s−1/2e−s ds = λ−1/2π1/2,

we have

(2.67)

∫ t

0
(t− s)−1/2e−λ(t−s)gλ(s) ds

≤
∥∥Φ
∥∥
L∞

t (L1
x)
λ−1/2π1/2 + 2

∫ t

0
(t− s)−1/2e−λ(t−s)

(∫ ∞

0
w2
xm

(0) dx

)1/2

ds.

On the other hand, using Proposition 2.3, Hölder’s inequality, and recalling that
∫∞

0 m(0) dx ≤ 1,
we get

∫ t

0
(t− s)−1/2e−λ(t−s)

(∫ ∞

0
w2
xm

(0) dx

)1/2

ds

≤‖wx‖1/2L∞

x,t

∫ t

0
(t− s)−1/2e−λ(t−s)

(∫ ∞

0
|wx|2m(0) dx

)1/4

ds

≤‖wx‖1/2L∞

x,t

(∫ t

0
(t− s)−2/3e−

4

3
λ(t−s) ds

)3/4(∫ t

0

∫ ∞

0
|wx|2m(0) dxds

)1/4

≤‖wx‖1/2L∞

x,t
λ−1/4Γ(1/3)

(
C2‖Φ‖L∞

t (L1
x)
‖wx‖∞ + C3κ

′
)1/4

,

(2.68)

where C2 and C3 are constants depending only on σ, λ, and T , and κ′ is as in (2.46). We combine
these estimates to get

(2.69) fλ(t) ≤ C1

∫ t

0
(t− s)−1/2e−λ(t−s)fλ(s) ds

+
∥∥Φ
∥∥
L∞

t (L1
x)
λ−1/2π1/2 + 2‖wx‖1/2∞ λ−1/4Γ(1/3)

(
C2‖Φ‖L∞

t (L1
x)
‖wx‖∞ + C3κ

′
)1/4

.

Taking the supremum, we get

(2.70) sup
t∈[0,T ]

fλ(t) ≤ C1λ
−1/2π1/2 sup

s∈[0,T ]
fλ(s)

+
∥∥Φ
∥∥
L∞

t (L1
x)
λ−1/2π1/2 + 2‖wx‖1/2∞ λ−1/4Γ(1/3)

(
C2‖Φ‖L∞

t (L1
x)
‖wx‖∞ + C3κ

′
)1/4

.

Then setting λ = (2C1π
1/2)2, we deduce

(2.71)

sup
t∈[0,T ]

fλ(t) ≤ 2
∥∥Φ
∥∥
L∞

t (L1
x)
λ−1/2π1/2 + 4‖wx‖1/2∞ λ−1/4Γ(1/3)

(
C2‖Φ‖L∞

t (L1
x)
‖wx‖∞ + C3κ

′
)1/4

,

which yields

(2.72) sup
t∈[0,T ]

∫ ∞

0

∣∣µ(x, t)
∣∣ dx ≤ Aκ′′

(
‖wx‖∞ + 1

)3/4
+B‖Φ‖L∞

t (L1
x)
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for some constants A,B ∈ (0,∞), depending only on
∥∥u(0)x

∥∥
∞
, σ, λ, and T , and

(2.73) κ′′ := κ′ +‖Φ‖L∞

t (L1
x)
.

We now turn to Hölder estimates. By integrating (2.59) with respect to x, we discover that

(2.74) η(t) = η1(t) + η2(t),

where

η1(t) = −2

∫ t

0

∫ ∞

0
S(y, t− s)F (0)(y, s)µ(y, s) dy ds,

η2(t) = −2

∫ t

0

∫ ∞

0
S(y, t− s)ν(y, s) dy ds.

(2.75)

We want Hölder estimates on each term. Let 0 ≤ t0 ≤ t1 ≤ T . For η1, write

(2.76) η1(t1)− η1(t0) = −2

∫ t1

t0

∫ ∞

0
S(y, t1 − s)F (0)(y, s)µ(y, s) dy ds

− 2

∫ t0

0

∫ ∞

0

∫ t1

t0

∂S

∂t
(y, t− s)F (0)(y, s)µ(y, s) dt dy ds.

Note that

(2.77)
∂S

∂t
(x, t) = (2σ2π)−1/2t−3/2

(
x2

2σ2t
− 1

2

)
exp

{
− x2

2σ2t

}
.

Since xe−x ≤ e−1 ≤ 1/2 for all x, it follows that

(2.78)

∣∣∣∣
∂S

∂t
(x, t)

∣∣∣∣ ≤ (2σ2π)−1/2t−3/2 ∀x.

Let c′ = 2(2σ2π)−1/2. We get

(2.79)
∣∣η1(t1)− η1(t0)

∣∣ ≤ c′
∥∥F (0)

∥∥
∞

∫ t1

t0

(t1 − s)−1/2

∫ ∞

0

∣∣µ(y, s)
∣∣ dy ds

+ c′
∥∥F (0)

∥∥
∞

∫ t0

0

∫ ∞

0

∫ t1

t0

(t− s)−3/2
∣∣µ(y, s)

∣∣ dt dy ds.

Using (2.72) and computing the remaining integrals, we obtain

(2.80)
∣∣η1(t1)− η1(t0)

∣∣ ≤ C
∥∥F (0)

∥∥
∞

(
Aκ′

(
‖wx‖∞ + 1

)3/4
+B‖Φ‖L∞

t (L1
x)

)
(t1 − t0)

1/2

for some constant C ∈ (0,∞).

We proceed similarly for η2. Write

(2.81) η2(t1)− η2(t0) = 2

∫ t1

t0

∫ ∞

0
S(y, t1 − s)ν(y, s) dy ds

+ 2

∫ t0

0

∫ ∞

0

∫ t1

t0

∂S

∂t
(y, t− s)ν(y, s) dt dy ds.

By (A.35) and (2.72), we have

(2.82)

∫ ∞

0

∣∣ν(x, t)
∣∣ dx ≤ Ãκ′′

(
‖wx‖∞+1

)3/4
+B̃‖Φ‖L∞

t (L1
x)
+2

(∫ ∞

0

∣∣wx(x, t)
∣∣2m(0)(x, t) dx

)1/2

,
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where Ã and B̃ are again constants depending only on
∥∥u(0)x

∥∥
∞
, σ, λ, and T . Using the same

reasoning as above, we get

(2.83)
∣∣η2(t1)− η2(t0)

∣∣ ≤ C
(
Ãκ′

(
‖wx‖∞ + 1

)3/4
+ B̃‖Φ‖L∞

t (L1
x)

)
(t1 − t0)

1/2

+ 2c′
∫ t1

t0

(t1 − s)−1/2

(∫ ∞

0

∣∣wx(x, s)
∣∣2m(0)(x, s) dx

)1/2

ds

+ 2c′
∫ t0

0

∫ t1

t0

(t− s)−3/2

(∫ ∞

0

∣∣wx(x, s)
∣∣2m(0)(x, s) dx

)1/2

dt ds.

Using Hölder’s inequality and Proposition 2.3, we get

∫ t0

0

∫ t1

t0

(t− s)−3/2

(∫ ∞

0

∣∣wx(x, s)
∣∣2m(0)(x, s) dx

)1/2

dt ds

≤‖wx‖2/3∞

∫ t0

0

∫ t1

t0

(t− s)−3/2

(∫ ∞

0

∣∣wx(x, s)
∣∣2m(0)(x, s) dx

)1/6

dt ds

≤‖wx‖2/3∞

(∫ t0

0

∫ t1

t0

(t− s)−9/5 dt ds

)5/6(∫ t0

0

∫ t1

t0

∫ ∞

0

∣∣wx(x, s)
∣∣2m(0)(x, s) dxdt ds

)1/6

≤ C‖wx‖2/3∞ (t1 − t0)
1/6
(
C2‖Φ‖L∞

t (L1
x)
‖wx‖∞ + C3κ

′
)1/6

.

(2.84)

By a similar computation, we get

(2.85)

∫ t1

t0

(t1 − s)−1/2

(∫ ∞

0

∣∣wx(x, s)
∣∣2m(0)(x, s) dx

)1/2

ds

≤ C‖wx‖2/3∞ (t1 − t0)
1/3
(
C2‖Φ‖L∞

t (L1
x)
‖wx‖∞ + C3κ

′
)1/6

.

We deduce
∣∣η2(t1)− η2(t0)

∣∣ ≤ CT 1/3
(
Ãκ′′

(
‖wx‖∞ + 1)3/4 + B̃‖Φ‖L∞

t (L1
x)

)
(t1 − t0)

1/6

+ C(1 + T 1/6)‖wx‖2/3∞ (t1 − t0)
1/6
(
C2‖Φ‖L∞

t (L1
x)
‖wx‖∞ + C3κ

′
)1/6

.

(2.86)

Combining (2.80) and (2.86), we can find some constant C̃ ∈ (0,∞), depending only on
∥∥F (0)

∥∥
∞
,∥∥u(0)x

∥∥
∞
, σ, λ, and T , such that

(2.87)
∣∣η(t1)− η(t0)

∣∣ ≤ C̃κ
(
‖wx‖∞ + 1

)5/6
(t1 − t0)

1/6,

where

(2.88) κ :=
(
κ′ +‖Φ‖L∞

t (L1
x)

)1/6
+ 2
(
κ′′ +‖Φ‖L∞

t (L1
x)

)
.

This yields (2.58), as desired. �

With Propositions 2.5 and 2.6 established, we now have the complete duality estimate on µ.

Corollary 2.7. Let (w,µ) satisfy (1.4). Let ε0 satisfy (2.5). Then for ε ∈ [0, ε0], one has µ ∈
Cα/4

(
[0, T ]; (C1+α)∗

)
with

(2.89)
∥∥µ
∥∥
Cα/4

(
[0,T ];(C1+α)∗

) ≤ Cκ
(
1 +
∥∥wx

∥∥
∞

)5/6
,
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for some constant C ∈ (0,∞), depending exclusively on
∥∥u(0)x

∥∥
∞
, σ, λ, α and T ; and κ ∈ [0,∞),

depending solely on
∥∥Φ
∥∥
L∞

t (L1
x)

and
∥∥Ψ
∥∥
∞

in such a way that κ = 0 whenever
∥∥Φ
∥∥
L∞

t (L1
x)

=
∥∥Ψ
∥∥
∞

=

0.

2.4. Full C2+α,1+α/2 regularity. We are now in a position to establish full parabolic regularity in
classical spaces for solutions to System (1.4).

Theorem 2.8. Let α ∈ (0, 1/6] be such that (u(0),m(0)) ∈ C2+2α,1+α. Let (w,µ) satisfy (1.4) with
Ψ ∈ Cα,α/2 and Φ ∈ C1+α,α/2. Let ε0 satisfy (2.5). Then for ε ∈ [0, ε0], one has

(2.90) w ∈ C2+α,1+α/2
(
[0,∞)× [0, T ]

)
and µ ∈ C2+α,1+α/2

(
[0,∞)× [0, T ]

)
.

Furthermore, there exist constants C ∈ (0,∞) and κ ∈ [0,∞), depending solely on the data such
that

(2.91) ‖w‖C2+α,1+α/2 ≤ Cκ and ‖µ‖C2+α,1+α/2 ≤ Cκ

with κ depending exclusively on ‖Ψ‖Cα,α/2 and ‖Φ‖C1+α,α/2 in such a way that κ = 0 whenever

Φ = Ψ = 0. In addition, we have µ ∈ C1/2
(
[0, T ];L1((0,∞)

)
with an estimate

(2.92) ‖µ‖
C1/2([0,T ];L1((0,∞)) ≤ Cκ.

Proof. Begin by defining

(2.93) η1(t) :=

∫ ∞

0
wxm

(0) dx and η2(t) :=

∫ ∞

0
u(0)x µ dx,

so that after expanding terms (i) of System (1.4) reads

(2.94) wt +
σ2

2
wxx − rw − F (0)wx + β(εξ)

(
η1(t) + η2(t)

)
+Ψ = 0.

Note that β(εξ) ∈ Cα/2([0, T ]), and by assumption, Ψ ∈ Cα,α/2([0,∞), [0, T ]). As such, using
classical estimates [26, Theorem IV.5.1], we find

(2.95)
∥∥w
∥∥
C2+α,1+α/2 ≤ C0

(∥∥Ψ
∥∥
Cα,α/2 +‖η1‖Cα/2 +‖η2‖Cα/2

)
,

where the constant C0 ∈ (0,∞) depends on the data.

Focus on η2 first. We estimate

|η2(t1)− η2(t2)| ≤
∣∣∣
∫ ∞

0

(
u(0)x (x, t1)− u(0)x (x, t2)

)
µ(x, t1) dx

∣∣∣(2.96)

+
∣∣∣
∫ ∞

0
u(0)x (x, t2)

(
µ(x, t1)− µ(x, t2)

)
dx
∣∣∣

≤
∥∥µ(·, t1)

∥∥
(C1+2α)∗

∥∥u(0)x (·, t1)− u(0)x (·, t2)
∥∥
C1+2α

+
∥∥u(0)x (·, t2)

∥∥
C1+2α

∥∥µ(·, t1)− µ(·, t2)
∥∥
(C1+2α)∗

≤ 2
∥∥µ
∥∥
Cα/2([0,T ];(C1+2α)∗)

∥∥u(0)
∥∥
C2+2α,1+α |t1 − t2|α/4.

Hence by Corollary 2.7,
∥∥η2
∥∥
Cα/2([0,T ])

≤ 2
∥∥µ
∥∥
Cα/2([0,T ];(C1+2α)∗)

∥∥u(0)
∥∥
C2+2α,1+α(2.97)

≤ C1κ
′
(
1 +
∥∥wx

∥∥
∞

)5/6
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for some constant C1 ∈ (0,∞), depending solely on
∥∥u(0)

∥∥
C2+2α,1+α and the data, and κ′ ∈ [0,∞), de-

pending exclusively on
∥∥Φ
∥∥
L∞

t (L1
x)

and
∥∥Ψ
∥∥
∞

in such a way that forces k′ = 0 whenever
∥∥Φ
∥∥
L∞

t (L1
x)

=
∥∥Ψ
∥∥
∞

= 0. On the other hand, since m(0) satisfies a (homogeneous) Fokker-Planck equation, by
classical arguments (cf. [21, Lemma 3.1]) combined with the estimates of Proposition 2.6 (cf. [21,

Lemma 3.7]), we have an estimate on the norm
∥∥m(0)

∥∥
Cα/2([0,T ];(Cα)∗)

. Now a similar calculation as

in (2.96) shows

(2.98)
∥∥η1(t)

∥∥
Cα/2 ≤ C2

∥∥wx

∥∥
Cα,α/2 ,

where the constant C2 ∈ (0,∞) depends solely on
∥∥m(0)

∥∥
Cα/4([0,T ];(Cα/2)∗)

. Therefore, returning to

(2.95), we have

∥∥w
∥∥
C2+α,1+α/2 ≤ C0

(∥∥Ψ
∥∥
Cα,α/2 + C1κ

′
(
1 +
∥∥wx

∥∥
∞

)5/6
+ C2

∥∥wx

∥∥
Cα,α/2

)
(2.99)

≤ C0

(
‖Ψ‖Cα,α/2 + C1κ

′ + (C1κ1 + C2)
∥∥wx

∥∥
Cα,α/2

)

≤ C̃
(
κ1 +

∥∥wx

∥∥
Cα,α/2

)

where C̃ := C0

(
1 + C1(κ1 + 1) + C2

)
, and κ1 :=‖Ψ‖Cα,α/2 + κ′. By interpolation of Hölder spaces,

there exists a constant C ′ > 0 such that

(2.100)
∥∥wx

∥∥
Cα,α/2 ≤ 1

2C̃

∥∥w
∥∥
C2+α,1+α/2 + C ′

∥∥w
∥∥
∞
,

where C̃ is as in the last line of (2.99). As such, (2.100) along with (2.99) show that
∥∥w
∥∥
C2+α,1+α/2 ≤ 2C̃

(
κ1 + C ′

∥∥w
∥∥
∞

)
(2.101)

≤ 2C̃
(
κ1 + C ′

(
C3κ

′′(1 +
∥∥wx

∥∥
∞
)1/2 + C4‖Ψ‖∞

))

≤ C ′′κ2

(
1 +
∥∥wx

∥∥1/2
∞

)
.

The second inequality follows from Corollary 2.4, so that the constants C3, C4 ∈ (0,∞) depend only
on the data, and κ′′ ∈ [0,∞) depends solely on

∥∥Φ
∥∥
L∞

t (L1
x)

and
∥∥Ψ
∥∥
∞

in such a way that κ′′ = 0

whenever
∥∥Φ
∥∥
L∞

t (L1
x)

=
∥∥Ψ
∥∥
∞

= 0. The constants C ′′ ∈ (0,∞) and κ2 ∈ [0,∞) can be given by

(2.102) C ′′ := 2C̃(1 + C ′C3 + C4) and κ2 := κ1 + κ′′ +‖Ψ‖∞ .

Subsequently, by Young’s inequality,

∥∥w
∥∥
C2+α,1+α/2 ≤ C ′′κ2 +

1

2

∥∥w
∥∥
C2+α,1+α/2 +

1

2
(C ′′κ2)

2.(2.103)

Thus,

(2.104)
∥∥w
∥∥
C2+α,1+α/2 ≤ 2C ′′κ2 + (C ′′κ2)

2 ≤ Cκ,

with C := (C ′′)2 + 2C ′′ and κ := κ22 + κ2. Hence w has the desired regularity with appropriate
bounds in terms of the data as stated in (2.91).

Turning our attention to µ, we begin by observing that (ii) of System (1.4) implies

(2.105) µt −
σ2

2
µxx −

1

2
u(0)xxµ− F (0)µx = Φx +

1

2

(
Gm(0)

x − wxxm
(0) − wxm

(0)
x

)
.

20



We already have estimates on the coefficients in Cα,α/2. As for the right-hand side, we estimate

Gm
(0)
x in Cα,α/2 by using

∥∥G
∥∥
Cα,α/2 ≤

∥∥∥∥
∫ ∞

0

(
u(0)x µ+ wxm

(0)
)
dx

∥∥∥∥
Cα,α/2

≤
∥∥u(0)

∥∥
C2+2α,1+α‖µ‖Cα/2([0,T ];(C1+2α)∗) +‖w‖C2+α,1+α/2

∥∥∥m(0)
∥∥∥
Cα/2([0,T ];(Cα)∗)

≤ C1κ1,

(2.106)

for some C1 ∈ (0,∞), depending solely on the data, and κ1 ∈ [0,∞) depending on ‖Ψ‖Cα,α/2 and

‖Φ‖Cα,α/2 in such a way that κ1 = 0 whenever Φ = Ψ = 0. Finally, since Φ ∈ C1+α,α/2, we obtain
via classical estimates [26, Theorem IV.5.1]

∥∥µ
∥∥
C2+α,1+α/2 ≤ C0

(
‖Φx‖Cα,α/2 +

∥∥Gm(0)
∥∥
Cα,α/2 +

∥∥wxxm
(0)
∥∥
Cα,α/2 +

∥∥wxm
(0)
∥∥
Cα,α/2

)
(2.107)

≤ C0

(
‖Φx‖Cα,α/2 +

∥∥G
∥∥
Cα,α/2

∥∥m(0)
∥∥
Cα,α/2 +‖w‖C2+α,1+α/2

∥∥m(0)
∥∥
C2+α,1+α/2

)

≤ C0

(
‖Φx‖Cα,α/2 + C1κ1 + C2κ2

)

for some constant C0 ∈ (0,∞) depending only on the data, some constant C2 ∈ (0,∞) depending
only on the data and

∥∥m(0)
∥∥
C2+α,1+α/2 , and κ2 ∈ [0,∞) depending on ‖Ψ‖Cα,α/2 and ‖Φx‖Cα,α/2 in

such a way that κ2 = 0 whenever Φ = Ψ = 0. Therefore,

(2.108)
∥∥µ
∥∥
C2+α,1+α/2 ≤ Cκ,

with C := C0(1+C1+C2) and κ :=‖Φx‖Cα,α/2 +κ1+κ2. This demonstrates the desired regularity
for µ with the required bound given in (2.91).

Finally, we appeal to Proposition 2.1 and the estimates just obtained to find that, for all K > 0,
∫ ∞

0

∣∣µ(x, t1)− µ(x, t2)
∣∣ dx ≤

∫ K

0

∣∣µ(x, t1)− µ(x, t2)
∣∣ dx+

1

K

∫ ∞

K
x
∣∣µ(x, t1)− µ(x, t2)

∣∣ dx

≤ K‖µ‖C2,1 |t1 − t2|+
C

K

(∥∥(1 + x)ν
∥∥
L∞

t (L1
x)

)
,

(2.109)

where ν = Φ+(G−wx)m
(0), and where C is a constant depending on

∥∥∥F (0
∥∥∥
∞

and on the data. Pick

K = |t1 − t2|−1/2 and take the supremum over t1 6= t2 to get an estimate on the Hölder seminorm
of t 7→ µ(·, t) ∈ L1

x. Combine this with the estimates above to obtain (2.92). �

3. Existence and uniqueness for the abstract system

In this section, we use a fixed point argument to demonstrate existence of solutions to (1.4). For
completeness, we provide a statement of the Leray-Schauder fixed point theorem, taken from [11,
Theorem 11.6, p. 286].

Theorem 3.1 (The Leray Schauder Fixed Point Theorem). Let X be a Banach space, and let
T : X × [0, 1] → X be a compact mapping satisfying T (x, 0) = 0 for all x ∈ X . Suppose there exists
a constant C ∈ (0,∞) such that

(3.1) ‖x‖X ≤ C for all (x, λ) ∈ X × [0, 1] satisfying T (x, λ) = x.

Then the mapping T1 : X → X , given by T1(x) = T (x, 1), has a fixed point.
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We now aim to construct a suitable Banach space along with a compact operator to satisfy the
hypotheses of Theorem 3.1.

Fix α ∈ (0, 1/6] such that u(0),m(0) ∈ C2+2α,1+α. Define the Banach space X := Cα,α/2 ∩L∞
t (L1

x)∩
Cα/2

(
[0, T ]; (C1+2α)∗

)
with norm

(3.2) ‖m‖X :=‖m‖Cα,α/2 +‖m‖L∞

t (L1
x)

+‖m‖
Cα/2([0,T ];(C1+2α)∗) .

Let Ψ ∈ Cα,α/2 and Φ ∈ C1+α,α/2 ∩L∞
t (L1

x) be given functions with xΦ ∈ L∞
t (L1

x) and Ψ(0, T ) = 0.
For any m ∈ X and λ ∈ [0, 1], let µ = T (m,λ) be determined by solving the system
(3.3)



(i) wt +
σ2

2
wxx − ru+ λΨ+ λF (0)(ε)

(
G(wx,m; ε)− wx

)
= 0, 0 ≤ x <∞, 0 ≤ t ≤ T

(ii) µt −
σ2

2
µxx − λ

(
F (0)µ

)
x
= λ

[
Φ+

1

2

(
G(wx,m; ε) −wx

)
m(0)

]
x
, 0 ≤ x <∞, 0 ≤ t ≤ T

(iii) µ(x, 0) = 0, w(x, T ) = 0, 0 ≤ x <∞
(iv) w(0, t) = µ(0, t) = 0, 0 ≤ t ≤ T,

where we recall that G is defined in (1.5).

The subsequent lemma establishes properties of T that are necessary for applying Theorem 3.1.

Lemma 3.2. The operator T , defined in (3.3), is well-defined, continuous, and compact.

Proof. We break the proof into three parts. Throughout the proof, we will refer to the results found
in [26], especially Theorems IV.5.1-3, as “classical results/estimates.”

1. Well-Definiteness. To show that the operator T is well-defined, suppose m ∈ X and λ ∈ [0, 1].

By Lemma B.1 there exists a unique solution w ∈ C2+α,1+α/2 to Equation (3.3)(i) (with boundary
conditions given in (iii)-(iv)). In particular, G(wx,m; ε) (which does not depend on x) is esti-

mated in Cα,α/2, and hence via classical results, Equation (3.3)(ii) has a unique solution µ, which

is estimated in C2+α,1+α/2. In addition, as a consequence of Proposition 2.1 (a), with

(3.4) b := λF (0) and ν := λΦ+
1

2
λ
(
G(wx,m; ε) − wx

)
m(0),

we find that µ ∈ L∞
t (L1

x). Using Equation (2.109), we can deduce that µ ∈ Cα/2
(
[0, T ]; (C1+2α)∗

)
,

as well. This ultimately shows that µ ∈ X , and hence T is well-defined.

2. Continuity. To demonstrate continuity of the operator T , start by letting {(mj , λj)}∞j=1 ⊆
X × [0, 1] be a sequence such that mj → m in X and λj → λ as j → ∞. Let (wj , µj) be the
solution to system (3.3) with m replaced by mj and λ replaced by λj , so that µj := T (mj, λj).
Via classical estimates (see also Lemma B.1), the sequences {wj}∞j=1 and {µj}∞j=1 are uniformly

bounded in C2+α,1+α/2, and therefore both wj , µj and their derivatives are uniformly bounded and
equicontinuous. By the Arzelà-Ascoli Theorem and diagonalization, there exists some (w,µ) ∈
C2+α,1+α/2 × C2+α,1+α/2 and a subsequence {(wjk , µjk)}∞k=1 such that

(3.5) (wjk , µjk) → (w,µ) in C2,1
(
[0, R] × [0, T ]

)
× C2,1

(
[0, R]× [0, T ]

)
as k → ∞, ∀R > 0.

In particular, wjk , µjk and their derivatives converge pointwise and are uniformly bounded. Also,
because we also have mj → m in L∞

t (L1
x), we see that

(3.6) G
(
(wjk)x,mjk ; ǫ

)
(t) → G (wx,m; ǫ) (t) ∀t ∈ [0, T ].
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Now let k → ∞ in the system solved by (wjk , µjk) to see that (w,µ) solves System (3.3), i.e. µ =
T (m,λ). Finally, by the argument that appears in the next step, we deduce that µjk → µ in X .
Hence T (mjk , λjk) → T (m,λ) in X . It follows that T is continuous.

3. Compactness. Finally, to demonstrate compactness of the operator T , let {(mj , λj)}∞j=1 be

any bounded sequence in X × [0, 1]. If again we let (wj , µj) be the solution to system (3.3) with m
replaced by mj and λ replaced by λj, then as in the previous step we see that the sequences {wj}∞j=1

and {µj}∞j=1 are uniformly bounded in C2+α,1+α/2, and there exists a subsequence {(wjk , µjk)}∞k=1

such that (3.5) holds. It remains to show that µjk → µ in X = Cα,α/2 ∩ L∞
t (L1

x).

We will appeal to Proposition 2.1. First, note that µjk − µ (k = 1, 2, . . . ) satisfies (2.1) of Proposi-
tion 2.1 with

(3.7) bk := (λjk − λ)F (0)

and

(3.8) νk := (λjk − λ)Φ +
1

2

(
λjkG

(
(wjk)x,mjk ; ε

)
− λG(wx,m; ε) −

(
λjk(wjk)x − λw

))
m(0).

We have that bk is uniformly bounded in L∞; we need to show that νk and xνk are uniformly
bounded in L∞

t (L1
x). By assumption, Φ ∈ L∞

t (L1
x) and xΦ ∈ L∞

t (L1
x). Next, by (3.5), there exists

a constant C1 ∈ (0,∞) such that

(3.9)
∥∥λjkwjk − λu

∥∥
∞

+
∥∥(λjkwjk)x − λwx

∥∥
∞

≤ C1 for all k ∈ N.

Also, by assumption, {mjk}∞k=1 is uniformly bounded in L∞
t (L1

x), so there exists some constant
C2 ∈ (0,∞) such that

(3.10)
∥∥λjkmjk − λm

∥∥
L∞

t (L1
x)

≤ C2 for all k ∈ N.

It follows that
∣∣∣λjkG

(
(wjk)x,mjk ; ε

)
− λG(wx,m; ε) −

(
λjk(wjk)x − λw

)∣∣∣(3.11)

=
∣∣β(εξ)

∣∣
∣∣∣∣
∫ ∞

0

(
λjk(wjk)x − λwx

)
m(0) dx+

∫ ∞

0
u(0)x

(
λjkmjk − λm

)
dx

∣∣∣∣

≤ C1 +
∥∥u(0)x

∥∥
∞
C2 for all k ∈ N.

Note that to obtain the inequality we also used that
∫∞

0 m(0) dx ≤ 1. We now find that

(3.12) ‖νk‖L∞

t (L1
x)

≤ 2‖Φ‖L∞

t (L1
x)

+
1

2

(
C1 +

∥∥u(0)x

∥∥
∞
C2

)
sup

t∈[0,T ]

∫ ∞

0
m(0)(x, t) dx < M1

for some constant M1 ∈ (0,∞), independent of k. Also, Proposition 2.1 (b) ensures that xm(0) ∈
L∞
t (L1

x), and thus

(3.13) ‖xνk‖L∞

t (L1
x)

≤ 2‖xΦ‖L∞

t (L1
x)

+
1

2

(
C1 +

∥∥u(0)x

∥∥
∞
C2

)
sup

t∈[0,T ]

∫ ∞

0
xm(0)(x, t) dx < M2

for some constant M2 ∈ (0,∞), independent of k. Therefore, the PDE that λjkµjk − λµ satisfies,
namely (2.1), also satisfies the hypotheses of Proposition 2.1 uniformly for all k ∈ N.
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We then write

sup
t∈[0,T ]

∫ ∞

0

∣∣µjk(x, t)− µ(x, t)
∣∣ dx(3.14)

= sup
t∈[0,T ]

[∫ K

0

∣∣µjk(x, t)− µ(x, t)
∣∣ dx+

∫ ∞

K

∣∣µjk(x, t)− µ(x, t)
∣∣ dx

]
,

By (3.5), for each fixed K > 0,

(3.15) sup
t∈[0,T ]

∫ K

0

∣∣µjk(x, t)− µ(x, t)
∣∣ dx→ 0 as k → ∞.

By Proposition 2.1 (b),

sup
t∈[0,T ]

∫ ∞

K

∣∣µjk(x, t)− µ(x, t)
∣∣ dx ≤ sup

t∈[0,T ]

1

K

∫ K

0
x
∣∣µjk(x, t) − µ(x, t)

∣∣ dx(3.16)

≤ K−1Mσ,b

(
‖νk‖L∞

t (L1
x)

+‖xνk‖L∞

t (L1
x)

)
(3.17)

≤ K−1Mσ,b(M1 +M2) → 0 as K → ∞
for all k ∈ N, and we see that µjk → µ in L∞

t (L1
x). Similarly, let µ̄jk = µjk − µ. For all t1 6= t2, by

taking K = |t1 − t2|−1/2 we have, cf. (2.109),

(3.18)

∫ ∞

0

∣∣µ̄jk(x, t1)− µ̄jk(x, t2)
∣∣ dx

≤
∥∥µjk − µ

∥∥
C2,1([0,K]×[0,T ])|t1 − t2|1/2 + 2|t1 − t2|1/2 sup

t

∫ ∞

0

∣∣µjk(x, t)− µ(x, t)
∣∣ dx.

From this we deduce that µjk → µ in C1/2([0, T ];L1), hence also in Cα/2
(
[0, T ]; (C1+2α)∗

)
.

Moreover, by [7, Lemma 2.2], we have

(3.19) sup
t∈[0,T ]

sup
x≥K

∣∣µjk(x, t)− µ(x, t)
∣∣ ≤ C

(
K−1Mσ,b(M1 +M2)

) α
α+1

,

where C depends only on supk
∥∥µjk − µ

∥∥
Cα,α/2 . Combining this estimate with (3.5), we deduce that

µjk → µ uniformly. Since {µjk} is bounded in C2+α,1+α/2, we deduce that µjk → µ in Cα,α/2.
Ultimately, we have that

(3.20) µjk → µ in X as k → ∞,

as desired. We have thus shown that the operator T is continuous and compact. This completes
the proof. �

With Proposition 3.2 established, we may now appeal to the Leray-Schauder fixed point theorem
to obtain an existence result for System (1.4).

Theorem 3.3. There exists a unique classical solution (w,µ) to System (1.4) provided ε0 > 0
satisfies (2.5) and ε ∈ [0, ε0].

Proof. We endeavor to use the Leray-Schauder fixed point theorem, i.e., Theorem 3.1. For that
purpose, a quick inspection reveals that when λ = 0, we have T (µ, 0) = 0 for all m ∈ X . Further-
more, Lemma 3.2 shows that T satisfies the compactness requirement of the Leray-Schauder fixed
point theorem. Now, suppose that there exists µ ∈ X such that µ = T (µ, λ), so that (3.3) has a
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solution (w,µ) with µ = m. Then via the a priori estimates established in Section 2, specifically
the regularity results of Theorem 2.8 and Proposition 2.1 (a), we find that indeed,

(3.21) ‖µ‖X ≤ C

for some constant C ∈ (0,∞). We conclude that there exists a fixed point of the operator T ,
corresponding to λ = 1. We deduce that there exists a solution to (1.4), as wanted.

To show uniqueness, let (w1, µ1) and (w2, µ2) be solutions to (1.4). Consider the difference (w,µ) :=
(w1 − w2, µ1 − µ2). Then because System (1.4) is linear, we find that (w,µ) satisfies System (1.4)
with Ψ and Φ identically 0. As such, Theorem 2.8 implies

(3.22) ‖w‖C2+α,1+α/2 =‖µ‖C2+α,1+α/2 ≤ 0,

and subsequently w = µ = 0. Therefore, w1 = w2 and µ1 = µ2, hence the solution to System (1.4)
is unique. This completes the proof. �

4. Proof of Theorem 1.1

We now present the proof of Theorem 1.1.

Proof of Theorem 1.1. We induct on k and break the proof into three separate inductive arguments.

Step 1. Let n ∈ N and suppose the following induction hypothesis.

For all k ∈ {0, 1, . . . , n − 1} assume there exists a solution (u(k),m(k))
to (1.12), as well as constants Ck, C

∗
k ∈ (0,∞), depending solely on the

data and on (u(j),m(j)) for j < k, such that u(k) and m(k) satisfy

(4.1)
∥∥u(k)

∥∥
C2+α,1+α/2 +

∥∥m(k)
∥∥
C2+α,1+α/2 ≤ Ck and

∥∥m(k)
∥∥
C1/2([0,T ];L1) +

∥∥∥xm(k)
∥∥∥
L∞

t (L1
x)

≤ C∗
k .

As a consequence of the inductive hypothesis, for all k ∈ N with 0 ≤ k < n, we can estimate

(4.2)
∥∥F (k)

∥∥
C1+α,α/2 ≤ CFk

<∞,

where we define the constant

(4.3) CFk
:= k!

(
1 +

k∑

i=0

k−i∑

j=0

CjC
∗
k−i−j

)
+ Ck.

In order to apply our abstract results from Section 3, we introduce the following notation. We will

separate out the n-th order terms appearing in Jn and Kn by defining J̃n and K̃n implicitly as

(4.4) Jn = J̃n + F (0)

(
β(εξ)

∫ ∞

0

(
u(0)x m(n) + u(n)x m(0)

)
dx− u(n)x

)

and

(4.5) Kn = K̃n +
1

2

(
β(εξ)

∫ ∞

0

(
u(0)x m(n) + u(n)x m(0)

)
dx− u(n)x

)
m(0).

While the exact formulas of J̃n and K̃n can be easily gleaned from (1.13), (1.14), and (1.15), it is

more important to know that J̃n and K̃n consist entirely of lower order terms, and hence “known”
quantities in light of the induction hypothesis (see (4.1) in Section 4).
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Using (4.2) and recalling the formulas for Jn and Kn in (1.13) and (1.14), we may estimate

(4.6)
∥∥J̃n

∥∥
Cα,α/2 ≤

n−1∑

k=1

(
n

k

)
CkCn−k + 2n!

(
1 +

n∑

i=1

n∑

j=0

CjC
∗
n−i−j +

n−1∑

j=1

CjC
∗
n−j

)
<∞,

and

(4.7)

∫ ∞

0
(1+x)

∣∣K̃n(x, t; ε)
∣∣ dx ≤

n−1∑

k=1

(
n

k

)
CFk

C∗
n−k+n!

(
1+

n∑

i=1

n∑

j=0

CjC
∗
n−i−j+

n−1∑

j=1

CjC
∗
n−j

)
<∞.

Also, using the product rule, we find that

(
K̃n

)
x
=

n−1∑

k=1

(
n

k

)(
F (k)
x m(n−k) + F (k)m(n−k)

x

)
+ F̃ (n)

x m(0) + F̃ (n)m(0)
x(4.8)

=

n−1∑

k=1

(
n

k

)(
− u(k)xxm

(n−k) + F (k)m(n−k)
x

)
+ F̃ (n)m(0)

x ,

so that

(4.9)
∥∥(K̃n)x

∥∥
Cα,α/2 ≤

n−1∑

k=1

(
n

k

)
C2
k + CFk

Ck + n!
(
1 +

n∑

i=1

n∑

j=0

CjC
∗
n−i−j +

n−1∑

j=1

CjC
∗
n−j

)
C0 <∞.

Now, the base case, k = 0, is established in [17] (cf. [16]). (Note that
∥∥m(0)

∥∥
C1/2([0,T ];L1)

≤ C∗
0 can be

established, even on an unbounded domain, by the same argument as in the proof of Theorem 2.8,
cf. Equation (2.109).) Assume then that the induction hypothesis holds for k = n−1. Observe that

System (1.12) can be written as System (1.4) with w := u(n), µ := m(n), Ψ := J̃n, and Φ := K̃n.

Moreover, (4.6), (4.7), and (4.9) show that the induction hypothesis guarantees Ψ ∈ Cα,α/2 and

Φ ∈ C1+α,α/2∩L∞
t (L1

x). Therefore, by Theorem 3.3, there exists a unique solution to System (1.12),
which by Theorem 2.8 must satisfy (4.1) for k = n.

Remark 4.1. The constants Cn derived from this inductive argument are likely to blow up very
quickly. Assuming they are greater than 1, they will be an increasing sequence, and an inspection
of the argument above reveals that

(4.10) Cn & 2nC2
n−1.

This in turn implies that the ratio Cn/Cn−1 converges to +∞, which means
∑
Cnx

n does not
converge on any radius.

Step 2. Next, let n ∈ N and suppose the following induction hypothesis.

Assume the induction hypothesis of Step 1 holds. Aditionally, for all
k ∈ {0, 1, . . . , n − 1}, suppose there exist constants C ′

k, (C
∗
k)

′ ∈ (0,∞)
depending solely on lower order terms and the data such that

(4.11)

∥∥u(k)(ε+ h)− u(k)(ε)
∥∥
C2+α,1+α/2 ≤ C ′

kh,

∥∥m(k)(ε+ h)−m(k)(ε)
∥∥
C2+α,1+α/2 ≤ C ′

kh,

∥∥m(k)(ε+ h)−m(k)(ε)
∥∥
C1/2([0,T ];L1)

+
∥∥x
(
m(k)(ε+ h)−m(k)(ε)

)∥∥
L∞

t (L1
x)

≤ (C∗
k)

′h.
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For k = 0, 1, . . . , n define

(4.12) w(k) := u(k)(ε+ h)− u(k)(ε) and µ(k) := m(k)(ε+ h)−m(k)(ε).

In the case k = n, it can be shown that w(n) and µ(n) satisfy System (1.4) with w := w(n), µ := µ(n),

(4.13) Ψ := Ψ1 + 2F (0)(ε)I1(ε), and Φ := Φ1 + I1(ε)m
(0)(ε),

where

I1(ε) :=
1

2

(
ξnα(n)

(
(ε+ h)ξ

)
− ξnα(n)(εξ)

)
(4.14)

+
1

2

∫ ∞

0

n∑

i=1

n−i∑

j=0

(
n

i

)(
n− i

j

){
ξiβ(i)(εξ)

(
u(j)x (ε+ h)µ(n−i−j) + w(j)

x m(n−i−j)(ε)
)

+ ξi
(
β(i)
(
(ε+ h)ξ

)
− β(i)(εξ)

)
u(j)x (ε+ h)m(n−i−j)(ε+ h)

}
dx

+
1

2

∫ ∞

0

n−1∑

j=1

(
n

j

)
β(εξ)

(
u(j)x (ε+ h)µ(n−j) + w(j)

x m(n−j)(ε)
)
dx

+
1

2

∫ ∞

0
β(εξ)

(
w(0)
x m(n)(ε) + u(n)x (ε+ h)µ(0)

)
+
(
u(0)x (ε+ h)− u(0)x (ε)

)
µ(n) dx,

Ψ1 :=

n∑

k=1

(
n

k

)(
F (k)(ε+ h) + F (k)(ε)

)(
F (n−k)(ε+ h)− F (n−k)(ε)

)
(4.15)

+
(
F (0)(ε+ h)− F (0)(ε)

)(
F (n)(ε+ h)− F (n)(ε)

)
,

and

Φ1 :=

n−1∑

k=1

(
n

k

){
F (k)(ε+ h)µ(n−k) +

(
F (k)(ε+ h)− F (k)(ε)

)
m(n−k)(ε)

}
(4.16)

+
(
F (0)(ε+ h)− F (0)(ε)

)
m(n)(ε) +

(
F (0)(ε+ h)− F (0)(ε)

)
µ(n) + F (n)(ε+ h)µ(0).

A quick inspection reveals that the induction hypothesis implies‖Ψ‖Cα,α/2 and‖Φ‖C1+α,α/2 are O(h).

As such, the estimates in Theorem 2.8 show that u(n) and m(n) are O(h) as well.

Step 3. Let n ∈ N and suppose the following induction hypothesis.

Assume the induction hypothesis of Step 2 holds. Additionally, suppose
there exist constants C ′′

k , (C
∗
k)

′′ ∈ (0,∞) depending solely on lower order
terms and the data such that

(4.17)

∥∥u(k)(ε+ h)− u(k)(ε)− hu(k+1)(ε)
∥∥
C2+α,1+α/2 ≤ C ′′

kh
2,

∥∥m(k)(ε+ h)−m(k)(ε)− hm(k+1)(ε)
∥∥
C2+α,1+α/2 ≤ C ′′

kh
2,

∥∥m(k)(ε+ h)−m(k)(ε)− hm(k+1)(ε)
∥∥
C1/2([0,T ];L1)

≤ (C∗
k)

′′h2,

∥∥x
(
m(k)(ε+ h)−m(k)(ε)− hm(k+1)(ε)

)∥∥
L∞

t (L1
x)

≤ (C∗
k)

′′h2
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For k = 0, 1, . . . , n define

(4.18) w(k) := u(k)(ε+ h)− u(k)(ε)− hu(k+1)(ε) and µ(k) := µ(k)(ε+ h)− µ(k)(ε)− hµ(k+1)(ε).

Note that u(n+1) and m(n+1) are well-defined objects via Step 1. As it happens, when k = n the
pair (w(n), µ(n)) satisfies System (1.4) with w := w(n), µ := µ(n),

(4.19) Ψ := Ψ2 + 2F (0)(ε)I2(ε), and Φ := Φ2 + I2(ε)m
(0)(ε),

where

I2(ε) :=
1

2

(
ξnα(n)

(
(ε+ h)ξ

)
− ξnα(n)(εξ)− hξ(n+1)α(n+1)(εξ)

)
(4.20)

+
1

2

∫ ∞

0

n∑

i=1

n−i∑

j=0

(
n

i

)(
n− i

j

){
ξiβ(i)(εξ)

(
u(j)x (ε)µn−i−j + w(j)

x m(n−i−j)(ε)
)

+
[
ξiβ(i)

(
(ε+ h)ξ

)
− ξiβ(i)(εξ) − hξi+1β(i+1)(εξ)

]
u(j)x (ε)m(n−i−j)(ε)

+
[
ξiβ(i)

(
(ε+ h)ξ

)
u(j)x (ε+ h)− ξiβ(i)(εξ)u(j)x (ε)

][
m(n−i−j)(ε+ h)−m(n−i−j)(ε)

]

+
[
ξiβ(i)

(
(ε+ h)ξ

)
− ξiβ(i)(εξ)

][
u(j)x (ε+ h)− u(j)x (ε)

]
m(n−i−j)(ε)

}
dx

+
1

2

∫ ∞

0

n∑

j=0

(
n

j

){[
β
(
(ε+ h)ξ

)
− β(εξ) − hξβ(1)(εξ)

]
u(j)x (ε)m(n−j)(ε)

+
[
β
(
(ε+ h)ξ

)
u(j)x (ε+ h)− β(εξ)u(j)x (ε)

][
m(n−j)(ε+ h)−m(n−j)(ε)

]

+
[
β
(
(ε+ h)ξ

)
− β(εξ)

][
u(j)x (ε+ h)− u(j)x (ε)

]
m(n−j)(ε)

}
dx

+
1

2

∫ ∞

0

n−1∑

j=1

(
n

j

)
β(εξ)

(
u(j)x (ε)µn−j + w(j)

x m(n−j)(ε)
)
dx

+
1

2

∫ ∞

0
β(εξ)

(
u(n)x µ(0) + w(0)

x m(n)
)
dx

Ψ2 := 2

n−1∑

k=0

(
n

k

)(
F (k)(ε+ h)− F (k)(ε)− hF (k+1)(ε)

)
F (n−k)(ε)(4.21)

+

n∑

k=0

(
n

k

)(
F (k)(ε+ h)− F (k)(ε)

)(
F (n−k)(ε+ h)− F (n−k)(ε)

)
,
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and

Φ2 :=
n∑

k=0

(
n

k

)(
F (k)(ε+ h)− F (k)(ε)− hF (k+1)(ε)

)(
m(n−k)(ε+ h)−m(n−k)(ε)

)
(4.22)

+ h
n∑

k=0

(
n

k

)
F (k+1)(ε)

(
m(n−k)(ε+ h)−m(n−k)(ε)

)
+

n∑

k=1

(
n

k

)
F (k)(ε)µ(n−k)

+

n−1∑

k=0

(
n

k

)(
F (k)(ε+ h)− F (k)(ε)− hF (k+1)(ε)

)
m(n−k)(ε).

As such, we find that the induction hypothesis together with Step 2 imply that ‖Ψ‖Cα,α/2 and

‖Φ‖C1+α,α/2 are O(h2). Using the estimates in Theorem 2.8, we ultimately see that u(n) and m(n)

are O(h2). This yields the desired result concerning differentiability with respect to ε. �

Appendix A. Some technical proofs of results from Section 2

A.1. Proofs for Section 2.1.

Proof of Proposition 2.1. Let S(x, t) denote the heat kernel, given by

(A.1) S(x, t) := (2σ2πt)−1/2 exp

{
− x2

2σ2t

}
.

Using Duhamel’s principle and integration by parts, we have µ = µ1 + µ2, where

µ1(x, t) =

∫ t

0

∫ ∞

0

(
S(x− y, t− s)− S(x+ y, t− s)

)(
(bµ)y(y, s) + νy(y, s)

)
dy ds

=

∫ t

0

∫ ∞

0

(
Sx(x− y, t− s) + Sx(x+ y, t− s)

)(
(bµ)(y, s) + ν(y, s)

)
dy ds

(A.2)

and

(A.3) µ2(x, t) =

∫ ∞

0

(
S(x− y, t)− S(x+ y, t)

)
µ0(y) dy.

Note that

(A.4)

∫ ∞

0

∣∣Sx(x, t)
∣∣ dx = −

∫ ∞

0
Sx(x, t) dx = − lim

x→∞

(
S(x, t) − S(0, t)

)
= (2πσ2t)−1/2.

Call

(A.5) c′ := 2(2πσ2)−1/2,
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and let M > 1 to be determined later. Then

e−Mt

∫ ∞

0
|µ1(x, t)|dx

≤ e−Mt

∫ t

0

∫ ∞

0

∫ ∞

0

(
|Sx(x− y, t− s)|+ |Sx(x+ y, t− s)|

)(
‖b‖L∞ |µ(y, s)|+ |ν(y, s)|

)
dxdy ds

≤ c′e−Mt

∫ t

0
(t− s)−1/2

∫ ∞

0

(
‖b‖L∞ |µ(y, s)|+ |ν(y, s)|

)
dy ds

= c′
∫ t

0
e−M(t−s)(t− s)−1/2

∫ ∞

0
e−Ms

(
‖b‖L∞ |µ(y, s)|+ |ν(y, s)|

)
dy ds.

(A.6)

Here, the first inequality follows directly from (A.2); the second inequality follows from (A.4) and
noting that exp

{
− y2/(2σ2t)

}
≤ 1 for all y ∈ (0,∞). Define

(A.7) B := sup
0≤τ≤T

e−Mτ

∫ ∞

0
|µ(x, τ)|dx.

Then (A.6) implies

e−Mt

∫ ∞

0
|µ1(x, t)|dx ≤ c′B‖b‖L∞

∫ t

0
e−M(t−s)(t− s)−1/2 ds+ c′e−Mt‖ν‖L∞

t (L1
x)

∫ t

0
(t− s)−1/2 ds

≤ c′B‖b‖L∞ M−1/2√π + 2c′e−Mt‖ν‖L∞

t (L1
x)

√
t.

(A.8)

The second inequality follows from the substitutions and estimate below

(A.9)

∫ t

0
e−M(t−s)(t− s)−1/2 ds =

∫ t

0
e−Mss−1/2 ds =M−1/2

∫ Mt

0
e−ss−1/2 ds ≤M−1/2√π.

Now, if M > 1, then 2e−Mt
√
t ≤ 1 for all t > 0. Thus, (A.8) implies

(A.10) e−Mt

∫ ∞

0
|µ1(x, t)|dx ≤ c′‖b‖L∞

√
πM−1/2B + c′‖ν‖L∞

t (L1
x)
.

On the other hand, since S(·, t) is a probably density, we deduce

(A.11)

∫ ∞

0

∣∣µ2(x, t)
∣∣ dx ≤

∫ ∞

0

∣∣µ0(x)
∣∣ dx.

Add e−Mt times (A.11) to (A.10), take a supremum on both sides over all t ∈ [0, T ], and we find
that

(A.12) B ≤ c′‖b‖L∞

√
πM−1/2B +‖µ0‖L1 + c′‖ν‖L∞

t (L1
x)
.

Choose M > 1 large enough so that M > (2c′‖b‖L∞

√
π)2. Consequently, we find that

(A.13) B ≤ 2‖µ0‖L1 + 2c′‖ν‖L∞

t (L1
x)
,

which, given the definition of B in (A.7), establishes part (a).

For part (b) we argue similarly. First, note that

(A.14) 2

∫ ∞

0
x|Sx(x, t)|dx = −2

∫ ∞

0
xSx(x, t) dx = 2

∫ ∞

0
S(x, t) dt = 1.
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Knowing this and using (A.4), we can estimate

∫ ∞

0
x
(
|Sx(x− y, t− s)|+ |S(x+ y, t− s)|

)
dx

=

∫ ∞

−y
(x+ y)

∣∣Sx(x, t− s)
∣∣ dx+

∫ ∞

y
(x− y)

∣∣Sx(x, t− s)
∣∣dx

≤
∫ ∞

−∞

(x+ y)
∣∣Sx(x, t− s)

∣∣dx+

∫ ∞

0
x
∣∣Sx(x, t− s)

∣∣dx

=
3

2
+ y

∫ ∞

−∞

∣∣Sx(x, t− s)
∣∣dx

≤ 2 + c′y(t− s)−1/2,

(A.15)

where c′ is as in (A.5). Note that the second equality above follows from (A.14), and the last
inequality from (A.4). We now use Fubini’s Theorem to estimate

∫ ∞

0
x|µ1(x, t)|dx

≤
∫ t

0

∫ ∞

0

∫ ∞

0
x
(
|Sx(x− y, t− s)|+ |Sx(x+ y, t− s)|

)(
‖b‖L∞ |µ(y, s)|+ |ν(y, s)|

)
dxdy ds

≤
∫ t

0

∫ ∞

0

(
2 + c′y(t− s)−1/2

)(
‖b‖L∞ |µ(y, s)|+ |ν(y, s)|

)
dy ds.

(A.16)

The second inequality follows directly from (A.15). Let M > 1 to be determined later and define

(A.17) B′ := sup
0≤t≤T

e−Mt

∫ ∞

0
x|µ(x, t)|dx.

We then estimate in a similar manner as in the proof of part (a)

e−Mt

∫ ∞

0
x|µ2(x, t)|dx ≤ e−Mt

∫ t

0

∫ ∞

0

(
2 + c′y(t− s)−1/2

)(
‖b‖L∞ |µ(y, s)|+ |ν(y, s)|

)
dy ds

≤ c′
∫ t

0
e−M(t−s)(t− s)−1/2

∫ ∞

0
e−Msy

(
‖b‖L∞ |µ(y, s)|+ |ν(y, s)|

)
dy ds

+ 2te−Mt
(
‖b‖L∞‖µ‖L∞

t (L1
x)

+‖ν‖L∞

t (L1
x)

)
.

(A.18)

In similar fashion, we estimate

∫ ∞

0
x
∣∣µ2(x, t)

∣∣ dx ≤
∫ ∞

0

∫ ∞

−y
(x+ y)S(x, t)

∣∣µ0(y)
∣∣ dxdy +

∫ ∞

0

∫ ∞

y
(x− y)S(x, t)

∣∣µ0(y)
∣∣ dxdy

≤ 3

∫ ∞

0
xS(x, t) dx

∫ ∞

0

∣∣µ0(y)
∣∣ dy +

∫ ∞

0
y
∣∣µ0(y)

∣∣ dy,

(A.19)
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where we have also used that S(·, t) is an even function. We calculate (by a change of variables)

that
∫∞

0 xS(x, t) dx =
√

σ2t
2π . Add together (A.18) and (A.19) to get

(A.20)

e−Mt

∫ ∞

0
x|µ(x, t)|dx ≤ c′‖b‖L∞

√
πM−1/2B′+‖xµ0‖L1+c

′‖xν‖L∞

t (L1
x)
+cb,σ

(
‖µ0‖L1 +‖ν‖L∞

t (L1
x)

)
.

Here, cb,σ <∞ is a constant that depends only on‖b‖L∞ and σ; its existence is guaranteed by part
(a) of this proposition. Now, taking a supremum on both sides of (A.20) over all t ∈ [0, T ], then
choosing M > 1 large enough so that M > (2‖b‖L∞ c′

√
π)2, we derive

(A.21) B′ ≤ 2

(
‖xµ0‖L1 + c′‖xν‖L∞

t (L1
x)

+ cb,σ

(
‖µ0‖L1 +‖ν‖L∞

t (L1
x)

))
.

Recalling the definition of B′ in (A.17), the above estimate implies part (b) of the proposition. �

Before proving Proposition 2.2, we present an abstract lemma.

Lemma A.1. Let A ≥ 1, B, δ > 0 be given constants. Suppose f, g : [0,∞) → [0,∞) are functions
that satisfy

(A.22) f(t1) ≤ Af(t0) +B

∫ t1

t0

(t1 − s)−1/2
(
f(s) + g(s)

)
ds ∀0 ≤ t0 ≤ t1 ≤ t0 + δ

Then for any λ > 1
δ ln(A), we have

(A.23)

(
1− 2δ1/2B

1−Ae−λδ

)∫ T

0
e−λtf(t) dt ≤ A

κ
f(0) +

2δ1/2B

1−Ae−λδ

∫ T

0
e−λtg(t) dt.

Proof. Set h(t) = f(t) + g(t), so that (A.22) reads simply

(A.24) f(t1) ≤ Af(t0) +B

∫ t1

t0

(t1 − s)−1/2h(s) ds for all 0 ≤ t0 ≤ t1 ≤ t0 + δ.

For arbitrary t > 0 let n =
⌊
t
δ

⌋
. Use (A.24) n+ 1 times to get

(A.25) f(t) ≤ An+1f(0) +

n∑

j=0

AjB

∫ t−jδ

(t−(j+1)δ)
+

(t− jδ − s)−1/2h(s) ds,

where s+ := max{s, 0}. Note that

t− (j + 1)δ < s ≤ t− jδ ⇒ j =

⌊
t− s

δ

⌋
,

so we define φ(s) =
(
s−

⌊
s
δ

⌋
δ
)−1/2

. Then (A.25) implies

f(t) ≤ A
t
δ
+1f(0) +

n∑

j=0

B

∫ t−jδ

(t−(j+1)δ)
+

A
t−s
δ φ(t− s)h(s) ds(A.26)

= A
t
δ
+1f(0) +B

∫ t

0
A

t−s
δ φ(t− s)h(s) ds.
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Let λ > 1
δ ln(A) and set κ = λ− 1

δ ln(A) > 0. Multiply (A.26) by e−λt, then integrate from 0 to T
to get

∫ T

0
e−λtf(t) dt ≤ A

κ
f(0) +B

∫ T

0

∫ t

0
e−κ(t−s)φ(t− s)e−λsh(s) ds dt

=
A

κ
f(0) +B

∫ T

0

∫ T−s

0
e−κtφ(t)e−λsh(s) dt ds.

(A.27)

We now observe that
∫ ∞

0
e−κtφ(t) dt =

∞∑

n=0

∫ (n+1)δ

nδ
e−κt(t− nδ)−1/2 dt

=
∞∑

n=0

e−nκδ

∫ δ

0
e−κtt−1/2 dt

≤ 1

1− e−κδ

∫ δ

0
t−1/2 dt

=
2δ1/2

1− e−κδ
=

2δ1/2

1−Ae−λδ

(A.28)

Applying (A.28) to (A.27), we get

(A.29)

∫ T

0
e−λtf(t) dt ≤ A

κ
f(0) +

2δ1/2B

1−Ae−λδ

∫ T

0
e−λs

(
f(s) + g(s)

)
ds,

which implies (A.23). �

We now apply Proposition A.1 to the Fokker-Planck equation.

Proof of Proposition 2.2. First we will treat µ as a solution of the abstract Fokker-Planck equation
(2.1) by identifying b := F (0) and ν := Φ+ 1

2

(
G(ε)−wx

)
m(0). We start with the following formula:

for every t1 ≥ t0 ≥ 0,

µ(x, t1) =

∫ ∞

0

(
S(x− y, t1 − t0)− S(x+ y, t1 − t0)

)
µ(y, t0) dy

+

∫ t1

t0

∫ ∞

0

(
∂S

∂x
(x− y, t1 − s) +

∂S

∂x
(x+ y, t1 − s)

)(
b(y, s)µ(y, s) + ν(y, s)

)
dy ds,

(A.30)

Using the same calculations as in (A.6), we get
(A.31)∫ ∞

0

∣∣µ(x, t1)
∣∣ dx ≤

∫ ∞

0

∣∣µ(y, t0)
∣∣ dy + c′

∫ t1

t0

∫ ∞

0
(t1 − s)−1/2

(
‖b‖∞

∣∣µ(y, s)
∣∣+
∣∣ν(y, s)

∣∣) dy ds,

where c′ is defined in (A.5). Let

f(t) :=

(∫ ∞

0

∣∣µ(x, t)
∣∣ dx

)2

and g(t) :=

(∫ ∞

0

∣∣ν(x, t)
∣∣ dx

)2

,

so we can write

(A.32) f(t1)
1/2 ≤ f(t0)

1/2 + c

∫ t1

t0

(t1 − s)−1/2
(
‖b‖∞ f(s)1/2 + g(s)1/2

)
ds.
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By Hölder’s inequality, we get

f(t1)
1/2 ≤ f(t0)

1/2 +‖b‖∞ c
(
2(t1 − t0)

1/2
)1/2

(∫ t1

t0

(t1 − s)−1/2f(s) ds

)1/2

(A.33)

+ c
(
2(t1 − t0)

1/2
)1/2

(∫ t1

t0

(t1 − s)−1/2g(s) ds

)1/2

.

Next, we square both sides and use the inequality (a+ b)2 ≤ 2(a2 + b2) to get

(A.34) f(t1) ≤ 2f(t0) + 4c(1 +‖b‖∞)(t1 − t0)
1/2

∫ t1

t0

(t1 − s)−1/2
(
f(s) + g(s)

)
ds.

We now estimate

(A.35)

∫ ∞

0

∣∣∣Φ+
1

2

(
G(ε) − wx

)
m(0)

∣∣∣dx ≤
∥∥Φ
∥∥
L1
x
+ 2

∫ ∞

0

∣∣wxm
(0)
∣∣ dx+

∫ ∞

0
|u(0)x µ|dx,

so that

g(t) ≤ 3
∥∥Φ
∥∥2
L1
x
+ 12

(∫ ∞

0
|wxm

(0)|dx
)2

+ 3

(∫ ∞

0
|u(0)x µ|dx

)2

(A.36)

≤ 3
∥∥Φ
∥∥2
L1
x
+ 12

∫ ∞

0
w2
xm

(0) dx+ 3
∥∥u(0)x

∥∥2
∞
f(t).

The first inequality follows from the fact that
(∑n

k=1 xk
)2 ≤ n

∑n
k=1 x

2
k. The second inequality

follows from the Cauchy-Schwarz inequality and the fact that
∫∞

0 m(0) dx ≤ 1. Now, define

(A.37) h(t) :=
1

1 + 3
∥∥u(0)x

∥∥2
∞

(
3
∥∥Φ
∥∥
L∞

t (L1
x)

+ 12

∫ ∞

0
w2
xm

(0) dx
)
.

Since

1 +‖b‖∞ = 1 +
∥∥F (0)

∥∥
∞

≤ 2
(
1 +
∥∥u(0)x

∥∥
∞

)
,

we see that (A.36) and (A.34) yield

(A.38) f(t1) ≤ 2f(t0) + 24c
(
1 +
∥∥u(0)x

∥∥
∞

)3
(t1 − t0)

1/2

∫ ∞

0
(t1 − s)1/2

(
f(s) + h(s)

)
,

upon factoring out
(
1 + 3

∥∥u(0)x

∥∥2
∞

)
, and estimating

(
1 + 3

∥∥u(0)x

∥∥2
∞

)
≤ 3

(
1 +

∥∥u(0)x

∥∥
∞

)2
. From

(A.38), we see that Proposition A.1 applies with A := 2, and B := 24c
(
1 +
∥∥u(0)x

∥∥
∞

)3
δ1/2.

Now, choose δ > 0 small enough such that

(A.39) 2δ1/2B <
1

4
⇐⇒ δ <

1

192c
(
1 +
∥∥u(0)x

∥∥
∞

)3 .

Then choose λ > 1
δ ln(2) large enough such that

(A.40) 1−Ae−λδ >
1

2
⇐⇒ λ >

2

δ
ln(2) ⇐⇒ λ > C0.

As a result,

(A.41)
2δ1/2B

1−Ae−λδ
<

1

2
,
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and by Proposition A.1 we obtain

∫ T

0
e−λt

(∫ ∞

0
|µ|dx

)2

dt ≤ 3

1 + 3
∥∥u(0)x

∥∥2
∞

∫ T

0
e−λt

∥∥Φ
∥∥2
L1
x
dt(A.42)

+
12

1 + 3
∥∥u(0)x

∥∥2
∞

∫ T

0
e−λt

∫ ∞

0
w2
xm

(0) dxdt

≤
3
∥∥Φ
∥∥2
L∞

t (L1
x)

C0

(
1 + 3

∥∥u(0)x

∥∥2
∞

)

+
12

1 + 3
∥∥u(0)x

∥∥2
∞

∫ T

0
e−λt

∫ ∞

0
w2
xm

(0) dxdt.

The second inequality is obtained by the simple estimate

(A.43)

∫ T

0
e−λt dt =

1

λ
(1− e−λT ) <

1

λ
<

1

C0
.

Thus, (2.3) holds.

Now, in the case that T is finite, we can estimate for all λ ∈ (0, C0],

(A.44) e−λt = e(2C0−λ)te−2C0t ≤ e(2C0−λ)T e−2C0t.

Consequently, using (2.3) with λ = 2C0, we obtain

∫ T

0
e−λt

(∫ ∞

0
|µ|dx

)2

dt ≤ e(2C0−λ)T

∫ T

0
e−2C0t

(∫ ∞

0
|µ|dx

)2

dt(A.45)

≤ e(2C0−λ)T

(
C1

∥∥Φ
∥∥2
L∞

t (L1
x)

C0
+ C2

∫ T

0
e−2C0t

∫ ∞

0
w2
xm

(0) dxdt

)

≤
C1

∥∥Φ
∥∥2
L∞

t (L1
x)
e2C0T

C0
+ C2e

2C0T

∫ T

0
e−λt

∫ ∞

0
w2
xm

(0) dxdt,

whereby the last inequality follows, because e−2C0t ≤ e−λt for all t ∈ [0, T ]. This completes the
proof. �

A.2. An abstract Hölder estimate. In this subsection we will give an abstract result on Hölder
regularity for a parabolic equation with Dirichlet boundary conditions and bounded coefficients.
Our argument is in the spirit of [3, Lemma 3.2.2.], but we cover the case of an unbounded domain.
The result stated below is also meant to allow for a possibly infinite time horizon, though in the
present work we will not exploit this.

Lemma A.2. Fix 0 < α < 1. Let u be a solution of

(A.46)
∂u

∂t
+ λu− σ2

2

∂2u

∂x2
+ V (x, t)

∂u

∂x
= F, u(0, t) = 0, u(x, 0) = u0(x)
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where λ is any positive constant, V and F are a bounded continuous functions, and u0 ∈ C1+α
⋄ (D)

(i.e. u0 ∈ C1+α(D) and u0(0) = 0). Then

(A.47) ‖u‖
Cα,α/2(D×[0,T ]) +

∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2(D×[0,T ])

≤ C
(
‖V ‖∞ , α, λ

) (
‖F‖∞ +‖u0‖C1+α

)
,

where C
(
‖V ‖∞ , α, λ

)
is independent of T .

As a corollary, we have

(A.48) ‖u‖
Cα/4([0,T ];C1+α/2(D)) ≤ C

(
‖V ‖∞ , α, λ

) (
‖F‖∞ +‖u0‖C1+α

)
.

Proof. We will start by assuming u0 = 0. By a standard application of the maximum principle we
have that ‖u‖0 ≤ 1

λ‖F‖0. Let φ(x) be a smooth function, and observe that

(A.49)
∂(φu)

∂t
− σ2

2

∂2(φu)

∂x2
+

(
V +

σ2φ′

φ

)
∂(φu)

∂x
+ λ(φu) = g(x, t),

where

(A.50) g(x, t) = φ(x)F (x, t) +


σ

2
(
φ′(x)

)2

φ(x)
− σ2

2
φ′′(x) + V (x, t)φ′(x)


 u(x, t).

Fix a time τ > 0, and set v(x, t) = eλ(t−τ)φ(x)u(x, t). Then (A.49) becomes

(A.51)
∂v

∂t
− σ2

2

∂2v

∂x2
+

(
V +

σ2φ′

φ

)
∂v

∂x
= g̃,

where

(A.52) g̃(x, t) = eλ(t−τ)g(x, t).

Fix any a > 0 and let φ(x) =
(
1 + (x− a)2

)−1/2
. Note that φ satisfies the following properties:

(A.53)

∣∣∣∣
φ′

φ

∣∣∣∣ ≤ 1,

∣∣∣∣
φ′′

φ

∣∣∣∣ ≤ 2,

(∫ ∞

−∞

∣∣φ(x)
∣∣p dx

)1/p

=

(
2p

p− 1

)1/p

∀p > 1,

and also
(∫ τ

0 e
pλ(t−τ) dt

)1/p
≤ (λp)−1/p. It follows that

(A.54) ‖g̃‖Lp(D×(0,τ)) ≤ C(p)λ−1/p
(
‖F‖0 +

(
1 +‖V ‖∞

)
‖u‖0

)
≤ C(p)λ−1/p‖F‖0

(
1 +‖V ‖∞

)
,

where C(p) remains bounded as p→ ∞.

Take p arbitrarily large. By the potential estimates in [26, Section IV.3] we have an estimate of
the form

(A.55)

∥∥∥∥
∂v

∂t

∥∥∥∥
Lp(D×(0,τ))

+

∥∥∥∥∥
∂2v

∂x2

∥∥∥∥∥
Lp(D×(0,τ))

≤ C

∥∥∥∥∥g̃ −
(
V +

2φ′

φ

)
∂v

∂x

∥∥∥∥∥
Lp(D×(0,τ))

≤ C(p)λ−1/p‖F‖0
(
1 +‖V ‖0

)
+ C

(
1 +‖V ‖0

)∥∥∥∥
∂v

∂x

∥∥∥∥
Lp(D×(0,τ))

,

where the constants do not depend on τ . On the other hand we have

(A.56) ‖v‖Lp(D×(0,τ)) ≤ C(p)λ−1/p‖u‖0 ≤ C(p)λ−1−1/p‖F‖0 .
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By interpolation (see e.g. [26, Lemma II.3.3]) we have

(A.57)

∥∥∥∥
∂v

∂x

∥∥∥∥
Lp(D×(0,τ))

≤ δ



∥∥∥∥
∂v

∂t

∥∥∥∥
Lp(D×(0,τ))

+

∥∥∥∥∥
∂2v

∂x2

∥∥∥∥∥
Lp(D×(0,τ))


+

C

δ
‖v‖Lp(D×(0,τ))

for some constant C, where δ > 0 is sufficiently small. Choosing δ > 0 small enough, we deduce

(A.58)
∥∥∥∥
∂v

∂t

∥∥∥∥
Lp(D×(0,τ))

+

∥∥∥∥∥
∂2v

∂x2

∥∥∥∥∥
Lp(D×(0,τ))

≤ C(p)λ−1/p‖F‖0
(
1 +‖V ‖∞

)
+C

(
1 +‖V ‖2∞

)
‖v‖Lp(D×(0,τ))

≤ C(p)λ−1/p‖F‖0
(
1 +‖V ‖∞

)
+ C

(
1 + C(p)λ−1−1/p‖F‖0‖V ‖2∞

)

Then by a Sobolev type embedding theorem [26, Lemma II.3.3] we have

(A.59) ‖v‖Cα,α/2 +

∥∥∥∥
∂v

∂x

∥∥∥∥
Cα,α/2

≤ C(p, λ)‖F‖0
(
1 +‖V ‖2∞

)
+ C

for α = 1− 3
p (assuming p > 3). We can rewrite this as

(A.60)
∥∥∥eλ(·−τ)φu

∥∥∥
Cα,α/2

+

∥∥∥∥∥e
λ(·−τ)

(
φ′u+ φ

∂u

∂x

)∥∥∥∥∥
Cα,α/2

≤ C(p, λ)‖F‖0
(
1 +‖V ‖2∞

)
+ C.

Since t 7→ eλt is locally Lipschitz with constant depending on λ, we can write this as

(A.61) ‖φu‖Cα,α/2(D×[τ−1,τ ]) +

∥∥∥∥φ
′u+ φ

∂u

∂x

∥∥∥∥
Cα,α/2(D×[τ−1,τ ])

≤ C(p, λ)‖F‖0
(
1 +‖V ‖2∞

)
+ C(λ).

Using the fact that φ′

φ is bounded by 1 and is globally Lipschitz with Lip
(
φ′

φ

)
= 1, we also have

(A.62)

∥∥∥∥φ
∂u

∂x

∥∥∥∥
Cα,α/2

≤
∥∥∥∥φ

′u+ φ
∂u

∂x

∥∥∥∥
Cα,α/2

+
∥∥φ′u

∥∥
Cα,α/2 ≤

∥∥∥∥φ
′u+ φ

∂u

∂x

∥∥∥∥
Cα,α/2

+‖φu‖Cα ,

hence

(A.63) ‖φu‖Cα,α/2(D×[τ−1,τ ]) +

∥∥∥∥φ
∂u

∂x

∥∥∥∥
Cα,α/2(D×[τ−1,τ ])

≤ C(p, λ)‖F‖0
(
1 +‖V ‖2∞

)
+ C(λ).

Now, since 1
φ is globally Lipschitz with Lip(1/φ) = 1, and bounded on [a− 1, a+ 1] with an upper

bound of 2, we deduce that
(A.64)

‖u‖
Cα,α/2([a−1,a+1]×[τ−1,τ ]) +

∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2([a−1,a+1]×[τ−1,τ ])

≤ C(p, λ)‖F‖0
(
1 +‖V ‖2∞

)
+ C(λ).

This estimate is independent of τ and a. Letting τ and a vary through all the positive integers,
and since p can be determined through α, it follows that

(A.65) ‖u‖
Cα,α/2(D×[0,∞)) +

∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2(D×[0,∞))

≤ C(α, λ)‖F‖0
(
1 +‖V ‖2∞

)
+ C(λ).

We now remove the assumption that u0 = 0. Let w be the solution of

(A.66)
∂w

∂t
− σ2

2

∂2w

∂x2
+ λw = 0, w(x, 0) = u0(x).

As λ > 0, by the maximum principle, we have ‖w‖0 ≤ ‖u0‖0. Then [w]Cα,α/2 ≤ C‖u0‖Cα by [26,
Theorem 10.1]; this estimate does not depend on time because of the global in time L∞ bound.
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This establishes ‖w‖Cα,α/2 ≤ C‖u0‖Cα . We then take the derivative in x of Equation (A.66) and

apply the same argument as above to
∂w

∂x
to establish

∥∥∥∥
∂w

∂x

∥∥∥∥
Cα,α/2

≤ C‖u0‖C1+α . Then let û be the

solution of

(A.67)
∂û

∂t
− σ2

2

∂2û

∂x2
+ V (x, t)

∂û

∂x
+ λû = F (x, t) − V (x, t)

∂w

∂x

with zero initial conditions. Then by (A.65) we have

(A.68)
‖û‖Cα,α/2(D×[0,∞)) +

∥∥∥∥
∂û

∂x

∥∥∥∥
Cα,α/2(D×[0,∞))

≤ C(α, λ,‖V ‖∞)

∥∥∥∥F + V
∂w

∂x

∥∥∥∥
0

≤ C
(
‖V ‖∞ , α, λ

) (
‖F‖0 +‖u0‖C1+α

)
.

As u = û+ w is the solution to (A.46), the claim is proved.

Finally, to prove (A.48), note that (A.47) immediately implies

(A.69) sup
0≤t≤T

∥∥u(·, t)
∥∥
C1+α/2(D)

≤ sup
0≤t≤T

∥∥u(·, t)
∥∥
C1+α(D)

≤ C
(
‖V ‖∞ , α, λ

) (
‖F‖∞ +‖u0‖C1+α

)
,

and we also have

sup
t6=s

sup
x 6=y

∣∣∣∂u∂x (x, t)− ∂u
∂x (x, s)− ∂u

∂x (y, t) +
∂u
∂x (y, s)

∣∣∣

|t− s|α/4|x− y|α/2

≤ sup
t6=s

sup
x 6=y

2
∥∥∥∂u
∂x

∥∥∥
Cα,α/2

min
{
|t− s|α/2 ,|x− y|α

}

|t− s|α/4|x− y|α/2

≤ C
(
‖V ‖∞ , α, λ

) (
‖F‖∞ +‖u0‖C1+α

)
.

(A.70)

Combine (A.69) and (A.70) to get (A.48). �

Appendix B. Nonlocal Existence Lemma

For this lemma, recall the definition X = Cα,α/2 ∩ L∞
t (L1

x) ∩ Cα/2
(
[0, T ]; (C1+2α)∗

)
with norm

(B.1) ‖m‖X :=‖m‖Cα,α/2 +‖m‖L∞

t (L1
x)

+‖m‖Cα/2([0,T ];(C1+2α)∗) .

Lemma B.1. Let α ∈ (0, 1/2) be such that u(0),m(0) ∈ C2+2α,1+α. Let m ∈ X , uT ∈ C2+α([0,∞)),

and Ψ ∈ Cα,α/2([0,∞)× [0, T ]) be given. Consider the backward parabolic equation
(B.2)



(i) ut +
σ2

2
uxx − ru+ λΨ+ λF (0)(ε)

(
G(ux,m; ε)− ux

)
= 0, 0 ≤ x <∞, 0 ≤ t ≤ T

(ii) u(x, T ) = uT (x), 0 ≤ x <∞
(iii) u(0, t) = 0, 0 ≤ t ≤ T,

where G is defined as in (1.5). We assume the usual compatibility conditions of first order:

(B.3) uT (0) = 0,
σ2

2
u′′T (0) + λΨ(0, T )− λF (0)(ǫ)(0, 0)u′T (0) = 0.

Then there exists a unique classical solution u ∈ C2+α,1+α/2([0,∞) × [0, T ]) to the boundary value
problem (B.2). Moreover, the following estimate holds:

(B.4) ‖u‖C2+α,1+α/2 ≤ C
(
‖m‖X +‖Ψ‖Cα/2,α +‖uT ‖C2+α

)

where C depends only on the data.
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Proof. Let u ∈ C2+α,1+α/2([0,∞) × [0, T ]) be given. Note that

(B.5)
∥∥G(ux,m; ε)

∥∥
Cα,α/2 ≤ C

(
‖m‖

Cα/2([0,T ];(C1+2α)∗) +‖u‖C2+α,1+α/2

)
,

where C depends on the C2+2α,1+α norms of u(0) and m(0). By [26, Theorem IV.5.2], there exists

a unique solution w ∈ C2+α,1+α/2([0,∞) × [0, T ]) the boundary value problem
(B.6)



(i) wt +
σ2

2
wxx − rw + λΨ+ λF (0)(ε)

(
G(ux,m; ε) − wx

)
= 0, 0 ≤ x <∞, 0 ≤ t ≤ T

(ii) w(x, T ) = uT (x), 0 ≤ x <∞
(iii) w(0, t) = 0. 0 ≤ t ≤ T,

and it satisfies the estimate

(B.7) ‖w‖C2+α,1+α/2 ≤ C
(
‖Ψ‖Cα,α/2 +

∥∥G(ux,m; ε)
∥∥
Cα,α/2 +‖uT ‖C2+α

)
.

We will denote w = F (u). Our goal it to show that F is a contraction on a suitably defined metric
space, and use this to prove (B.2) has a solution.

Let u1, u2 ∈ C2+α,1+α/2([0,∞)× [0, T ]), then define u = u1−u2 and w = F (u1)−F (u2). Note that
w satisfies
(B.8)



(i) wt +
σ2

2
wxx − rw + λF (0)(ε)

(
G(ux, 0; ε) − wx

)
= 0, 0 ≤ x <∞, 0 ≤ t ≤ T

(ii) w(x, T ) = 0, 0 ≤ x <∞
(iii) w(0, t) = 0. 0 ≤ t ≤ T.

Recalling the definition of G in (1.5), we see that there is a constant C1, depending only on the
data, such that

(B.9)
∥∥G(ux, 0; ε)

∥∥
Cα,α/2 ≤ C1‖ux‖Cα,α/2 .

Combining this with classical estimates from [26, Theorem IV.5.2], we see that there is some
constant C2, depending only on the data, such that

(B.10) ‖w‖C2+α,1+α/2 ≤ C2‖ux‖Cα,α/2 .

Using interpolation on Hölder spaces, we deduce that there exists a constant C3, depending only
on C2, such that

(B.11) C2‖vx‖Cα,α/2 ≤ 1

4
‖v‖C2+α,1+α/2 + C3‖v‖∞ ∀v ∈ C2+α,1+α/2.

Hence

(B.12) ‖w‖C2+α,1+α/2 ≤ 1

4
‖u‖C2+α,1+α/2 + C3‖u‖∞ .

Next, we define w̃(x, t) = er(T−t)w ± r−1(er(T−t) − 1)C1‖ux‖Cα,α/2 , which satisfies

(B.13) ± (−w̃t −
σ2

2
w̃xx − λF (0)(ε)w̃x) ≤ 0.

Apply the maximum principle to w̃ to deduce that

(B.14)
∣∣w(x, t)

∣∣ ≤ r−1(er(T−t) − 1)C1‖ux‖Cα,α/2 ≤ (T − t)erTC1‖u‖C2+α,1+α/2 .
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We now apply all of these estimates only on the time interval [T − τ, T ] for some τ > 0. We deduce
that

(B.15) ‖w‖C2+α,1+α/2([0,∞)×[T−τ,T ]) + 2C3‖w‖L∞([0,∞)×[T−τ,T ])

≤
(
1

4
+ 2C3τe

rTC1

)
‖u‖C2+α,1+α/2([0,∞)×[T−τ,T ]) + C3‖u‖L∞([0,∞)×[T−τ,T ]) .

We now set τ =
1

8C3erTC1
. Define Yτ to be the space C2+α,1+α/2([0,∞)× [T − τ, T ]) endowed with

the norm

(B.16) ‖w‖Yτ
:=‖w‖C2+α,1+α/2([0,∞)×[T−τ,T ]) + 2C3‖w‖L∞([0,∞)×[T−τ,T ]) .

Observe that Yτ is a Banach space. Moreover, by the above estimates, F : Yτ → Yτ is a contraction,
since

∥∥F (u1)− F (u2)
∥∥
Yτ

≤ 1
2‖u1 − u2‖Yτ

. Hence F has a unique fixed point u, which is a solution

to (B.2) and satisfies the estimate (B.4) on the time interval [T − τ, T ]. However, T is arbitrary.
We can now partition the interval [0, T ] into subintervals that are each at most τ in length, i.e. 0 =
t0 < t1 < · · · < tN = T where tj+1 − tj ≤ τ . Apply the same argument on each subinterval
[tj−1, tj ], replacing the final condition uT (x) with w(x, tj), for each j starting with N and going
down to 1. (Cf. the proof of [10, Proposition 3.11].) In this way we obtain a solution u to Equation
(B.2), which indeed satisfies (B.4). Uniqueness of this solution follows from uniqueness on each
subinterval.

�
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