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Abstract—The emerging wide area monitoring systems
(WAMS) have brought significant improvements in electric grids’
situational awareness. However, the newly introduced system
can potentially increase the risk of cyber-attacks, which may
be disguised as normal physical disturbances. This paper deals
with the event and intrusion detection problem by leveraging
a stream data mining classifier (Hoeffding adaptive tree) with
semi-supervised learning techniques to distinguish cyber-attacks
from regular system perturbations accurately. First, our proposed
approach builds a dictionary by learning higher-level features
from unlabeled data. Then, the labeled data are represented
as sparse linear combinations of learned dictionary atoms. We
capitalize on those sparse codes to train the online classifier
along with efficient change detectors. We conduct numerical ex-
periments with industrial control systems cyber-attack datasets.
We consider five different scenarios: short-circuit faults, line
maintenance, remote tripping command injection, relay setting
change, as well as false data injection. The data are generated
based on a modified IEEE 9-bus system. Simulation results show
that our proposed approach outperforms the state-of-the-art
method.

I. INTRODUCTION

The ongoing improvements in wide-area monitoring sys-
tems have brought better visibility of the power system and
have exposed the system to malicious cyber-attacks [1]], [2].
In this context, event and intrusion detection systems (EIDS)
are indispensable to classify the nature of a power system
disturbance: is it a regular operation, fault condition, or a
cyber-attack? The main challenge of this classification task
is to extract relevant information from system measurements.
Over the past decade, various data-driven techniques have been
explored to tackle this problem.

A geometrical analysis of unsynchronized and synchronized
attacks is introduced to detect the presence of attacks and
identify compromised micro-PMUs [3]. Based on text-mining
techniques, a data-driven approach was developed for false
data attacks classification [4]. In recent years, classical ma-
chine learning algorithms, such as naive Bayes, support vector
machines (SVM), and random forests (RF), have been applied
to detect cyber-attacks and disturbances in power systems [5]],
(6, [7], [8]. It is also possible to build common paths of
critical states by exploiting the relationships among voltage,
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current, and impedance to discover relevant patterns [9], [[10].
Those classical methods, which often have difficulties dealing
with large-scale and time-varying data, are unsuitable for
real-time changing environments. Hence, stream data mining
algorithms have recently drawn much attention. These include
nonnested generalized exemplars [[11]], Hoeffding adaptive tree
(HAT) [12], and HAT with change detectors [13]. Leverag-
ing phasor measurement units (PMUs), those algorithms are
proven to outperform classical methods in real systems. In
[14], the authors proposed a transfer learning HAT model with
one change detector, the adaptive sliding window (ADWIN).
Their approach transferred knowledge from four datasets,
where each dataset corresponds to a specific frequency os-
cillation.

It is challenging and costly to label a massive amount
of PMU data on the fly in practice. Compared with data
collection that depends only on data storage capacity, data
labeling often requires rich domain knowledge of experts who
can actively identify instances’ labels. Therefore, we have
abundant unlabeled data and scarce labeled data that share the
same generative distribution. Due to this fact, semi-supervised
learning (SSL) is an appropriate tool that combines a small
amount of labeled data with a large amount of unlabeled data
during training [|15].

This paper proposes a novel approach for power system
EIDS to improve the classification performance by transform-
ing the data through higher-level representations extracted
from an unlabeled dataset. In addition, we provide perfor-
mance analysis for different sizes of the labeled dataset. To
the best of our knowledge, this is the first effort to incorporate
SSL with a stream data mining classifier for the EIDS. The
rest of the paper is organized as follows. Section II presents
the details of the proposed approach. Section Il shows the
simulation results. Finally, section IV gives the conclusion.

II. SEMI-SUPERVISED HOEFFDING ADAPTIVE TREE

We learn a dictionary by extracting higher-level features
(such as oscillations, sudden changes, gradual changes, stable
periods) from the unlabeled dataset to represent later the
labeled data, which are then used to train a classifier incre-
mentally.



A. Online Dictionary Learning

Given a set of unlabeled instances U = {xl(,l), - ,xl(,p )},
where Xl(,i) € R" is the i-th input feature vector, we formulate
the following optimization problem to learn a new feature

space representing these data points:
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The optimization variables are the dictionary D; =
[di,...,dy] € R"™™ and the sparse codes o) e R =
1,2, ..., p. Typically, we have m > n so that the dictionary is
rich enough. Hence, by the least square objective, each input
xff) is approximately represented as a linear combination of
very few basis vectors in D with the corresponding coefficients
given by al?. The zero norm |lajlo denotes the number of non-
zero coordinates of a. Hence, the first constraint forces the
vector al(,i) to have at most k nonzero elements. The energy
of each atom (basis) in the dictionary D is bounded by one,
as given by the second constraint. This constraint prevents the
entries of D from being arbitrarily large while the entries of
al” being very small.

We leverage the alternating minimization method for the
resulting nonconvex problem (1), i.e., minimizing one variable
at each step while keeping all other variables fixed [16]. In the
first step, we obtain the sparse codes aﬂl),i =1,2...,p. The
second step updates the dictionary D.

o Sparse coding — optimization over a&l): Start with a
fixed random dictionary D, and solve (1) with the or-
thogonal matching pursuit (OMP) algorithm to obtain
the al(f) that corresponds to the unlabeled point xl(li) for
1=1,2,...,p.

o Dictionary update — optimization over D: Keep
{al(f)}f:l fixed, find the dictionary D; by sequentially
updating each atom via the block-coordinate descent
(BCD) algorithm:
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where D;_; is the dictionary at the previous iteration.
The matrices A = [ay,...,a,| = aﬂi)agi)T e Rmxm
and B = [by,...,b,] = xPald’ e Rrxm carry the
information of the updated afli)’

until D; converges.

s. The update repeats

B. New Feature Representation

Consider a set of labeled instances L =
{(xy),y(l)),...,(xf),y(q))}, where ng) € R" is the
(-th input feature vector with label ¥ € {1,...,C}. Upon
learning the dictionary D* as elaborated above, the labeled

Algorithm 1 Semi-supervised HAD (SSHAD)
Require:
1) Unlabeled data I/ = {xgl), cey
2) Labeled data £ = {(xél), yM), ... (xéq),y(‘”)}.
3) Randomly initialize D from unlabeled data vectors.
4) Maximum iteration: max_iter = 200.
1: Normalize the labeled and unlabeled data.
2: for ¢t = 1 to max_iter do
Compute the sparse code ay, with D;_; by solving
(1).
Update D, keeping the matrix c,, fixed.
: end for
Solve (@b) to obtain the matrix a.
. Attach to ay the labels from x;,.
. Train HAD with the new labeled dataset £ =
(ozél)7 y), ., (af), y(Q))} using MOA.
9: return The trained HAD classifier.
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data can be represented by using the basis vectors of D. This
is carried out by solving the following problem via the OMP
for each labeled data point:
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In other words, a labeled data point is now approximately
represented as a linear combination of the learned atoms as:

x) =Dl +7, 5)

where 7) is the reconstruction error. We preserve each original
label of y*) by attaching it to the new representation; i.e.,
the k-sparse code ay) in a higher dimensional space. Finally,
we train the HAD classifier with these new representations by
using the software package MOA [17]].

Remark (Matching pursuit vis-a-vis LASSO). The sparse
dictionary learning problem generally has two different formu-
lations: matching pursuit and LASSO. The former is shown by
problem (1) while the latter is relaxing £ norm to {1 norm and
being lifting to the objective as a soft constraint. The matching
pursuit formulation explicitly guarantees k-sparsity, which is
more user-friendly to find the “best” value of k by trial-and-
error simulations. According to our numerical experiments
that will be discussed in the next section, we find that the
solution to the matching pursuit is more stable numerically.

Algorithm [I] features two essential differences from the
algorithm in [[18]]. In [18]], the authors build the dictionary
using self-taught learning (unlabeled and labeled datasets have
different generative distributions [19]) to later train and test
an SVM classifier with the new representation of the labeled
dataset. In contrast, our model builds the dictionary using
SSL and next incrementally trains a HAD classifier with
all the transformed labeled dataset instances. In a nutshell,



our algorithm capitalizes on semi-supervised knowledge to
enhance the HAD classifier’s overall performance. We name
the proposed algorithm as SSHAD, where “SS” stands for
semi-supervised, to differentiate it from the original version
of HAD presented in [13].

C. HAD Classifier

HAD is composed of three main ingredients: a window
to remember recent examples, a distribution-change detector,
and an estimator for some statistics of the input data. Once
a change is detected, an alternate tree will be created and
grow with the instances appearing right after the change. The
existing alternate tree will replace the current tree if it is more
accurate. The HAT [20] is the parent tree of HAD, where the
former has only one change detector, ADWIN, whereas HAD
has two change detectors ADWIN and DDM.

ADWIN serves as an estimator and change detector that
keeps a variable-length window W of recent data such that
the window has the maximal length statistically consistent with
the null hypothesis of the average value inside the window has
not changed. When two “big enough” sub-windows of WV have
“distinct enough” averages, it can be said with high probability
that a change in the data distribution has occurred and the older
items in W should be dropped. The “big and distinct enough”
can be quantitatively defined by the Hoeffding bound [21]].

DDM is a change detector that relies on the concept of
‘context’ defined as a set of contiguous examples whose data
distribution is stationary. DDM incrementally controls the
error rate of the model. Statistical theory guarantees that the
error decreases if the data distribution remains stationary, and
error increases when the distribution changes. A new context
is declared if the error reaches a warning level at instance k,,
and a drift level at instance k;. Given that, this indicates a
distribution change, and a new model is learned by using the
examples between k,, and k4. A detailed explanation of DDM
can be found in [22].

III. EXPERIMENTS AND RESULTS
A. Datasets

Power system attack datasets [23]] are used to test the per-
formance of our proposed approach. There are three datasets:
2-class, 3-class, and 37-class datasets, where each of them
includes 128 features split into two categories: physical (volt-
ages, currents, and impedances) and cyber-physical (control
logs, network alerts, and relay logs) features. Five scenarios
are considered: short-circuit faults, line maintenance, remote
tripping command injection (attack), relay setting change
(attack), as well as data injection (attack). Fig. E] shows the
testbed architecture used in generating the datasets.

B. Implementation and Parameters

We run all the experiments using MATLAB, WEKA, and
the massive online analysis (MOA) software [24]. The relevant
parameters were obtained by using cross-validation. The value
of max_iter = 200 yielded best results. The parameter k was
set to 10 for both OMP procedures, i.e, each of aff)’s and
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Fig. 1. Test-bed architecture for generating the datasets

ay)’s has at most ten nonzero values. We tested different
sizes for the dictionary and found that 130 atoms performed
the best. For both OMP optimization problems, the tolerance
of the squared ¢2-norm residual was set to 0.01. Finally, the
parameters for the HAD were set to the default values given

by MOA.

C. Performance Metrics

In this work, we used the prequential evaluation technique,
where each instance is used to test and then train the model.
Because of this online setup, the accuracy is incrementally up-
dated. We chose the classification accuracy, the Kappa statistic,
evaluation time, and model cost to evaluate our approach’s
performance; see also [[13]]. The Kappa statistic is a measure
for rating classification accuracy for imbalance scenarios in
offline and online classification. The Kappa statistic is defined
as:

p=Lto—Le, (6)
1— pe

where p, is the accuracy of the classifier under analysis, and p.
is the accuracy of a random classifier. If the classifier predicts
all the time correctly, x = 1. If the classifier performs like a
random classifier, kK = 0. The evaluation time consists of both
training and testing time because there is no clear separation
between them [13]]. The model cost is measured in RAM per
hour (hereafter referred to as Ram-Hours) [12]].

D. Simulation Results

We conduct classification experiments using the 2-class, 3-
class, and 37-class datasets. The performance results were
obtained with five different sizes, determined by the labeled
dataset’s sampling ratio. All values given in figures and tables
are 10-fold average. The performance of our model improves
with the increased size of the unlabeled dataset. It can be seen
that the performance gets saturated with 50,000 unlabeled data
points.

Fig. 2] [3|and Tab. [[| show the classification results for the 2-
class and 3-class datasets. It can be seen that the performances
of SSHAD and HAD are similar. However, when it comes
to the 37-class dataset, our model clearly outperforms HAD
as shown in Fig. [6] 4] and Tab. [[I] These results corroborate



the merits of our proposed approach, representing the data
by higher-level features yields more accurate identification -‘SSHAD
of events in power systems. Moreover, as shown in Fig. [3 EmHAD ﬁ
SSHAD is robust to the presence of bad data.
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TABLE I
THE 3-CLASS DATASET: 10-FOLD AVERAGE KAPPA (K) AND COST (cost)
COMPARISONS BETWEEN SSHAD (k = 10) AND HAD.

10-fold average time Z(s)
o

Sampling ®(%) cost (Ram-Hour) 1
Ratio SSHAD | HAD SSHAD HAD
10% 8225 | 8229 | 1.43x10° % | 1.37x10°°%
30% 88.36 | 8844 | 2.18x 108 | 2.07x 108 05
50% 69.87 69.57 | 2.87 x 108 | 2.89 x 10~ 8
70% 59.56 5928 | 3.67 x 10—8 | 3.83x 108 0
90% 5191 | 51.70 | 4.63 X 108 | 5.27 x 10~8 10 30 50 70 90
Sampling ratio (%)

Fig. 4. 10-fold average time (¥) comparison between SSHAD with parameter
k = 10 and HAD using the 37-class dataset.
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Fig. 2. 10-fold average accuracy (acc) comparison between SSHAD with
parameter k = 10 and HAD using the 2-class and 3-class datasets. Fig. 5. 10-fold average time (¥) comparison between SSHAD with parameter

k = 10 and HAD using the 37-class dataset in the presence of 10% of bad
data.

canr® 1 Il SSHAD © 3 g
NENT 100 | I HAD 2 58 &9
o. N i < > 8
025e . E g0
= fieps =
= | | S
g 1.4 ":29& % 80
= e g
=N - 4 5
& 3
. 5823 f S
Z PR i éﬂ
gos o | .
06+ noRp B g
= SO 5o £
041 . S 50
02r i 40
0
10 30 50 70 90 10 30 50 70 90
Sampling ratio (%) Sampling ratio (%)

Fig. 3. 10-fold average accuracy (acc¢) comparison between SSHAD with  Fig. 6. 10-fold average accuracy (acc) comparison between SSHAD with
parameter k = 10 and HAD using the 2-class and 3-class datasets. parameter k = 10 and HAD using the 37-class dataset.



TABLE II
THE 37-CLASS DATASET: 10-FOLD AVERAGE KAPPA (K) AND COST (cost)
COMPARISONS BETWEEN SSHAD (k = 10) AND HAD.

Sampling ®(%) cost (Ram-Hour)
Ratio SSHAD | HAD SSHAD HAD
10% 29.80 2839 | 5.80 x 10—8 | 5.88 x 10~ 8
30% 69.62 6232 | 1.20 x 10~ 7 | 1.64 x 107
50% 79.48 7741 | 9.24 x 108 | 1.09 x 107
70% 82.33 80.30 | 1.09 x 10~ 7 | 1.13 x 10~ 7
90% 85.64 8438 [ 1.24 x 10~7 | 1.28 x 10~ 7

IV. CONCLUSION

We develop a semi-supervised online approach (SSHAD)
for the power system event detection in this paper. The labeling
process for a large amount of unlabeled data is often very time-
consuming and costly, requiring specific domain knowledge
of many experts. Considering this fact, we leverage online
dictionary learning techniques to automatically build a new
feature space for the labeled data examples by extracting
valuable information from the unlabeled dataset. The learned
sparse codes of the labeled instances become the new feature
representations, based on which we train the HAD classifier.

Extensive numerical results corroborate our proposed ap-
proach’s effectiveness that yields a better classification per-
formance and compensates for the additional computational
burden of learning the higher dimensional representations.
Despite these results, we acknowledge that future work is
needed to make our approach more robust. For instance, this
work can be extended by studying how a malicious adversary
can modify the data and determining the depth of its attack
from the game theory perspective. Finally, a more detailed
analysis of the temporal dependence of the data should be
considered.
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