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Abstract—This paper investigates the problem of joint massive
devices separation and channel estimation for a reconfigurable
intelligent surface (RIS)-aided unsourced random access (URA)
scheme in the sixth-generation (6G) wireless networks. In par-
ticular, by associating the data sequences to a rank-one tensor
and exploiting the angular sparsity of the channel, the detection
problem is cast as a high-order coupled tensor decomposition
problem. However, the coupling among multiple devices to RIS
(device-RIS) channels together with their sparse structure make
the problem intractable. By devising novel priors to incorporate
problem structures, we design a novel probabilistic model to
capture both the element-wise sparsity from the angular channel
model and the low rank property due to the sporadic nature of
URA. Based on the this probabilistic model, we develop a coupled
tensor-based automatic detection (CTAD) algorithm under the
framework of variational inference with fast convergence and
low computational complexity. Moreover, the proposed algorithm
can automatically learn the number of active devices and thus
effectively avoid noise overfitting. Extensive simulation results
confirm the effectiveness and improvements of the proposed URA
algorithm in large-scale RIS regime.

I. INTRODUCTION

A typical massive machine-type communication (mMTC)

scenario in 6G wireless networks consists of a large number

of low-cost devices with sporadic traffics, which only a small

fraction of devices are active concurrently. Under such a

setting, one key challenge lies in how to jointly identify the

randomly active devices and to estimate their channels in a

fast and accurate way [1]-[12]. To overcome this challenge,

unsourced random access (URA) was proposed in [6], which

is independent of the total number of devices and depends

only on the cardinality of a random active device set. As

a result, URA has drawn much research interests due to its

effectiveness [7], [9]. Despite the advancement of URA, its

performance is heavily determined by the strength of received

signals at the base station (BS) which depends on the channel

quality. In this context, emerging wireless technologies for
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manipulating the wireless channels are desired to unlock the

potential of massive URA.

Recently, reconfigurable intelligent surface (RIS), as a

promising technology of 6G wireless networks, has been

proposed to enhance the received signal quality at desired

receivers [13]-[17]. The performance gain in RIS-aided com-

munication systems relies critically on the availability of CSI.

Yet, its acquisition is quite challenging in practice due to the

passive nature of RIS. In fact, without equipping active radio

frequency chains, RIS can neither transmit nor receive pilot

signals, thus it is challenging to estimate the channels of RIS to

the BS and devices to RIS separately. Instead, the concatenated

device-RIS-BS channels usually are estimated based on the

pilot sequences sent from the devices [20], [21].

Although various approaches have been proposed in the

literature for channel estimation in RIS-aided systems, e.g.,

[14], [15], the pilot signaling overhead still scales with the

product of the number of RIS reflecting elements and devices,

which are prohibitively large in practical scenarios, especially

for the case of mMTC. As a remedy, the study of joint device

separation and channel estimation with a fewer number of pi-

lots for the RIS-aided URA scheme in 6G wireless networks is

desired. In general, the considered problem can be formulated

as a novel non-standard coupled tensor decomposition problem

with a sparse coupled factor, assuming no knowledge about the

tensor rank (i.e., the number of active devices). To this end,

there are some existing methods which handle coupled tensor

decomposition type problems and determine the number of

unknown rank [22]-[25]. Unfortunately, the results from these

works cannot be directly applied to the joint device separation

and channel estimation problem with complicated coupled

structure. To address this issue, this paper proposes a novel

algorithm for joint devices separation and channel estimation.

The contributions of this paper are as follows:

1) This paper proposes a novel two-phase framework for

RIS-aided massive URA to jointly estimate the chan-

nels and separate the devices with only limited pilot

sequences.

2) This paper proposes a more advanced element-wise spar-

sity and low-rank inducing probabilistic modeling and

designs a coupled tensor-based detection algorithm under

the Bayesian learning framework with automatic active
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Fig. 1. RIS-aided massive unsourced random access in 6G wireless networks
with blocked direct links.

device number and noise power determination.

Notations: We use ⊗ to denote the Kronecker product, ◦ to

denote vector outer product, [[·]] to denote the Kruskal operator.

E denotes the expectation operator. ∗ denotes conjugation.

· denotes multiplication. ⋄ denotes Khatri-Rao product. ⊙
denotes Hadamard product. x is said to follow a normal

distribution with mean u and covariance matrix Σ of the form

CN (x|u,Σ). A(:, n) denotes the nth column of the matrix A.

II. PROBLEM FORMULATION

We consider a RIS-aided 6G wireless network, as illustrated

in Fig. 1, where a BS equipped with M antennas serves

massive single-antenna devices. In order to reduce the access

latency and the required signaling overhead in the context of

massive devices, the URA scheme is employed in 6G wireless

networks. Herein, a RIS consisting of N passive reflecting

elements is deployed to enhance the devices’ communication

performance. The passive reflecting elements of the RIS are

arranged as an uniform rectangular array with N , N1 ×N2.

Although the number of potential devices K̄ in 6G wireless

networks is numerous, only Ka ≪ K̄ devices are active con-

currently at a given slot [1]. It is assumed that the direct links

between active devices and the BS are obstructed [21] and

thus calls for a need to enhance the quality of communications

via deploying RIS [11], [18], [19]. The channels are assumed

to be invariant in a given time slot. In particular, hk ∈ CN

is the channel vector between the RIS and the kth device;

U ∈ CM×N is the channel matrix between the BS and the

RIS.

A. Virtual Channel Representation

Since the RIS is usually mounted at some tall buildings, it

is expected that there are only limited scatters around

the RIS. This suggests the adoption of the sparse

angular channel model [20]. Specifically, channel hk

can be modeled as hk =
√
εk
∑Ik

i=1 ǫiaR(φi, σi),
where aR(φi, σi) = ϕN2

(− cos(σi) cos(φi)) ⊗
ϕN1

(cos(σi) sin(φi)) with ϕNp
(x) ,

1√
Np

[

1, exp−j 2π
̺
dx, · · · , exp−j 2π

̺
d(Np−1)x

]T

, ∀p = 1, 2; N1

and N2 denote the length and the width of the rectangular

array of RIS; ̺ denotes the wavelength of carrier frequency;

ǫi denotes the complex-valued channel gain associated with

the i-th path; φi and σi are the azimuth and elevation

angle-of-departure (AoD) from the RIS respectively; εk
denotes the large-scale path gain for the channel between the

RIS and the k-th device, and Ik denotes the number of paths

between the k-th device and the RIS. Following the grid-

based scheme in [20], the representation of channel vector

hk can be further simplified. In particular, two sampling

grids ν = [ν1, · · · , νN1

′ ]T , with length N1

′ ≥ N1, and

ς = [ς1, · · · , ςN2

′ ]T , with length N2

′ ≥ N2, are employed

such that hk can be represented as

hk = ARλk, (1)

where AR =
[

ϕN1
(ν1), · · · ,ϕN1

(νN1

′ )
]

⊗
[

ϕN2
(ς1), · · · ,ϕN2

(ςN2

′ )
]

∈ CN×N ′
1
N ′

2 , and λk ∈ CN ′
1
N ′

2

represents the channel coefficients of hk in the angular

domain. Since the number of paths is usually limited, λk is

essentially sparse, with each nonzero value being
√
εkǫi.

B. RIS-Aided URA Scheme

In this subsection, we propose a novel two-phase framework

of joint device separation and channel estimation for RIS-aided

URA scheme. In the first phase, the channel U from the RIS

to the BS is estimated. Specifically, only one selected active

device (without loss of generality, device 1) transmits its pilot

sequence to the BS through the RIS. The received signal Y

at the BS can be expressed as

Y = UF+W, (2)

with F = (V⊙(h1g
T
1 )), where g1 ∈ Ctp is the pilot sequence

from the device 1 with tp being the length of pilot sequence;

W is the additive white Gaussian noise; V = [v1, · · · ,vtp ] ∈
CN×tp is the reflection beamforming matrix adopted at RIS,

in which vt = [α1,t exp(jθ1,t), · · · , αN,t exp(jθN,t)]
T ∈

CN , t = 1, · · · , tp, is the reflection beamforming vector

introduced by the RIS with the “on/off” state αn,l ∈ {0, 1}
and the phase shifts θn,l ∈ [0, 2π]. It is clear that matrix

F has the same sparsity pattern as the reflect beamforming

matrix V due to the Hadamard product. To impose the sparse

structure on F, we design matrix V as follows: the “on/off”

state αn,t ∼ Bernoulli (an,t, ) independently, where  is the

probability of “on” state; the phase shifts θn,t ∼ uniform

(0, 2π) independently. By exploiting the sparsity of F, the

BiG-AMP can be adopted to approximately compute the

minimum mean-squared error estimate of U. Details of the

BiG-AMP algorithm can be found in [26].

In the second phase, the BS jointly estimates the device-

RIS channel and separates active devices, as shown in Fig. 2.

Driven by this demand, this paper adopts a block transmission

scheme where the B-bit message of each active device is

divided into L sub-messages [9]. In particular, the length of

the l-th sub-message is Bl bits. Then, the collection of the

sub-messages transmitted within L subblocks can be recov-

ered jointly. Noting that since each subblock l contains Ka

recovered sub-messages, only an instance of the transmitted

data can be obtained in each subblock. However, the ultimate

goal of the BS is to recover the whole set of B-bit messages
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Fig. 2. High-level description of the proposed RIS-based URA scheme, where MSG k denotes the message of the kth device.

that were transmitted by all the active devices. In this context,

a decoder [9] for decoding binary messages among different

subblocks l of all the Ka active devices is needed.

Following the URA paradigm [9], we assume that all the

devices in arbitrary subblock l exploit the same constellation

℘ = {c1, c2, · · · , c2Bl } containing 2Bl elements. Clearly, if

devices want to make themselves be identified, they need

to embed their identity (ID) information into the transmitted

message. Considering the angular domain channel in (1) and

the RIS to the BS reflecting channel U, the received signals

of the lth subblock at the BS can be expressed as

Yl =

Ka
∑

k=1

Udiag(ARλk)vlsk,l +Wl, (3)

where diag(x) denotes a diagonal matrix with the diagonal

entries specified by x, and sk,l ∈ ℘ ⊂ C
τ is the transmitted

sequence of complex baseband symbols from the kth device

over τ channel uses. Wl is the additive white Gaussian noise.

Herein, the reflection beamforming vector vl is constant dur-

ing the l-th subblock and varies from one subblock to another

subblock. Let yl = vec(Yl) and wl = vec(Wl) denote the

vectorized versions of Yl and Wl, respectively. Then, we

rearrange Udiag(ARλk)vl which gives Udiag(ARλk)vl =
∑N

n=1U(:, n){ARλk}(n)vl(n) = V̂lARλk, where V̂l =
[vl(1)U(:, 1),vl(2)U(:, 2), · · · ,vl(N)U(:, N)] ∈ CM×N .

Note that the phase shifts of vl can be set to any value in

the range of [0, 2π]. Then, (3) can be equivalently rewritten as

yl =

Ka
∑

k=1

sk,l ⊗Plλk +wl, (4)

with Pl = V̂lAR ∈ C
M×N . Herein, the constellation ℘ can be

structured according to the tensor decomposition format [28].

Specifically, it is assumed that the channel use, i.e., τ , can be

factorized as τ = Πd
i τi for some d ≥ 2 and τi ≥ 2, ∀i. Subse-

quently, the complex symbols transmitted by the kth device at

the lth subblock, denoted by sk,l ∈ Cτ , can be rewritten as the

vector representation of a rank-1 tensor Sk,l ∈ Cτ1×···×τd of

dimensions τ1, · · · , τd, that is sk,l = vec(Sk,l) ∈ CΠd
i τi = Cτ .

Herein, Sk,l = x1,k,l ◦ x2,k,l ◦ · · · ◦ xd,k,l, ∀k, l, where each

xi,k,l is generated from a sub-constellation ℘i ⊂ Cτi , which

is defined as a discrete subset of Cτi . In this context, bit

information can be mapped to symbol as follows. Bl coded

bits are split into d sets of {B1,1}, ..., {Bl,d} bits, respectively,

corresponding to the d tensor dimensions. For the ith set, Bl,i-

bits data is mapped to an element of the sub-constellation

℘i. Consequently, we can formulate the design of joint device

separation and channel estimation as the following non-convex

optimization problem:

argmin
xi,k,l∈℘

τi
i

,λk∈CN

L
∑

l=1

∥

∥

∥

∥

∥

Yl −
Ka
∑

k=1

x1,k,l ◦ · · · ◦ xd,k,l ◦ (Plλk)

∥

∥

∥

∥

∥

2

F

s.t. ‖λk‖0 ≤ ζs, k = 1, 2, · · · ,Ka, (5)

where ‖ · ‖0 denotes the number of nonzero elements of an

input vector, ζs is a predefined parameter for imposing the

channel sparsity, Yl =
∑Ka

k=1 x1,k,l◦x2,k,l◦x3,k,l◦· · ·◦xd,k,l◦
Plλk +Wl with Wl ∈ Cτ1×···τd×M being the additive white

Gaussian noise represented in the tensor space. Note that the

tensor rank of noise-free Yl is at most Ka [27].

For the proposed two-phase framework of the RIS-aided

URA scheme, the key is to solve problem (5). However,

problem (5) is a non-standard coupled tensor decomposition

problem as the sparse profile vector is common and non-

linearly coupled with other parameters in modeling multiple

tensors Yl, ∀l. Moreover, the number of active devices is

random and unknown in practice introducing NP-hardness to

the estimation based on tensor data. These challenges urge the

development of a novel efficient algorithm for addressing (5).

III. COUPLED TENSOR-BASED AUTOMATIC DETECTION

ALGORITHM

Note that solving the discrete optimization problem in (5)

optimally via an exhaustive search, however, requires 2KaB

evaluations of the objective function. To circumvent the com-

plexity issue, we first relax the discrete domain xi,k,l ∈ ℘τi
i in

(5) to a continuous one xi,k,l ∈ Cτi . Besides, Ka is unknown

for the modeling of all Yl, ∀l, and its estimation has been

shown to be NP-hard. To tackle this challenge, an effective

way is to introduce two regularization terms that penalizes the



model complexity and avoids possible overfitting of noise:

argmin
{Xi

l
∈Cτi×K}d

i=1

L

l=1
G∈CM×K

L
∑

l=1

∥

∥Yl −
[[

X1
l , · · · ,Xd

l , PlG
]]∥

∥

2

F

+
K
∑

k=1

γk

(

L
∑

l=1

d
∑

i=1

Xi
l(:, k)

HXi
l(:, k)

)

+
K
∑

k=1

ηkG(:, k)HG(:, k)

s.t. ‖G(:, k)‖0 ≤ ζs, k = 1, 2, · · · ,K, (6)

where Xi
l ∈ Cτi×K with the kth column being xd,k,l,

G ∈ CM×K is defined similarly but with the kth column being

λk. Herein, we set the column number of all factor matrices

{X1
l , · · · ,Xd

l ,G} as K , which is the maximum possible

number of active devices. In general, if parameters γk > 0
and ηk > 0 are sufficiently large after inference, the elements

of the kth columns in the optimal {Xi
l}Ll=1

d

i=1 and G approach

zeros. Then the corresponding column can be pruned out, and

the number of remaining columns in each factor matrix gives

an estimate of number of active devices. However, the choice

of regularization parameters is computationally demanding.

Therefore, we develop an intelligent algorithm that can au-

tomatically learn both the factor matrices and regularization

parameters under the Bayesian learning framework.

A. Element-Wise Sparsity and Low-Rank Inducing Probabilis-

tic Modeling

Firstly, to apply the Bayesian learning framework, the

probabilistic model, which encodes the knowledge of problem

(6), needs to be established. Therefore, we propose a novel

probabilistic model by interpreting each term in problem (6)

via some probability density functions (pdfs) [29]. We start

with the last regularization term in the objective function of

(6), which can be modeled as a circularly-symmetric complex

Gaussian prior distribution of the columns in matrix G, i.e.,
∏K

k=1 CN
(

G(:, k)|0, (ηk)−1I
)

. On the other hand, note that

the l0 norm constraint in (6) is imposed such that the elements

in each column of channel are also sparse. Therefore, by taking

both the column-wise sparsity (i.e., low-rank) and the element-

wise sparsity structure into account, we propose the following

novel prior for G:

p
(

G|{ηk}Kk=1, {ξ(n, k)}Nn=1

K

k=1

)

=
K
∏

k=1

[

CN
(

G(:, k)|0, η−1
k I
)

·
N
∏

n=1

CN
(

G(n, k)|0, ξ(n, k)−1
)

]

, (7)

with p({ηk}Kk=1|ıη) =
∏K

k=1gamma(ηk|δ, δ), and

p({ξ(n, k)}Nn=1
K

k=1|ıξ) =
∏N

n=1

∏K
k=1 gamma(ξ(n, k)|δ, δ),

where δ > 0 is a small number that indicates the non-

informativeness of the prior model, the natural parameter

ıη = [−δ1K ; (δ − 1)1K ], and ıξ = [−δ1NK ; (δ − 1)1NK ].
Noting that, after integrating the gamma hyper-prior, the

marginal distribution of model parameters in Gaussian-gamma

model is a student’s t distribution, which is strongly peaked

at zero and with heavy tails, thus promoting sparsity.

The proposed prior in (7) is employed to model the sparsity

pattern of G. It has a clear physical interpretation. Particularly,

ξ(n, k)−1 can be interpreted as the power of each element

G(n, k), while η−1
k has a physical interpretation as the power

of each column in G. Therefore, if η−1
k is learnt to approach

zero, regardless of ξ(n, k), the corresponding columns in the

factor matrices play no role in channel modeling and thus

can be pruned out by thresholding. Similarly, for a nonzero

column (η−1
k 6= 0), G(n, k) would be shrunk to zero as

ξ(n, k)−1 goes to zero. Therefore, the proposed prior in

(7) can simultaneously promote element-wise sparsity of the

channel and low-rank property of tensor data, which mimic

the sparsity constraint and the last regularization term in (6).

Similarly, for the regularization term about Xi
l in problem

(6), it can be modeled as a zero-mean circularly-symmetric

complex Gaussian prior distribution over the columns of

the factor matrices as follows. p
(

{Xi
l}Ll=1

d

i=1|{γk}Kk=1

)

=
∏L

l=1

∏d
i=1

∏K
k=1 CN

(

Xi
l(:, k)|0, γ−1

k I
)

. Herein, a gamma

distribution is adopted for the penalty parameter γk to

enforce the column-wise sparsity [31]: p({γk}Kk=1|ıγ) =
∏K

k=1gamma(γk|δ, δ), where γ−1
k can be interpreted as the

power of each column in Xi
l and ıγ = [−δ1K ; (δ − 1)1K ].

Finally, since the elements of the additive noise Wl obeys

white Gaussian distribution, the sum of the squared error term

in problem (6) can be interpreted as the negative log of a

likelihood function given by p({Yl}Ll=1|{Xi
l}di=1

L

l=1,G, β) ∝
exp(−β

L
∑

l=1

‖Yl −
[[

X1
l , X2

l , · · · ,Xd
l , PlG

]]∥

∥

2

F
), where the

noise precision β obeys gamma distribution, i.e., p(β|ıβ) ∝
βδ−1 exp(−δβ) with natural parameters ıβ = [−δ; (δ−1)]. Let

Θ = {{Xi
l}di=1

L

l=1,G, β, {γk}Kk=1, {ηk}Kk=1, {ξ(n, k)}Nn=1
K

k=1}
collects all the unknown random variables. Given the prob-

abilistic model p(Θ, {Yl}Ll=1), the next goal of Bayesian

inference is to learn the model parameters Θ from the tensor

data {Yl}Ll=1, where the posterior probability p(Θ|{Yl}Ll=1)
is needed to be sought. Noting that maximizing the posterior

probability is similar to addressing the problem (6). However,

the problem (6) cannot learn the regularization parameters.

B. Computation Algorithm for The Inference

Unfortunately, the proposed probabilistic model is still too

complicated to enable an analytically tractable solution since

multiple integrations are involved. To address this problem,

we adopt the variational inference method which establishes a

variational distribution Q(Θ) to approximate the true posterior

p(Θ|{Yl}Ll=1). To achieve this goal, Q(Θ) is the solution

which minimizes the Kullback-Leibler (KL) divergence, i.e.,

minimize
Q(Θ)

KL(Q(Θ)|p(Θ|{Yl}Ll=1)). To address this prob-

lem, mean-field approximation [32] is widely used to offer

a tractable solution, which assumes that the variational pdf

can be represented in a fully factorized form, i.e., Q(Θ) =
J
∏

j=1

Q(Θj), where Θj ∈ Θ is part of Θ with
⋃J

j=1 Θj = Θ

and
⋂J

j=1 Θj = ∅, and J is the number of subsets. Under



this factorization, each optimal variational pdf Q†(Θj) that

minimizes the KL divergence can be obtained as follows [32]

Q†(Θj) =
exp(E∏

i6=j
Q(Θi) ln p(Θ, {Yl}Ll=1))

∫

E∏
i6=j Q(Θi) ln p(Θ, {Yl}Ll=1)dΘj

, ∀j. (8)

Using (8), we can derive the closed-form posterior update for

each variational pdf, i.e., Q†(Θj).
Since the statistics of each variational pdf rely on other

variational pdfs. Therefore, all parameters of variational pdfs

need to be updated alternatingly. For clarity, the pseudo-code

of the resulting algorithm is outlined in Algorithm 1. Noting

that for a given sk,l ∈ ℘, x1,k,l ◦ · · · ◦ xd,k,l cannot be

distinguished from u1x1,k,l◦· · ·◦udxd,k,l with u1, · · · , ud ∈ C

whenever
∏d

i=1 ui=1. To resolve scalar indeterminacy, each

sub-constellation ℘i can be designed based on a Grassmannian

codebook [30]. Then the estimation of xi,k,l can be searched

over the elements of structured Grassmannian constellation

and be transformed back to to the discrete domain.

C. Computational Complexity

Now, we analyze the computational complexity of the pro-

posed CTAD algorithm. For each iteration, the computational

complexity is dominated by updating each factor matrix and

mainly arises from the matrix multiplication, which is in the

order of O(L(
d
∑

i=1

τi +M)K3 +Ld
∏d

i=1 MτiK
2 +LN2M).

Noting that the computational complexity of single-device

demapping is O(τi), which is independent of data size B
and thus is not numerically expensive. It can be seen that the

complexity of the proposed CTAD algorithm scales linearly

with the subblocks but polynomially with the potential number

of active devices. In contrast, the computational complexity of

Algorithm 1 Coupled Tensor-Based Automatic Detection

(CTAD) Algorithm

1: Input: {Yl}Ll=1 and total iterations T

2: Initialization: M0
G, {Mi,0

l }Ll=1

d

i=1
, Σ0

G, {Σi,t
l }Ll=1

d

i=1
,

a0β , {a0ηk
, a0γk

}Kk=1, and {a0ξn,k
}Nn=1

K

k=1
3: for t = 1 : T do

4: Updates the parameters of Q(G)t+1:

Ξt+1
l =

(

aβ
btβ

d
⊙
i=1

(

(Mi,t
l )HM

i,t
l + τiΣ

i,t
l

)∗
)−1

, (9)

Ωt+1=

(

L
∑

l=1

PH
l Pl ⊗ (Ξt+1

l )−1 +diag(1N⊗[bη/a
t
η1
, · · ·,

bη/a
t
ηK

]) + diag(bξ/a
t
ξ1,1

, · · · , bξ/atξ1,K
, · · · ,

bξ/a
t
ξN,1

, · · · , bξ/atξN,K
)
)−1

, (10)

ut+1 = Ωt+1
L
∑

l=1

PH
l Pl ⊗ (Ξt+1

l )−1vec

((

aβ
btβ

(PH
l Pl)

−1

·PH
l Yl(d+ 1)

(

d⋄
i=1

M
i,t
l

)∗

Ξt+1
l

)H
)

, (11)

Mt+1
G = reshape(ut+1, N ×K). (12)

5: Updates the parameters of Q(Xi
l)

t+1:

Σ
i,t+1
l =

(

aβ
btβ

d
⊙

j=1,j 6=i

(

(Mj,t
l )HM

j,t
l + τjΣ

j,t
l

)∗

⊙



M
t,H
G PH

l PlM
t
G +

N
∑

i=1

N
∑

j=1

{PH
l Pl}(i, j)Ωb,t

i,j





∗

+diag

(

bγ
atγ1

, · · · , bγ
atγK

))−1

, (13)

M
i,t
l =

aβ
btβ

Yl(i)

(

d⋄
j=1,j 6=i

M
i,t
l ⋄PlM

t
G

)∗

Σ
i,t+1
l . (14)

6: Updates the parameters of Q(ξ(n, k))t+1:

at+1
ξ(n,k) = M

t+1,∗
G (n, k)Mt+1

G (n, k) +Ωb,t+1
n,n (k, k). (15)

7: Updates the parameters of Q(ηk)
t+1:

at+1
ηk

=(Mt
G(:, k)

HMG(:, k)
t+[

N
∑

n=1

Ωb,t+1
n,n ](k, k))+δ. (16)

8: Updates the parameters of Q(γk)
t+1:

at+1
γk

=

L
∑

l=1

d
∑

i=1

(Mi,t
l (:, k))HM

i,t
l (:, k)+τiΣ

i,t
l (k, k)+δ.(17)

9: Updates the parameters of Q(β)t+1:

at+1
β =

L
∑

l=1

Tr

(

d
⊙
i=1

(

(Mi,t
l )H(Mi,t

l )∗+τiΣ
i,t
l

)H(

M
t,H
G PH

l

·PlM
t
G+

N
∑

i=1

N
∑

j=1

{PH
l Pl}(i, j)Ωb,t

i,j



−PlM
t
G

(

d⋄
i=1

M
i,t
l

)T

·Yl(d+ 1)H−Yl(d+ 1)

(

d⋄
i=1

M
i,t
l

)∗

M
t,H
G PH

l

)

+‖Yl(d+1)‖2F +δ. (18)

10: end for

11: Output: Mt+1
G and {Mi,t+1

l }Ll=1

K

k=1

the activity detection algorithm in [21] scales polynomially

with the total number of devices, i.e., O(K̄4). Thus, the

proposed CTAD algorithm is computationally efficient.

IV. NUMERICAL RESULTS

In this section, we present extensive simulation results to

validate the effectiveness of the proposed CTAD algorithm

in 6G wireless networks. For the URA scheme, we consider

the case that every active device embeds its ID in the pay-

load, in addition to B = 360 information bits [9]. It is

assumed that there are total of K̄ = 4096 devices in the

network, therefore, BID = log2(K) = 12 bits are required

to encode the device ID. Hence, each device transmits a total

of Btot = BID + B = 372 bits. The device separation

error is evaluated by the packet error rate (PER) metric,

which is averaged over all active devices. We assume that

the entries of RIS-BS channel matrix and the pilot sequences

are independent and identically distributed (i.i.d.) zero-mean

circularly-symmetric complex Gaussian random variables with

unit variance. Every ǫi of the BS-device channel is drawn



from complex Gaussian random variables with zero mean and

unit variance. The path loss model is set as εk = l0(
d̄
d̄0

)ū,

where l0 denotes the path loss at the reference distance d̄0.

Herein, d̄0 = 1, l0 = −30 dB, and the path loss exponent

ū for device-RIS channel and RIS-BS channel are set as 2
and 2.5, respectively. The distance d̄ from the kth device

to RIS is randomly generated from 500 m to 1000 m and

from the RIS to BS is 100 m. The angular spread of each

subpath is set as 15◦. The over-complete bases ν and ς in

(1) are uniform sampling grids covering [−1, 1]. The channel

estimation accuracy is evaluated in terms of normalized mean

square error (NMSE) given by NMSE = 1
Tr

Tr
∑

i=1

‖Gi−Ĝ
i‖2

F

‖Gi‖2

F

,

where Tr is the number of Monte Carlo runs and Ĝi is the

device-RIS channel estimated at the i-th run [33], [34]. The

tree-based decoder [9] is employed, where the B-bit message

of each device is divided into L subblocks of size B1, · · · , BL

satisfying the following conditions:
∑

l Bl = B, B1 = R,

and Bl < R for all i = 2, · · · , L. Herein, all subblocks

i = 2, · · · , L are augmented to size R by appending the

parity bits which are set to pb(0, 168, 270). Moreover, we set

R=270, δ=10−6, d=2, τ1=80, and τ2=80.

Transmit Power (dB)
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P
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=
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Fig. 3. The estimation accuracy of active devices number for different transmit
power with Ka=50, N=500, and K̄=4096.

When measuring the rank quality of estimation, we consider

the mean value of the rank estimation and probability of

the successful recovery in the form of Pr(K = Ka). Each

simulation is repeated 200 times to obtain the averaged result.

Fig. 3 indicates that the success rate of rank estimation is

increased as the antenna number M at the BS grows in the

lower pilot transmit power region. This is due to the fact that

Pl is equivalent to the measurement matrix in compressed

sensing, and the increasing number of BS antennas results in

the increment of measurement length for a better observation.

In Fig. 4, we focus on the NMSE performance of the pro-

posed CTAD algorithm with different numbers of subblocks L
and a fixed rate B/τ . As can be seen from the obtained results,

utilizing a single subblock L = 1 cannot accurately estimate

Number of Active Devices Ka
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(d
B
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Proposed CTAD, L = 3
Proposed CTAD, L = 4

Fig. 4. NMSE versus L with M = 256, N = 350, transmit power = 15

dB, and K̄ = 4096.
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Fig. 5. PER versus different K with Ka = 50, M = 256, L = 3, transmit
power = 10 dB, and K̄ = 4096.

the channel, since G does not admit a unique solution from the

compressed model PlG. While the proposed CTAD algorithm

is quite accurate for both L = 3, 4 and the performance

degrades with decreasing L. From this simulation result,

we can see that the coupled tensor factorization criterion in

problem (6) is critical to the reconstruction of the channel,

since the shared parameter G in the L fitting terms serves as

an anchor to fix the permutation and scaling ambiguities.

For comparison, we consider a two-stage estimator for ad-

dressing the optimization problem in (6): First, the alternating

least square (ALS) algorithm [27] is applied to fit the model

in (6) and Ḡl = PlG is regarded unknown to estimate. As for

the second stage, we compute the minimum l1-norm solutions

for the sparse factor matrices G from the estimation of Ḡl

and use the existing convex optimization solver [35] to solve

it. Since the number of active devices Ka is unknown in

practice, we set the initial upper bounds of Ka as K . In Fig.

5, we provide the PER performance curves of the proposed



CTAD algorithm under different initial upper bounds of Ka,

where the genie-aided two-stage approach with exact Ka and

the two-stage approach with incorrect active device numbers

K are set as benchmarks. First, it can be observed that the

proposed CTAD algorithm can offer the best PER results

due to its superior capabilities in determining tensor rank,

i.e., Ka, learning with different K . Moreover, the proposed

CTAD algorithm is realized through not only element-wise

sparsity of channel, but also utilization of the coupled principle

for the channels in a clever way. In contrast, the two-stage

approach with K overfits the noises heavily and the estimated

performance degrades severely in channel estimations.

V. CONCLUSION

In this paper, we established a two-phase framework and

then the joint device separation and channel estimation prob-

lem was firstly recasted as a coupled high-order tensor prob-

lem. Then, a novel probabilistic modeling and an automatic

learning algorithm were proposed under the framework of

Bayesian inference. The numerical results have shown the

remarkable performance of the proposed algorithms.

REFERENCES

[1] L. Liu and W. Yu, “Massive connectivity with massive MIMO-Part I:
Device activity detection and channel estimation,” IEEE Trans. Signal

Process., vol. 66, no. 11, pp. 2933-2946, Jun. 2018.

[2] X. Shao, X. Chen, C. Zhong and Z. Zhang, “Joint activity detection
and channel estimation for mmW/THz wideband massive access,” IEEE

Intern. Conference Commun., 2020, pp. 1-6.

[3] J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang and D.
J. Love, “Prospective multiple antenna technologies for beyond 5G,” in
IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637-1660, Aug. 2020.

[4] X. Shao, X. Chen, Y. Qiang, C. Zhong and Z. Zhang, “Feature-aided
adaptive-tuning deep learning for massive device detection,” IEEE J.

Selec. Areas Commun., vol. 39, no. 7, pp. 1899-1914, July 2021.

[5] V. W. S. Wong, R. Schober, D. W. K. Ng, and L.-C. Wang, Key

Technologies for 5G Wireless Systems. Cambridge, U.K.: Cambridge
Univ. Press, 2017.

[6] Y. Polyanskiy, “A perspective on massive random-access,” in Proc. IEEE

Int. Symp. Inf. Theory, Aachen, Germany, Jun. 2017, pp. 2523-2527.

[7] X. Xie, Y. Wu, J. Gao, and W. Zhang, “Massive unsourced random
access for massive MIMO correlated channels”, [Online]. Available:
arXiv preprint arXiv:2008.08742, 2020.

[8] X. Shao, X. Chen, D. W. K. Ng, C. Zhong and Z. Zhang,“Cooperative
activity detection: Sourced and unsourced massive random access
paradigms,IEEE Trans. Signal Process., vol. 68, pp. 6578-6593, 2020.

[9] A. Fengler, G. Caire, P. Jung, and S. Haghighatshoar, “Massive
MIMO unsourced random access,” Jan. 2019, [Online]. Available:
http://arxiv.org/abs/1901.00828.

[10] X. Shao, X. Chen, and R. Jia, “A dimension reduction-based joint
activity detection and channel estimation algorithm for massive access,”
IEEE Trans. Signal Process., vol. 68, pp. 420-435, Jan. 2020.

[11] S. Hu, Z. Wei, Y. Cai, C. Liu, D. W. K. Ng, and J. Yuan, “Ro-
bust and secure sum-rate maximization for multiuser MISO downlink
systems with self-sustainable IRS,” [Online] available: arXiv preprint
arXiv:2101.10549, 2021.

[12] X. Shao, X. Chen, C. Zhong, J. Zhao, and Z. Zhang, “A unified design
of massive access for cellular Internet of Things,” IEEE Internet of Things

J., vol. 6. no. 2, pp. 3934-3947, Apr. 2019.

[13] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah and C. Yuen,
“Reconfigurable intelligent surfaces for energy efficiency in wireless
communication,,” IEEE Trans.Wireless Commun., vol. 18, no. 8, pp. 4157-
4170, Aug. 2019.

[14] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent re-
flecting surface aided wireless communications: A tutorial,” IEEE Trans.

Commun., vol. PP, no. 99, pp. 1-1, 2021.

[15] C. Huang et al., “Holographic MIMO surfaces for 6G wireless networks:
Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27,
no. 5, pp. 118-125, Oct. 2020.

[16] C. You, B. Zheng and R. Zhang, “Channel estimation and passive
beamforming for reconfigurable intelligent surface: Discrete phase shift
and progressive refinement,” IEEE J. Sel. Areas Commun., vol. 38, no.
11, pp. 2604-2620, Nov. 2020.

[17] C. Huang, R. Mo and C. Yuen, “Reconfigurable intelligent surface
assisted multiuser MISO systems exploiting deep reinforcement learning,”
IEEE J. Selected Areas Commun., vol. 38, no. 8, pp. 1839-1850, Aug.
2020.

[18] L. You, J. Xiong, D. W. K. Ng, C. Yuen, W. Wang and X. Gao, “Energy
efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO
uplink transmission,” IEEE Trans. Signal Process., vol. 69, pp. 1407-
1421, 2021.

[19] J. Yao, Z. Zhang, X. Shao, C. Huang, C. Zhong, and X. Chen,
“Concentrative intelligent reflecting surface aided computational imaging
via fast block sparse Bayesian learning,” IEEE Veh. Techno. Conf. (VTC),
Jun. 2021, pp. 1-6.

[20] H. Liu, X. Yuan, and Y. -J. A. Zhang, “Matrix-calibration-based cas-
caded channel estimation for reconfigurable intelligent surface aided
multiuser MIMO,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp.
2621-2636, Nov. 2020.

[21] S. Xia and Y. Shi, “Intelligent reflecting surface for massive device
connectivity: Joint activity detection and channel estimation,” IEEE

Intern. Conf. Acoustics, Speech and Signal Process. (ICASSP), Barcelona,
Spain, 2020, pp. 5175-5179.

[22] L. Cheng, Z. Chen, Q. Shi, Y. C. Wu, and S. Theodoridis, “Towards
probabilistic tensor canonical polyadic decomposition 2.0: Automatic ten-
sor rank learning using generalized hyperbolic prior,” [Online]. Available:
arXiv preprint arXiv:2009.02472, 2020.

[23] M. S. rensen and L. D. De Lathauwer, “Coupled canonical polyadic
decompositions and (coupled) decompositions in multilinear rank-
(Lr,n, Lr,n, 1) terms—part I: Uniqueness” SIAM J. Matrix Analysis and

Applications, 2015, vol. 36, no. 2, pp. 496-522.
[24] L. Cheng, Y.-C. Wu, and H. V. Poor, “Probabilistic tensor canonical

polyadic decomposition with orthogonal factors,” IEEE Trans. Signal

Process., vol. 65, no. 3, pp. 663-676, Feb., 2017.
[25] L. Cheng and Q. Shi, “Towards overfitting avoidance: Tuning-free

tensor-aided multi-user channel estimation for 3D massive MIMO com-
munications,” IEEE J. Sel. Topics Signal Process., vol. PP, no. 99, pp.
1-1, Jan. 2021.

[26] J. T. Parker, P. Schniter, and V. Cevher, “Bilinear generalized ap-
proximate message passing part I: Derivation,” IEEE Trans. Signal

Process.,vol. 62, no. 22, pp. 5839-5853, Nov. 2014.
[27] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”

SIAM Rev., vol. 51, pp. 455-500, 2009.
[28] A. Decurninge, I. Land, and M. Guillaud, “Tensor-based modulation for

unsourced massive random access,” IEEE Wireless Commun. Let., vol.
PP, no. 99, vol. pp.1-1, 2020.

[29] L. Cheng, Y.-C. Wu, and H. V. Poor, “Scaling probabilistic tensor
canonical polyadic decomposition to massive data,” IEEE Trans. Signal

Process., vol. 66, no. 21, pp. 5534-5548, Nov. 2018.
[30] K. Ngo, A. Decurninge, M. Guillaud, and S. Yang, “Cube-Split: A

structured Grassmannian constellation for non-coherent SIMO communi-
cations,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 1948-1964,
Mar. 2020.

[31] L. Cheng, X. Tong, S. Wang, Y. Wu and H. V. Poor, “Learning non-
negative factors from Tensor data: Probabilistic modeling and inference
algorithm,” IEEE Trans. Signal Process., vol. 68, pp. 1792-1806, Feb.
2020.

[32] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential
families, and variational inference,” Found. Trends Mach. Learn., vol. 1,
no. 102, pp. 1-305, Jan. 2008.

[33] Y. Qiang, X. Shao and X. Chen, “A model-driven deep learning
algorithm for joint activity detection and channel estimation,,” IEEE

Commun. Letters, vol. 24, no. 11, pp. 2508-2512, Nov. 2020.
[34] X. Shao, X. Chen, D. W. Kwan Ng, C. Zhong and Z. Zhang, “Deep

learning-based joint activity detection and channel estimation for massive
access: When more antennas meet fewer pilots,” in Proc. Intern. Conf.

Wireless Commun. Signal Process. (WCSP), Nanjing, China, Oct. 2020,
pp. 975-980.

[35] S. Boyd and L. Vandenberghe, Convex Optimization, New York, NY,
USA: Cambridge University Press, 2004.

http://arxiv.org/abs/2008.08742
http://arxiv.org/abs/1901.00828
http://arxiv.org/abs/2101.10549
http://arxiv.org/abs/2009.02472

	I Introduction
	II Problem Formulation
	II-A Virtual Channel Representation
	II-B RIS-Aided URA Scheme

	III Coupled Tensor-Based Automatic Detection Algorithm
	III-A Element-Wise Sparsity and Low-Rank Inducing Probabilistic Modeling
	III-B Computation Algorithm for The Inference
	III-C Computational Complexity

	IV Numerical Results
	V Conclusion
	References

