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Abstract

We extend the work [9] by two of the coauthors, which dealt with a deterministic control problem for

which the Hilbert space could be generic and investigated a novel form of the ‘lifting’ technique proposed

by P. L. Lions. In [9], we only showed the local existence and uniqueness of solutions to the FBODEs in the

Hilbert space which were associated to the control problems with drift function consisting of the control

only. In this article, we establish the global existence and uniqueness of the solutions to the FBODEs in

Hilbert space corresponding to control problems with separable drift function which is nonlinear in state

and linear in control. We shall also prove the sufficiency of the Pontryagin Maximum Principle and derive

the corresponding Bellman equation. Besides, we shall show an analogue in the stationary case. Finally,

by using the ‘lifting’ idea as in [7, 6], we shall apply the result to solve the linear quadratic mean field

type control problems, and to show the global existence of the corresponding Bellman equations.
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1 INTRODUCTION

In recent years, Mean Field Game (MFG) and Mean Field Type Control Theory (MFTCT) are burgeon-

ing. Carmona and Delarue [14] proved the existence of the general forward-backward systems of equations

of McKean-Vlasov type using the probabilistic approach, and therefore obtained the classical solution to

the master equation arisen from MFG. Their assumptions restricted their application to LQ models only.

Cardaliaguet et al. [12] proved the existence of the classical solution to the master equation arisen from

MFG by PDE techniques and the method of characteristics. To do so, they required the state space to be

compact, and the Hamiltonian to be smooth, globally Lipschitz continuous and to satisfy a certain coercivity

condition. Buckdahn et al. [11] adopted a similar approach to study forward flows, proving that the semi-

group of a standard McKean-Vlasov stochastic differential equation with smooth coefficients is the classical

solution of a particular type of master equation. A crucial assumption was made therein on the smoothness

of the coefficients, which restricted the scope of applications. Gangbo and Mészáros in [19] constructed

global solutions to the master equation in potential Mean Field Games, where displacement convexity was

used as a substitution for the monotonicity condition. Besides the notion of classical solutions, Mou and

Zhang in [26] gave a notion of weak solution of the master equation arisen from mean field games, using

their results of mollifiers on the infinite dimensional space. More results can be found in the papers of Cosso

and Pham [16], Pham and Wei [29] and Djete et al. [18], which concern the Bellman and Master equations

of Mean Field Games and Mean Field Type Control Theory.

By Pontryagin Maximum Principle, MFG and MFTCT are deeply connected to mean field forward backward

stochastic differential equations. Pardoux and Tang [27], Antonelli [2] and Hu and Yong [21] showed the

existence and uniqueness of FBSDEs under small time intervals by a fixed point argument. For Markovian

FBSDEs, to get rid of the small time issue, Ma et al. [24] employed the Four Step Scheme. They constructed

decoupling functions by the use of the classical solutions of quasi-linear PDEs, hence non-degeneracy of the

diffusion coefficient and the strong regularity condition on the coefficients were required. Another way to

remove time constraints in Markovian FBSDEs was by Delarue [17]. Local solutions were patched together

by the use of decoupling functions. PDE methods were used to bound the coefficients of the terminal func-

tion relative to the initial data in order for the problem to be well-posed. It was later extended to the case of

non-Markovian FBSDEs by Zhang in [32]. Moreover, to deal with non-Markovian FBSDEs with arbitrary

time length, there was the pure probabilistic method – method of continuation. It required monotonicity

conditions on the coefficients. For seminal works one may consult [20, 28, 30, 31]. With the help of decou-

pling functions as in [17], but using a BSDE to control the terminal coefficient instead of PDEs, Ma et al.
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[25] covered most of the above cases, but in the case of codomain being R. For mean field type FBSDE. A

rather general existence result but with a restrictive assumption (boundedness of the coefficients with respect

to the state variable) was first done in [13] by Carmona and Delarue. Taking advantage of the convexity of

the underlying Hamiltonian and applying the continuation method, Carmona and Delarue extended their

results in [14]. Bensoussan et al. [10] exploited the condition in [14] and gave weaker conditions for which

the results in [14] still hold. By the method of continuation, Ahuja et al. [1] extended the above result to

the FBSDEs which allow coefficients to be functionals of the processes. More details can be found in the

monographs [15, 3] and [4, 5, 8].

We establish the global existence and uniqueness of the solutions to the FBODEs in Hilbert space corre-

sponding to control problems with separable drift function which is nonlinear in state and linear in control.

The result can be applied to solve linear quadratic mean field type control problems. We exploit the ‘lifting

to Hilbert space’ approach suggested by P. L. Lions in [22, 23], but lift to another Hilbert space instead of

the space of random variables. After lifting, the problems are akin to standard control problems, but the

drawback is that they are in the infinite dimensional space. By the Pontryagin Maximum Principle, the

control problems are reduced to FBODEs in the Hilbert space. In order to accommodate nonlinear settings,

we make use of the idea of decoupling. By a Banach fixed point argument, we are able to locally find a

decoupling function for the FBODEs. We then derive a priori estimates of the decoupling function and

extend the solution from local to global as in Delarue [17] by the a priori estimates. Besides, we also show

the analogue in the stationary case. Finally we apply our result to solve linear quadratic mean field type

control problems and obtain their corresponding Bellman equations.

The rest of this article is organized as follows. In Section 2, we introduce the model in the Hilbert space.

In Section 3, we express the related FBODE and define the decoupling function. A priori estimates of the

decoupling function are derived in Section 4. In Section 5, we prove the local existence and uniqueness of the

FBODE by using a Banach fixed point argument on the function space containing the decoupling function.

In Section 6.1, we construct the global solution by our a priori estimates. We show the sufficiency of the

Maximum Principle in Section 6.2 and write the corresponding Bellman function in Section 6.3. In Section

7, we show the corresponding result in the stationary case. In Section 7, we apply our result in the Hilbert

space as in [7], to solve the optimal control problem, and show the global existence to the corresponding

Bellman equation.
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2 THE MODEL

2.1 ASSUMPTIONS

Let H be a Hilbert space, with scalar product denoted by (·, ·) . We consider a non-linear operator A(x) :

H 7→ H, such that

A(0) = 0. (2.1)

We assume that x 7→ A(x) is C1 and that DA(x) = DxA(x) ∈ L(H; H) satisfies:

||DA(x)|| ≤ γ. (2.2)

We use the notation:

(DA(x)y, z) = (Dx(A(x), z), y). (2.3)

We also assume that DA(x) is differentiable with a second derivative D2A(x) ∈ L(H; L(H; H)) with the

notation: 



(Dx(Dx(A(x), z), y), w) = (D2
xxA(x)(y)w, z),

Dx(Dx(A(x), z), y) = (D2
xxA(x)(y), z).

(2.4)

We assume the Lipschitz property:

||DA(x1) − DA(x2)|| ≤
b|x1 − x2|

1 + max(|x1|, |x2|)
, (2.5)

which implies

||D2A(x)|| ≤
b

1 + |x|
. (2.6)

In the sequel, we shall make restrictions on the size of b.

We next consider x 7→ F (x) and x 7→ FT (x), functionals on H, which are C2, with the properties:





F (0) = 0, DxF (0) = 0,

ν|ξ|2 ≤ (D2
xxF (x)ξ, ξ) ≤ M |ξ|2;

(2.7)






FT (0) = 0, DxF T (0) = 0,

νT |ξ|2 ≤ (D2
xxFT (x)ξ, ξ) ≤ MT |ξ|2,

(2.8)

and ν, νT > 0. H is the state space. In addition, there is a control space V, also a Hilbert space and a linear
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bounded operator B ∈ L(V; H), an invertible-self adjoint operator on V, denoted by N. We assume that

(BN−1B∗ξ, ξ) ≥ m|ξ|2, m > 0. (2.9)

Remark 1. The assumption (2.1) and the first line assumptions (2.7), (2.8) are of course not necessary. It

is just to simplify the calculations.

2.2 THE PROBLEM

We consider the following control problem. The state evolution is governed by the differential equation in

H: 



dx

ds
= A(x) + Bv(s),

x(t) = x,

(2.10)

in which v(·) is in L2(t, T ; V). It is easy to check that the state x(·) is uniquely defined and belongs to

H1(t, T ; H). We define the payoff functional:

Jxt(v(·)) :=

∫ T

t
F (x(s))ds + FT (x(T )) +

1

2

∫ T

t
(v(s), Nv(s))ds. (2.11)

This functional is continuous and coercive. If H were Rn, it would be classical that it has a minimum and thus

we could write the necessary conditions of optimality. But the proof does not carry over to general Hilbert

spaces. Moreover, since A is not linear, we do not have the convexity property, which would guarantee the

existence and uniqueness of a minimum, and thus a solution of the necessary conditions of optimality. We

shall then write the necessary conditions of optimality and prove directly the existence and uniqueness of a

solution.

3 NECESSARY CONDITIONS OF OPTIMALITY

3.1 THE SYSTEM

It is standard to check the following system of forward-backward equations in H:





dy

ds
= A(y) − BN−1B∗z(s), t < s < T,

−
dz

ds
= (DA(y(s)))∗z(s) + DF (y(s)),

y(t) = x, z(T ) = DFT (y(T )).

(3.1)
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The optimal state is y(·), and z(·) is the adjoint state. The optimal control is then:

u(s) = −N−1B∗z(s). (3.2)

The system (3.1) expresses the Pontryagin Maximum Principle. The objective is to study the system of

Equations (3.1).

3.2 DECOUPLING

We set

z(t) = Γ(x, t). (3.3)

It is standard to check that z(s) = Γ(y(s), s). So y(s) is the solution of the differential equation in H:






dy

ds
= A(y) − BN−1B∗Γ(y(s), s),

y(t) = x,

(3.4)

and Γ(x, s) is the solution of the nonlinear partial differential equation:






−
∂Γ

∂s
= DxΓ(x)A(x) + (DxA(x))∗Γ(x) − DxΓ(x)BN−1B∗Γ(x, s) + DxF (x),

Γ(x, T ) = DxFT (x).

(3.5)

If A(x) = Ax, F (x) =
1

2
(x, Mx) and FT (x) =

1

2
(x, MT x), then Γ(x, s) = P (s)x, and P (s) is solution of the

Riccati equation: 



−
dP

ds
= P (s)A + A∗P (s) − P (s)BN−1B∗P (s) + M,

P (T ) = MT .

(3.6)

4 A PRIORI ESTIMATES

4.1 FIRST ESTIMATE

We state the first result:

Proposition 2. We assume (2.1), (2.2), (2.5), (2.7), (2.8), (2.9) and

b2

16
< (m − k)(ν − k), 0 < k < min(m, ν), (4.1)
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then we have the a priori estimate:

|Γ(x, t)| ≤ |x|

(
M2

T

νT

+
γ2 + M2

k
(T − t)

)
. (4.2)

Proof. From the system (3.1), we obtain:

d

ds
(y(s), z(s)) = (A(y(s)) − BN−1B∗z(s), z(s)) − ((DA(y(s)))∗z(s) + DF (y(s)), y(s)) .

Integration yields:

(DxFT (y(T )), y(T )) +

∫ T

t
(BN−1B∗z(s), z(s))ds +

∫ T

t
(DxF (y(s)), y(s))ds

= (x, z(t)) +

∫ T

t
(A(y(s)) − DA(y(s))y(s), z(s)) ds.

(4.3)

We note that

|A(x) − DA(x)x| ≤
b

2
|x|; (4.4)

indeed,

A(x) − DA(x)x =

∫ 1

0
(DA(θx) − DA(x))x dθ,

and from the assumption (2.5), we get:

|A(x) − DA(x)x| ≤

∫ 1

0

b|x|2(1 − θ)

1 + |x|
dθ,

which implies (4.4). Therefore, from (4.3), we obtain, using assumptions:

(x, z(t)) ≥ νT |y(T )|2 + m

∫ T

t
|z(s)|2ds + ν

∫ T

t
|y(s)|2ds −

b

2

∫ T

t
|y(s)||z(s)|ds.

Using (4.1), we can state:

(x, z(t)) ≥ νT |y(T )|2 + k

∫ T

t
(|y(s)|2 + z(s)|2)ds. (4.5)

On the other hand, from the second equation (3.1), we write:

z(t) = z(T ) +

∫ T

t
((DA(y(s)))∗z(s) + DF (y(s))) ds,
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hence

(x.z(t)) = (x, DFT (y(T )) +

∫ T

t
(DA(y(s))x, z(s))ds +

∫ T

t
(x, DF (y(s))ds,

(x.z(t)) ≤ |x||z(t)| ≤ |x|(MT |y(T )| +

∫ T

t
γ|z(s)|ds +

∫ T

t
|y(t)|dt)

≤
1

2

(
νT |y(T )|2 + k

∫ T

t
(|y(s)|2 + z(s)|2)ds

)
+

|x|2

2

(
M2

T

νT

+
γ2 + M2

k
(T − t)

)
.

From this relation and (4.5), we get:

νT |y(T )|2 + k

∫ T

t
(|y(s)|2 + z(s)|2)ds ≤ |x|2

(
M2

T

νT

+
γ2 + M2

k
(T − t)

)
.

Therefore,

|x||z(t)| ≤ |x|2
(

M2
T

νT

+
γ2 + M2

k
(T − t)

)
,

and the result follows. We write

αt =
M2

T

νT

+
γ2 + M2

k
(T − t). (4.6)

Note that in the system (3.1), we can write

|z(s)| ≤ αs|y(s)|. (4.7)

4.2 SECOND ESTIMATE

The second estimate concerns the gradient DxΓ(x, t). We have the following result:

Proposition 3. We make the assumptions of Proposition 2 and

ν − bα0 > 0, (4.8)

then we have the a priori estimate:

||DxΓ(x, t)|| ≤
M2

T

νT

+
γ2

m
(T − t) +

∫ T

t

(M + bαs)2

ν − bαs

ds. (4.9)

Proof. We differentiate the system (3.1) with respect to x. We denote

Y(s) = Dxy(s), Z(s) = Dxz(s). (4.10)
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Differentiating (3.1), we can write, by recalling notation (2.4):

d

ds
Y(s)ξ = DxA(y(s))Y(s)ξ − BN−1B∗Z(s)ξ −

d

ds
Z(s)ξ

= (D2
xxA(y(s))Y(s)(ξ), z(s)) + (DA(y(s)))∗Z(s)ξ + D2

xxF (y(s))Y(s)ξ,

(4.11)

Y(t)ξ = ξ, Z(T )ξ = D2
xxFT (y(T ))Y(T )ξ. (4.12)

We compute
d

ds
(Y(s)ξ, Z(s)ξ) and then integrate. We obtain that

(Z(t)ξ, ξ) = (D2
xxFT (y(T ))Y(T )ξ, Y(T )ξ) +

∫ T

t
(BN−1B∗Z(s)ξ, Z(s)ξ)ds

+

∫ T

t
(D2

xxF (y(s))Y(s)ξ, Y(s)ξ)ds +

∫ T

t
(D2

xxA(y(s))Y(s)(ξ)Y(s)ξ, z(s))

≥ νT |Y(T )ξ|2 + m

∫ T

t
|Z(s)ξ|2ds +

∫ T

t
(ν − bαs)|Y(s)ξ|2ds.

(4.13)

Also, from the second line of (4.11),

|Z(t)ξ| ≤ MT |Y(T )ξ| +

∫ T

t
(M + bαs)|Y(s)ξ|ds + γ

∫ T

t
|Z(s)ξ|ds. (4.14)

Combining (4.13) and (4.14) as in Proposition 2, we conclude that

|Z(t)ξ| ≤ |ξ|

(
M2

T

νT

+
γ2

m
(T − t) +

∫ T

t

(M + bαs)2

ν − bαs

ds

)
.

Since Z(t)ξ =DxΓ(x, t), the result (4.9) follows immediately. The proof is complete.

We shall call

βt =
M2

T

νT

+
γ2

m
(T − t) +

∫ T

t

(M + bαs)2

ν − bαs

ds. (4.15)

Since

Γ(x, t) =

∫ 1

0
DxΓ(θx, t)x dθ,

we also have:

|Γ(x, t)| ≤ βt|x|, (4.16)

so in fact, 




|Γ(x, t)| ≤ min(αt, βt)|x|,

||DxΓ(x, t)|| ≤ βt.

(4.17)
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5 LOCAL SOLUTION

5.1 FIXED POINT APPROACH

We want to solve (3.1) by a fixed point approach. Suppose we have a function λ(x, t) with values in H such

that: 



|λ(x, t)| ≤ µt|x|,

||Dxλ(x, t)|| ≤ ρt,

(5.1)

where µt and ρt are bounded functions on [T − h, T ], for some convenient h. These functions will be chosen

conveniently in the sequel, with µt < ρt. We then solve





d

ds
y(s) = A(y(s)) − BN−1B∗λ(y(s), s),

y(t) = x.

(5.2)

This differential equation defines uniquely y(s), thanks to the assumptions (5.1). We then define

Λ(x, t) := DxFT (y(T )) +

∫ T

t
(DA(y(s)))∗λ(y(s), s)ds +

∫ T

t
DxF (y(s))ds. (5.3)

We want to show that µt and ρt can be chosen such that

|Λ(x, t)| ≤ µt|x|, ||DxΛ(x, t)|| ≤ ρt, (5.4)

and that the map λ 7→ Λ has a fixed point. This will be only possible when t remains close to T, namely

T − h < t < T, with h small.

5.2 CHOICE OF FUNCTIONS µt AND ρt

From (5.2), we obtain:

d

ds
|y(s)| ≤

∣∣∣∣
d

ds
y(s)

∣∣∣∣ ≤ (γ + ||BN−1B∗||µs)|y(s)|,

which implies

|y(s)| ≤ |x| exp

(∫ s

t
(γ + ||BN−1B∗||µτ )dτ

)
, (5.5)

and thus from (5.3) it follows that

|Λ(x, t)| ≤ MT |y(T )| +

∫ T

t
(M + γµs)|y(s)|ds.
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Using (5.5), we obtain:

|Λ(x, t)| ≤ |x|

(
MT exp

(∫ T

t
(γ + ||BN−1B∗||µτ )dτ

)
+

∫ T

t
(M + γµs) exp

(∫ s

t
(γ + ||BN−1B∗||µτ )dτ

)
ds

)
.

To obtain the first inequality (5.4), we must choose the function µt such that

µt = MT exp

(∫ T

t
(γ + ||BN−1B∗||µτ )dτ

)
+

∫ T

t
(M + γµs) exp

(∫ s

t
(γ + ||BN−1B∗||µτ )dτ

)
ds. (5.6)

So µt must be solution of the differential equation of Riccati type:





d

dt
µt = −||BN−1B∗||µ2

t − 2γµt − M,

µT = MT .

(5.7)

To proceed, we need to assume that

γ2 < M ||BN−1B∗||, (5.8)

and we define µt bt the formula:

arctan
µt||BN−1B∗|| + γ√
M ||BN−1B∗|| − γ2

= arctan
MT ||BN−1B∗|| + γ√
M ||BN−1B∗|| − γ2

+

(√
M ||BN−1B∗|| − γ2

)
(T − t). (5.9)

For h > 0, define θh with

arctan
θh||BN−1B∗|| + γ√
M ||BN−1B∗|| − γ2

= arctan
MT ||BN−1B∗|| + γ√
M ||BN−1B∗|| − γ2

+

(√
M ||BN−1B∗|| − γ2

)
h. (5.10)

The number h must be small enough to guarantee that

arctan
MT ||BN−1B∗|| + γ√
M ||BN−1B∗|| − γ2

+

(√
M ||BN−1B∗|| − γ2

)
h <

π

2
. (5.11)

Formula (5.9) defines uniquely µt for T − h < t < T. It is decreasing in t, with MT < µt < θh.

Therefore, for T −h < t < T, we have defined by (5.3) a function Λ(x, t) which satisfies the first condition

(5.4), with µt defined by equation (5.9). We turn now to the definition of ρt. Define Y(s) = Dxy(s), see

(5.2). We have: 




d

ds
Y(s) =

(
DA(y(s)) − BN−1B∗Dxλ(y(s), s)

)
Y(s),

Y(t) = I.

(5.12)
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We obtain, by techniques already used:

||Y(s)|| ≤ exp

(∫ s

t
(γ + ||BN−1B∗||ρτ )dτ

)
. (5.13)

We then differentiate Λ(x, t) in x, see (5.3). We get:

DxΛ(x, t) = D2
xxFT (y(T ))Y(T ) +

∫ T

t
(D2

xxA(y(s))Y(s), λ(y(s), s))ds,

+

∫ T

t
(DxA(y(s)))∗Dxλ(y(s), s)Y(s)ds +

∫ T

t
D2

xxF (y(s))Y(s)ds,

and we obtain:

||DxΛ(x, t)|| ≤ MT ||Y(T )|| +

∫ T

t
(M + bµs + γρs)||Y(s)||ds.

Since T − h < t < T, we can majorize, using also (5.13), to obtain:

||DxΛ(x, t)|| ≤ MT exp

(∫ T

t
(γ + ||BN−1B∗||ρs)ds

)
+

∫ T

t
(M+bθh+γρs) exp

(∫ s

t
(γ + ||BN−1B∗||ρτ )dτ

)
ds.

(5.14)

We are thus led to looking for ρt solution of

ρt = MT exp

(∫ T

t
(γ + ||BN−1B∗||ρs)ds

)
+

∫ T

t
(M +bθh +γρs) exp

(∫ s

t
(γ + ||BN−1B∗||ρτ )dτ

)
ds. (5.15)

This equation is similar to the one definning µt, see (5.6), with the change of M into M + bθh. Hence, by

analogy with (5.9), we can assert that:

arctan
ρt||BN−1B∗|| + γ√

(M + bθh)||BN−1B∗|| − γ2
= arctan

MT ||BN−1B∗|| + γ√
(M + bθh)||BN−1B∗|| − γ2

+

(√
(M + bθh)||BN−1B∗|| − γ2

)
(T − t).

(5.16)

In order to get a bounded solution for ρt, we need that the right hand side of (5.16) be smaller than
π

2
. We

need to restrict h more than with (5.11), namely:

arctan
MT ||BN−1B∗|| + γ√
M ||BN−1B∗|| − γ2

+

(√
(M + bθh)||BN−1B∗|| − γ2

)
h <

π

2
. (5.17)

Then the function ρt is well defined on (T − h, T ], by formula (5.16) and the function Λ(x, t) defined by

(5.3), for t ∈ (T − h, T ] satisfies (5.4) if λ(x, t) satisfies (5.1). We also claim that

ρt > µt. (5.18)
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Indeed, ρt satisfies the Riccati equation:






d

dt
ρt = −||BN−1B∗||ρ2

t − 2γρt − (M + bθh),

ρT = MT ,

(5.19)

and comparing (5.7) and (5.19), it is standard to show the property (5.18).

5.3 CONTRACTION MAPPING

We define the space of functions (x, t) ∈ H × (T −h, T ) 7→ λ(x, t) ∈ H × (T −h, T ), equipped with the norm:

||λ||h = sup
x∈H,t∈(T −h,T )

|λ(x, t)|

|x|
. (5.20)

This space is a Banach space, denoted by Bh·. We next consider the convex closed subset of Bh· of functions

such that:

|λ(x, t)| ≤ µt|x|, ||Dxλ(x, t)|| ≤ ρt, ∀t ∈ (T − h, T ], (5.21)

where µt and ρt are defined by (5.9) and (5.16), respectively. The subset (5.21) is denoted by Ch. The map

λ 7→ Λ, defined by (5.2) and (5.3), is defined from Ch to Ch. We want to show that it leads to a contraction.

Let λ1(x, t), λ2(x, t) in Ch and the corresponding functions Λ1(x, t), Λ2(x, t), which also belong to Ch.

Let y1(s), y2(s) be the solutions of (5.2) corresponding to λ1, λ2. We call ỹ(s) = y1(s) − y2(s). We have:






d

ds
ỹ(s) = A(y1(s)) − A(y2(s)) − BN−1B∗(λ1(y1(s)) − λ2(y2(s))),

ỹ(t) = 0,

hence

d

ds
|ỹ(s)| ≤ γ|ỹ(s)| + ||BN−1B∗|| |λ1(y1(s)) − λ2(y2(s))|.

Next,

|λ1(y1(s)) − λ2(y2(s))| ≤ |λ1(y1(s)) − λ1(y2(s))| + |λ1(y2(s)) − λ2(y2(s))|

≤ ρs|ỹ(s)|| + ||λ1 − λ2||h|x| exp

(∫ s

t
(γ + ||BN−1B∗||µτ )dτ

)
.

Therefore,

d

ds
|ỹ(s)| ≤ (γ + ||BN−1B∗||ρs)|ỹ(s)| + ||BN−1B∗|| |x| ||λ1 − λ2||h exp

(∫ s

t
(γ + ||BN−1B∗||µτ )dτ

)
.
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We obtain that

|ỹ(s)| exp

(
−

∫ s

t
(γ + ||BN−1B∗||ρτ )dτ

)
≤ ||BN−1B∗|| |x| ||λ1−λ2||h

∫ s

t
exp

(
−||BN−1B∗||

∫ τ

t
(ρθ − µθ)dθ

)
dτ,

which implies:

|ỹ(s)| ≤ h||BN−1B∗|| |x| ||λ1 − λ2||h exp

(∫ s

t
(γ + ||BN−1B∗||ρτ )dτ

)
. (5.22)

We next have from the definition of the map Λ(x, t) that:

Λ1(x, t) − Λ2(x, t) = DFT (y1(T )) − DFT (y2(T )) +

∫ T

t

(
DA∗(y1(s))λ1(y1(s)) − DA∗(y2(s))λ2(y2(s))

)
ds

+

∫ T

t
(DF (y1(s)) − DF (y2(s)))ds.

(5.23)

We have:

|DA∗(y1(s))λ1(y1(s))−DA∗(y2(s))λ2(y2(s))| ≤ (bθh+γρs)|ỹ(s)|+γ|x| ||λ1−λ2||h exp

(∫ s

t
(γ + ||BN−1B∗||µτ )dτ

)
.

So, from (5.23), we obtain:

|Λ1(x, t) − Λ2(x, t)| ≤ MT |ỹ(T )| +

∫ T

t
(M + bθh + γρs)|ỹ(s)|ds

+ γ|x| ||λ1 − λ2||h

∫ T

t
exp

(∫ s

t
(γ + ||BN−1B∗||µτ )dτ

)
ds,

(5.24)

and from (5.22):

|Λ1(x, t) − Λ2(x, t)| ≤ |x| |λ1 − λ2||hh ×

[
||BN−1B∗||

(
MT exp

(∫ T

t
(γ + ||BN−1B∗||ρτ )dτ

)

+

∫ T

t
(M + bθh + γρs)

(∫ s

t
(γ + ||BN−1B∗||ρτ )dτ

)
ds

)]

+ γ|x| |λ1 − λ2||h

∫ T

t
exp

(∫ s

t
(γ + ||BN−1B∗||µτ )dτ

)
ds,

then from the definition of ρt (see (5.15)), we obtain:

|Λ1(x, t) − Λ2(x, t)| ≤ |x| |λ1 − λ2||hh

(
ρt||BN−1B∗|| + γ exp

(∫ T

T −h
(γ + ||BN−1B∗||µτ )dτ

))
. (5.25)
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Similarly to the definition of θh (see (5.10)), we define the quantity σh by the formula:

arctan
σh||BN−1B∗|| + γ√

(M + bθh)||BN−1B∗|| − γ2
= arctan

MT ||BN−1B∗|| + γ√
(M + bθh)||BN−1B∗|| − γ2

+

(√
(M + bθh)||BN−1B∗|| − γ2

)
h.

(5.26)

From (5.16), we see that MT < ρt < σh. Therefore from (5.25),

||Λ1 − Λ2||h ≤ |λ1 − λ2||h h
(

σh||BN−1B∗|| + γ exp
(
h(γ + ||BN−1B∗||θh)

))
. (5.27)

Using the fact that θh → MT as h → 0, equation (5.26) shows that σh → MT as h → 0. We deduce that:

h
(
σh||BN−1B∗|| + γ exp

(
h(γ + ||BN−1B∗||θh)

))
→ 0, as h → 0. (5.28)

We can restrict h such that

h
(
σh||BN−1B∗|| + γ exp

(
h(γ + ||BN−1B∗||θh)

))
< 1, (5.29)

and thus for h sufficiently small, the map λ 7→ Λ is paradoxical and leads to a contradiction. We can

summarize the results in the following theorem:

Theorem 4. We assume (5.8). We choose h small enough to satisfy conditions (5.11), (5.17), (5.29). For

T − h < t < T , there exists one and only one solution of the system of forward-backward equations (3.1).

We have also one and only one solution of equation (3.5) on the same interval.

6 GLOBAL SOLUTION

6.1 STATEMENT OF RESULTS

We have proven in Theorem 4 the existence and uniqueness of a local solution of the system (3.1). We want

to state that this solution is global, under the assumptions of Proposition 3.

Theorem 5. We make the assumptions of Proposition 3 and (5.8). The local solution defined in Theorem

4 can be extented. Thus there exists one and only one solution of the system (3.1) on any finite interval

[0, T ], and there exists one and only one solution of equation (3.5) on any finite interval [0, T ].

Proof. Defining by Γ(x, t) the fixed point obtained in Theorem 4, it is the unique solution of the paraboloic
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equation:






−
∂Γ

∂t
= DxΓ(x)A(x) + (DxA(x))∗Γ(x) − DxΓ(x)BN−1B∗Γ(x, s) + DxF (x), T − h < t < T,

Γ(x, T ) = DxFT (x),

(6.1)

with h restricted as stated in Theorem 4. We also have the estimates:





|Γ(x, t)| ≤ min(αt, βt)|x|,

||DxΓ(x, t)|| ≤ βt,

(6.2)

with 




αt =
M2

T

νT

+
γ2 + M2

k
(T − t),

βt =
M2

T

νT

+
γ2

m
(T − t) +

∫ T

t

(M + bαs)2

ν − bαs

ds.

(6.3)

These estimates follow from the a priori estimates stated in Proposition 2 and 3. They do not depend on

h. Now we want to extend (6.1) for t < T − h. To avoid confusion, we define

UT −h(x) := Γ(x, T − h). (6.4)

We set MT −h = β0. We can then state:






|UT −h(x)| ≤ MT −h|x|,

||DxUT −h(x)|| ≤ MT −h,

(6.5)

and we consider the parabolic equation:






−
∂Γ

∂t
= DxΓ(x)A(x) + (DxA(x))∗Γ(x) − DxΓ(x)BN−1B∗Γ(x, s) + DxF (x), t < T − h,

Γ(x, T − h) = UT −h(x).

(6.6)

We associate to this equation the system:






dy

ds
= A(y) − BN−1B∗z(s), t < s < T − h,

−
dz

ds
= (DA(y(s)))∗z(s) + DF (y(s)),

y(t) = x, z(T − h) = UT −h(y(T − h)).

(6.7)

Proceeding like in Theorem 4, we can solve this system on an interval [T − h − l, T − h], for a sufficiently

small l 6= h. The difference is due to the fact that MT −h 6= MT . So in (6.1), we can replace T −h by T −h− l.
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This time the estimates on Γ(x, T − h − l) and DxΓ(x, T − h − l) are identical to those of Γ(x, T − h) and

DxΓ(x, T − h), thanks to the a priori estimates. So the intervals we can extend further will have the same

length. Clearly, this implies that we can extend (6.1) up to t = 0. So, we obtain the global existence and

uniqueness of equation (3.5) on [0, T ]. The proof is complete.

6.2 OPTIMAL CONTROL

In Theorem 5, we have obtained the existence and uniqueness of the solution of the pair (y(s), z(s)) of the

system (3.1), for any t ∈ [0, T ]. We want now to check that the control u(s) defined by (3.2) is solution of

the control problem (2.10), (2.11), and that the optimal control is unique.

Theorem 6. Under the assumptions of Theorem 5, the control u(·) defined by (3.2) is the unique optimal

control for the problem (2.10), (2.11).

Proof. Let v(·) be another control. We shall prove that

J(u(·) + v(·)) ≥ J(u(·)), (6.8)

which will prove the optimality of u(·). We define by yv(·) the state corresponding to the control u(·) + v(·).

It is the solution of 



d

ds
yv(s) = A(yv(s)) + B(u(s) + v(s)),

yv(t) = x,

(6.9)

and we have:

J(u(·) + v(·)) =

∫ T

t
F (yv(s))ds + FT (yv(T )) +

1

2

∫ T

t
(u(s) + v(s), N(u(s) + v(s)))ds,

and

J(u(·) + v(·)) − J(u(·))

=

∫ T

t
(F (yv(s)) − F (y(s)))ds + FT (yv(T )) − FT (y(T )) +

1

2

∫ T

t
(v(s), Nv(s))ds +

∫ T

t
(Nu(s), v(s))ds.

We denote ỹv(s) := yv(s) − y(s). It satisfies:





d

ds
ỹv(s) = A(yv(s)) − A(y(s)) + Bv(s),

ỹv(t) = 0.

(6.10)
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Then,

J(u(·) + v(·)) − J(u(·)) =

∫ T

t
(DxF (y(s)), ỹv(s))ds +

∫ T

t

∫ 1

0

∫ 1

0
θ
(
D2

xxF (y(s) + λθỹv(s))ỹv(s), ỹv(s)
)

dsdλdθ

+ (DxFT (y(T )), ỹv(T )) +

∫ 1

0

∫ 1

0
θ
(
D2

xxFT (y(T ) + λθỹv(T ))ỹv(T ), ỹv(T )
)

dλdθ

+
1

2

∫ T

t
(v(s), Nv(s))ds −

∫ T

t
(z(s), Bv(s))ds.

From the assumptions (2.7), we can write:

J(u(·) + v(·)) − J(u(·)) ≥

∫ T

t

(
−

d

ds
z(s) − DA∗(y(s))z(s), ỹv(s)

)
ds +

ν

2

∫ T

t
|ỹv(s)|2ds + (z(T ), ỹv(T ))

+
νT

2
|ỹv(T )|2 +

1

2

∫ T

t
(v(s), Nv(s))ds −

∫ T

t
(z(s),

d

ds
ỹv(s) − (A(yv(s)) − A(y(s))))ds,

which reduces to:

J(u(·) + v(·)) − J(u(·)) ≥
ν

2

∫ T

t
|ỹv(s)|2ds +

νT

2
|ỹv(T )|2 +

1

2

∫ T

t
(v(s), Nv(s))ds

+

∫ T

t
(z(s), A(yv(s)) − A(y(s)) − DA(y(s))ỹv(s)) ds.

(6.11)

Note that

|(z(s), A(yv(s)) − A(y(s)) − DA(y(s))ỹv(s))| ≤
b|z(s)||ỹv(s)|2

2(1 + |y(s)|)
≤

bαs

2
|ỹv(s)|2.

Finally, we can state that

J(u(·) + v(·)) − J(u(·)) ≥
1

2

∫ T

t
(ν − bαs)|ỹv(s)|2ds +

νT

2
|ỹv(T )|2

1

2

∫ T

t
(v(s), Nv(s))ds. (6.12)

Thanks to the assumption (4.8), the right hand side of (6.12) is positive, which proves (6.8) and completes

the proof of the result.

6.3 BELLMAN EQUATION

We have proven, under the assumptions of Theorem 5, that the control problem (2.10), (2.11) has a unique

solution u(·). Defining the value function

V (x, t) := inf
v(·)

Jxt(v(·)) = Jxt(u(·)), (6.13)
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we can state that:

V (x, t) =

∫ T

t
F (y(s))ds + FT (y(T )) +

1

2

∫ T

t
(BN−1B∗Γ(y(s), s), Γ(y(s), s))ds, (6.14)

with 



d

ds
y(s) = A(y(s)) − BN−1B∗Γ(y(s), s),

y(t) = x.

(6.15)

We first have:

Proposition 7. We have the following property:

Γ(x, t) = DxV (x, t). (6.16)

Proof. Since the minimum of Jxt(v(·)) is attained in the unique value u(·), we can rely on the envelope

theorem to claim that:

(DxV (x, t), ξ) =

∫ T

t
(DxF (y(s)), X (s)ξ)ds + (DxFT (y(T )), X (T )ξ), (6.17)

in which X (s) is the solution of 



d

ds
X (s) = DxA(y(s))X (s),

X (t) = I.

Recalling the equation (3.1) for z(s) and performing integration by parts in (6.17), the result (DxV (x, t), ξ) =

(Γ(x, t), ξ) is easily obtained. This proves the result (6.16).

We can then obtain the Bellman equation for the value function V (x, t).

Theorem 8. We make the assumptions of Theorem 5. The function V (x, t) is the unique solution of






−
∂V

∂t
− (DxV, A(x)) +

1

2
(DxV, BN−1B∗DxV ) = F (x),

V (x, T ) = FT (x).

(6.18)

Proof. We know that V (x, t) is Gâteaux differentiable in x, with the derivative Γ(x, t). From (3.1), Γ(x, t)

is continuous in t. From equation (6.14), we can write:

V (x, t)−V (x, t+ǫ) =

∫ t+ǫ

t
F (y(s))ds+

1

2

∫ t+ǫ

t
(BN−1B∗Γ(y(s), s), Γ(y(s), s))ds+V (y(ǫ), t+ǫ)−V (x, t+ǫ).

(6.19)
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We then have:

V (y(ǫ), t + ǫ) − V (x, t + ǫ)

= V

(
x +

∫
t+ǫ

t

A(y(s))ds −

∫
t+ǫ

t

BN−1B∗Γ(y(s), s)ds, t + ǫ

)
− V (x, t + ǫ)

=

(
Γ(x, t + ǫ),

∫ t+ǫ

t

A(y(s))ds −

∫ t+ǫ

t

BN−1B∗Γ(y(s), s)ds

)

+

∫ 1

0

(
Γ(x + θ

∫ t+ǫ

t

(A(y(s)) − BN−1B∗Γ(y(s)))ds, t + ǫ) − Γ(x, t + ǫ),

∫ t+ǫ

t

(A(y(s)) − BN−1B∗Γ(y(s)))ds

)
dθ.

(6.20)

Using the fact that Γ(x, t) is uniformly Lipschitz in x and continuous in t, we obtain easily from (6.20) that:

V (y(ǫ), t + ǫ) − V (x, t + ǫ)

ǫ
→ (Γ(x, t), A(x) − BN−1B∗Γ(x, t)).

Then, dividing (6.19) by ǫ and letting ǫ tend to 0, we obtain the PDE (6.18), recalling (6.16). The intial

condition in (6.18) is trivial. If we take the gradient in x of (6.18), we recognize equation (3.5). Since this

equation has a unique solution, the solution of (6.18) is also unique (easy checking). This completes the

proof.

7 APPLICATION TO MEAN FIELD TYPE CONTROL THEORY

7.1 WASSERSTEIN SPACE

Denote by P2(Rn) the Wasserstein space of Borel probability measures m on R
n such that

∫
Rn |x|2dm(x) <

∞, with the metric

W2(µ, ν) =

√√√√inf

{∫
|x − y|2dπ(x, y) : π ∈ Π(µ, ν)

}
, (7.1)

where Π(µ, ν) is the space of all Borel probability measures on R
n × R

n whose first and second marginals

are µ and ν respectively.

7.2 FUNCTIONAL DERIVATIVES

Let F be a functional on P2(Rn). We recall the idea of the functional derivative here.

Definition 9. F is said to have a functional derivative if there exists a continous function
dF

dm
: P2(Rn) ×

R
n → R, such that for some c : P2(Rn) → [0, ∞) which is bounded on bounded subsets, we have

∣∣∣∣∣
dF

dm
(m, x)

∣∣∣∣∣ ≤ c(m)(1 + |x|2) (7.2)
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and

F (m′) − F (m) =

∫ 1

0

∫

Rn

dF

dm
(m + θ(m′ − m))(x)d(m′ − m)(x)dθ. (7.3)

We require also
∫
Rn

dF
dm

(m, x)dm(x) = 0 as it is unique up to a constant by definition.

Definition 10. F is said to have a second order functional derivative if there exists a continuous function

d2F

dm2
: P2 ×R

n ×R
n → R such that, for some c : P2(Rn) → [0, ∞) which is bounded on bounded subsets, we

have

∣∣∣∣∣
d2F

dm2
(m, x, x̃)

∣∣∣∣∣ ≤ c(m)(1 + |x|2 + |x̃|2) (7.4)

and

F (m′) − F (m) =

∫

Rn

dF

dm
(m)(x)d(m′ − m)(x) (7.5)

+

∫ 1

0

∫ 1

0
θ

d2F

dm2
(m + λθ(m′ − m))(x, x̃)d(m′ − m)(x)d(m′ − m)(x̃)dλdθ.

Again we require also
∫

d2F
dm

(m, x, x̃)dm(x̃) = 0 ∀x and
∫

d2F
dm

(m, x, x̃)dm(x) = 0 ∀x̃ as it is unique up to a

constant. Note also that

d2F

dm2
(m)(x, x̃) =

d2F

dm2
(m)(x̃, x). (7.6)

We write D dF
dm

(m)(x) to mean differentiating with respect to x, and D1
d2F
dm2 (m)(x1, x2) and D2

d2F
dm2 (m)(x1, x2)

to denote partial differentiation with respect to x1 and x2, respectively.

7.3 MEAN FIELD TYPE CONTROL PROBLEMS

We introduce the setting of a mean-field type control problem. Consider real-valued functions f(x, m) and

h(x, m) defined on R
n × P2(Rn). We define

F (m) :=

∫

Rn

f(x, m)dm(x),

FT (m) :=

∫

Rn

h(x, m)dm(x).

Fix a m ∈ P2(Rn). Let A, B : Rn → R
n be matrices, and N : Rn → R

n be a self-adjoint invertible matrix.

We make the following assumptions on f , h, B, N , A. We assume that
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(A1) ∀x ∈ R
n,

BN−1B∗x · x ≥ m|x|2, m > 0. (7.7)

(A2) f is regular enough such that the following is justifiable. ∀y ∈ R
n,

ν|y|2 ≤
∂2f

∂x2
(x, m)y · y ≤ M |y|2, (7.8)

ν|y|2 ≤ D2
ξ

∂f

∂m
(x, m)(ξ)y · y ≤ M |y|2, (7.9)

Dξ

∂2f

∂x∂m
(x, m)(ξ) = 0, (7.10)

Dξ1
Dξ2

∂2f

∂m2
(x, m)(ξ1, ξ2) = 0. (7.11)

(A3) h is regular enough such that the following is justifiable. ∀y ∈ R
n,

νT |y|2 ≤
∂2h

∂x2
(x, m)y · y ≤ MT |y|2, (7.12)

νT |y|2 ≤ D2
ξ

∂h

∂m
(x, m)(ξ)y · y ≤ MT |y|2, (7.13)

Dξ

∂2h

∂x∂m
(x, m)(ξ) = 0, (7.14)

Dξ1
Dξ2

∂2h

∂m2
(x, m)(ξ1, ξ2) = 0. (7.15)

(A4) For the matrices, we have

|A| < M |BN−1B∗|, with | · | the matrix 2-norm. (7.16)

The set of our feasible control is L2(t, T ; L2
m(Rn;Rn)), i.e., v·,m,t(·) ∈ L2(t, T ; L2

m(Rn;Rn)) if and only if

∫ T

t

∫

Rn

|vx,m,t(s)|2dm(x)ds < ∞.

To each v·,m,t(·) ∈ L2(t, T ; L2
m(Rn;Rn)) and x ∈ R

n we associate the state

xx,m,t(s; v) := x +

∫ s

t

[
Axx,m,t(τ ; v) + Bvx,m,t(τ)

]
dτ. (7.17)
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Note that x·,m,t(·) ∈ L2(t, T ; L2
m(Rn;Rn)). We define the objective functional on L2(t, T ; L2

m(Rn;Rn)) by

Jm,t(v) :=

∫ T

t
F (x·,m,t(s; v)#m)ds + FT (x·,m,T (s; v)#m) (7.18)

+
1

2

∫ T

t

∫

Rn

v∗
x,m,t(τ)Nvx,m,t(τ)dm(x)dτ.

Thus the value function is

V (m, t) := inf
v∈L2(t,T ;L2

m(Rn;Rn))
Jm,t(v). (7.19)

7.4 THE HILBERT SPACE Hm AND THE PUSH-FORWARD MAP

We proceed as our previous work [7].

7.4.1 SETTINGS

Fix m ∈ P2(Rn), we define Hm := L2
m(Rn;Rn), the set of all measurable vector field Φ such that

∫
Rn |Φ(x)|2dm(x) <

∞. We equip Hm with the inner product

〈X, Y 〉Hm
:=

∫

Rn

X(x) · Y (x)dm(x). (7.20)

Write the corresponding norm as ‖X‖Hm
=
√

〈X, X〉Hm
.

Definition 11. For m ∈ P2, X ∈ Hm, define X ⊗ m ∈ P2 as follow: for all φ : R
n → R such that

x 7→
|φ(x)|

1 + |x|2
is bounded, define

∫
φ(x)d(X ⊗ m)(x) :=

∫
φ(X(x))dm(x). (7.21)

Remark 12. This actually is the push-forward map as we are working on the deterministic case. We write

as X ⊗ m to align with our treatment of the stochastic case in [7].

We recall several useful properties from [7].

Proposition 13. We have the following properties:

1. Let X, Y ∈ Hm, and suppose X ◦ Y ∈ Hm. Then (X ◦ Y ) ⊗ m = X ⊗ (Y ⊗ m).

2. If X(x) = x is the identity map, then X ⊗ m = m.

3. Let X ∈ Hm, denote the space L2
X(t, T ; Hm) to be the set of all processes in L2(t, T ; Hm) that is

adapted to σ(X). There exists a natural linear isometry between L2
X(t, T ; Hm) and L2(t, T ; HX⊗m).
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Proof. Please refer to [7] Section 2 and Section 3.

7.4.2 EXTENDING THE DOMAIN OF FUNCTIONS TO Hm

The proofs in this section is standard, we therefore omit unless specified. Readers may refer to [7] Section

2. Let F : P2(Rn) → R, we extend F to be a function on Hm by X 7→ F (X ⊗ m), ∀X ∈ Hm. When the

domain is Hm, we can talk about Gâteaux derivative. We actually have the following relation between the

Gâteaux derivative on Hm and its functional derivative:

Proposition 14. Let F : P2(Rn) 7→ R have a functional derivative dF
dm

, and x 7→ dF
dm

(m, x) is continuously

differentiable in R
n. Assume that D dF

dm
(m, x) is continuous in both m and x, and

∣∣∣∣∣D
dF

dm
(m)(x)

∣∣∣∣∣ ≤ c(m)(1 + |x|) (7.22)

for some constant c(m) depending only on m. Denote the Gâteaux derivative as DXF (X ⊗ m), we have

DXF (X ⊗ m) = D
dF

dm
(X ⊗ m)(X(·)). (7.23)

We now look at the second order Gâteaux derivative, denoted as D2
XF (X ⊗ m), note that D2

XF (X ⊗ m) is

a bounded linear operator from Hm to Hm.

Proposition 15. In addition to the assumptions in Proposition 14, let F has a second order functional

derivative d2F
dm2 (m)(x1, x2), assume also D2 dF

dm
(m)(x), D1

d2F
dm2 (m)(x1, x2), D2

d2F
dm2 (m)(x1, x2) and

D1D2
d2F
dm2 (m)(x1, x2) exist and are continuous, such that

∣∣∣∣D
2 dF

dm
(m)(x)

∣∣∣∣ ≤ d(m), (7.24)
∣∣∣∣∣D1D2

d2F

dm2
(m)(x1, x2)

∣∣∣∣∣ ≤ d′(m), (7.25)

where d, d′ are constants depending on m only, and | · | is the matrix 2-norm. Then we have:

D2
XF (X ⊗ m)Y (x) = D2 dF

dm
(X ⊗ m)(X(x))Y (x) +

∫

Rn

D1D2
d2F

dm2
(X ⊗ m)(X(x), X(x′))Y (x′)dm(x′).

(7.26)

Besides, we can view F (X ⊗ m) as m 7→ F (X ⊗ m), in this case, we can talk about differentiation with

respect to m, denote it as
∂F

∂m
. The following relation between

∂F

∂m
and

dF

dm
holds.
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Proposition 16. Let F : P2(Rn) 7→ R
n have a functional derivative and fix X ∈ Hm. We have

∂F

∂m
(X ⊗ m)(x) =

dF

dm
(X ⊗ m)(X(x)). (7.27)

Now let A : Rn → R
n, we extend it as ∀X ∈ Hm, X 7→ A(X) ∈ Hm,

A(X)(x) = A(X(x)). (7.28)

It is trivial to see that if A−1 exists in R
n, then A−1(X)(x) = A−1(X(x)) is the inverse of A in Hm. So is

the transpose of A, if A is a matrix. Again, we can talk about its Gâteaux derivative.

Proposition 17. Let A to be continously differentiable. Denote its derivative to be dA. Assume that there

exists k such that |dA(x)| ≤ k for all x ∈ R
n, where | · | is the matrix 2-norm. Then for all X, Y ∈ Hm, we

have

DXA(X)Y (x) = dA(X(x))Y (x). (7.29)

Proof. Let X, Y, H ∈ Hm, then

1

ǫ

〈
A(X + ǫY ) − A(X), H

〉

Hm

=
1

ǫ

∫

Rn

[
A(X(ξ) + ǫY (ξ)) − A(X(ξ))

]
· H(ξ)dm(ξ)

=

∫

Rn

∫ 1

0
dA(X(ξ) + θǫY (ξ))Y (ξ) · H(ξ)dθdm(ξ)

→

∫

Rn

dA(X(ξ))Y (ξ) · H(ξ)dm(ξ) =
〈
dA(X(·))Y (·), H

〉

Hm

.

Proposition 18. Let A be twice continuously differentiable. Denote its second derivative to be d2A. Note

that d2A(x)(a, b) ∈ R
n, and d2A(x)(a, b) = d2A(x)(b, a). Assume that there exists k(x) such that ∀a, b ∈ R

n,

|d2A(x)(a, b)| ≤ k(x), then we have

d2A(X)(Y, W )(x) = d2A(X(x))(Y (x), W (x)). (7.30)

25



Proof. Let X, Y, W, H ∈ Hm, then

1

ǫ

〈
DXA(X + W )Y − DXA(X)Y, H

〉

Hm

=
1

ǫ

∫

Rn

[
dA(X(ξ) + ǫW (ξ))Y (ξ) − dA(X(ξ))Y (ξ)

]
· H(ξ)dm(ξ)

=

∫

Rn

∫ 1

0
d2A(X(ξ) + θǫW (ξ))(Y (ξ), W (ξ)) · H(ξ)dθdm(ξ)

→

∫

Rn

d2A(X(ξ))(Y (ξ), W (ξ)) · H(ξ)dm(ξ).

7.5 CONTROL PROBLEM IN THE HILBERT SPACE Hm

Recall the definitions of A, B, N , F , FT in Section 7.3. Extend the functions as in Section 7.4.2. We assume

(A1), (A2), (A3) and (A4). It is not hard to derive (2.9), (2.7) and (5.8) from the assumptions. Note that

in our case, b = 0.

Now fix X ∈ Hm as our initial data. For given vXt ∈ L2
X(t, T ; Hm) (subscript X and t to address the

measurability and starting time), consider the dynamics:

X(s) = X +

∫ s

t

[
AX(τ) + BvXt(τ)

]
dτ. (7.31)

Denote the process as XXt(s) = XXt(s; vXt). Define the cost functional:

JXt(vXt) :=

∫ T

t
F (XXt(s) ⊗ m)ds + FT (XXt(T ) ⊗ m) +

1

2

∫ T

t
〈vXt(τ), NvXt(τ)〉Hm

dτ, (7.32)

and the value function is

V (X, t) := inf
vXt∈L2

X
(t,T ;Hm)

JXt(vXt). (7.33)

This is in the form of our concerned model in Section 2, with the Hilbert space being Hm.

While (7.31) is infinite dimensional, there is a finite dimensional view point of it. For vXt ∈ L2
X(t, T ; Hm),

by Proposition 13, let ṽ ∈ L2(t, T ; HX⊗m) be the representative of vXt. Consider

x(s) = x +

∫ s

t

[
Ax(τ) + Bṽ(τ, x)

]
dτ. (7.34)
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Denote the solution to be x(s; x, ṽ(·, x)). Then we have

XXt(s; vXt)(x) = x(s; X(x), ṽ(·, X(x))).

We introduce the notation Xxt(·) with a lowercase letter for x to mean x(·; x, ṽ(·, x)), and v·t(s) to mean

ṽ(s, ·). From above we can conclude that the law of XXt(s; vXt(·)) is x(s; ·, ṽ(·, ·)) ⊗ (X ⊗ m). Hence the

cost functional (7.32) can be written as

JXt(vXt) =

∫ T

t
F (XXt(s) ⊗ m)ds + FT (XXt(T ) ⊗ m) +

1

2

∫ T

t
〈vXt(τ), NvXt(τ)〉Hm

dτ (7.35)

=

∫ T

t
F (x(s; ·, ṽ(·, ·)) ⊗ (X ⊗ m))ds + FT (x(T ; ·, ṽ(·, ·)) ⊗ (X ⊗ m))

+
1

2

∫ T

t
〈vXt(τ), NvXt(τ)〉Hm

dτ

=:JX⊗m,t,

that means J depends on X only through X ⊗ m. Respectively,

V (X, t) = inf
vXt∈L2

X
(t,T ;Hm)

JXt(vXt) = inf
vXt∈L2

X
(t,T ;Hm)

JX⊗m,t(vXt) =: V (X ⊗ m, t). (7.36)

7.6 NECESSARY AND SUFFICIENT CONDITION FOR OPTIMALITY

Assume (A1), (A2), (A3) and (A4), we conclude from Theorem 5 that there exists unique optimal control

v̂Xt(s) = −N−1B∗ZXt(s), where ZXt(s) together with YXt(s) are the unique solution of the system

YXt(s) = X +

∫ s

t

[
AYXt(τ) − BN−1B∗ZXt(τ)

]
dτ, (7.37)

ZXt(s) =

∫ T

s

[
(AYXt(τ))∗ZXt(τ) + DXF (YXt(τ) ⊗ m)

]
+ DXFT (YXt(T ) ⊗ m). (7.38)

Again, because L2
X(t, T ; Hm) is isometric to L2(t, T ; HX⊗m), there exists Yξt(s), Zξt(s) such that YXt =

Yξt|ξ=X and ZXt = Zξt|ξ=X , (Yξt, Zξt) solving

Yξt(s) = ξ +

∫ s

t

[
AYξt(τ) − BN−1B∗Zξt(τ)

]
dτ, (7.39)

Zξt(s) =

∫ T

s

[
(AYξt(τ))∗Zξt(τ) + D

dF

dm
(Y·t(τ) ⊗ (X ⊗ m))(Yξt(τ))

]
(7.40)

+ D
dFT

dm
(Y·t(T ) ⊗ (X ⊗ m))(Yξt(T )).
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As (Yξt, Zξt) depends on m through X ⊗ m, we write (Yξ,X⊗m,t, Zξ,X⊗m,t). We can write the value function

as

V (X, t) =

∫ T

t
F (YXt(s) ⊗ m)ds + FT (YXt(T ) ⊗ m) +

1

2

∫ T

t
〈N−1B∗ZXt(τ), B∗ZXt(τ)〉Hm

dτ (7.41)

=

∫ T

t
F (Y·,X⊗m,t(s) ⊗ (X ⊗ m))ds + FT (Y·,X⊗m,t(T ) ⊗ (X ⊗ m))

+
1

2

∫ T

t

∫

Rn

N−1B∗Zξ,X⊗m,t(τ) · B∗Zξ,X⊗m,t(τ)d(X ⊗ m)(ξ)dτ

= V (X ⊗ m, t).

In particular, if we choose X to be the identity function, i.e., X(x) = x, recall that X ⊗ m = m, there exists

(Yx,m,t, Zx,m,t) solving

Yx,m,t(s) = x +

∫ s

t

[
AYx,m,t(τ) − BN−1B∗Zx,m,t(τ)

]
dτ, (7.42)

Zx,m,t(s) =

∫ T

s

[
(AYx,m,t(τ))∗Zx,m,t(τ) + D

dF

dm
(Y·,m,t(τ) ⊗ m)(Yx,m,t(τ))

]
(7.43)

+ D
dFT

dm
(Y·,m,t(T ) ⊗ (X ⊗ m))(Yx,m,t(T )),

which is the system of optimality condition for our mean field type control problem in Section 7.3. For the

value function, we have

V (m, t) =

∫ T

t
F (Y·,m,t(s) ⊗ m)ds + FT (Y·,m,t(T ) ⊗ m) (7.44)

+
1

2

∫ T

t

∫

Rn

N−1B∗Zx,m,t(τ) · B∗Zx,m,t(τ)dm(x)dτ.

7.7 PROPERTIES OF THE VALUE FUNCTION

We give the functional derivative of the value function V , and the relation between the solution of the

FBSDE and V . As the proofs are standard, we omit here and readers may refer to Section 4 of [7].

Proposition 19. Assume (A1), (A2), (A3), (A4). We have the following properties for the value function:

1. By Proposition 7, we have

DXV (X ⊗ m, t) = ZXt(t). (7.45)
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2. We have

dV

dm
(m, t)(x) =

∫ T

t

dF

dm
(Y·,m,t(s) ⊗ m)(Yx,m,s(s))ds +

dFT

dm
(Y·,m,t(T ) ⊗ m)(Yx,m,s(T )) (7.46)

+
1

2

∫ T

t
N−1B∗Zx,m,t(τ) · B∗Zx,m,t(τ)dτ.

3. We have

D
d

dm
V (m, t)(x) = Zx,m,t(t), (7.47)

DXV (X ⊗ m, t) = D
d

dm
V (X ⊗ m, t)(X) (7.48)

4. Also, the feedback nature of Z in Y , i.e., for any x ∈ R
n, ∀s ∈ [t, T ], we have

Zx,m,t(s) = D
d

dm
V (Y·,m,t ⊗ m, s)(Yx,m,t(s)), (7.49)

and for any X ∈ Hm, ∀s ∈ [t, T ],

ZXt(s) = DXV (YXt(s) ⊗ m, s). (7.50)

7.8 BELLMAN EQUATION

Assume (A1), (A2), (A3), (A4). By Theorem 8, we deduce that for any T > 0, V (X ⊗ m, t) is the unique

solution to the following Bellman equation:






−
∂V

∂t
(X ⊗ m, t) −

〈
DXV (X ⊗ m, t), AX

〉

Hm

+
1

2

〈
DXV (X ⊗ m, t), BN−1B∗DXV (X ⊗ m, t)

〉

Hm

= F (X ⊗ m),

V (X ⊗ m) = FT (X ⊗ m)

(7.51)

As before, let X be the identity function, together with Proposition 19, we conclude that for any T > 0,

V (m, t) solves the following PDE on the space of probability measures:






−
∂V

∂t
(m, t) −

∫

Rn

D
dV

dm
(m, t)(x) · Axdm(x) +

1

2

∫

Rn

D
dV

dm
(m, t)(x) · BN−1B∗D

dV

dm
(m, t)(x)dm(x) = F (m),

V (m, T ) = FT (m).

(7.52)
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