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Gravitational wave propagation encounters a spacetime friction from a running Planck mass in
modified gravity, causing the luminosity distance to deviate from that in general relativity (or given
by the photon luminosity distance to the source), thus making it a valuable cosmological probe. We
present the exact expression for the cosmological distance deviation in Horndeski gravity including
theories that have a G5 term yet propagate at the speed of light. An especially simple result ensues
for coupled Gauss-Bonnet gravity, which we use to show it does not give a viable cosmology. We also
generalize such coupling, and review the important connection of gravitational wave cosmological
distance deviations to growth of cosmic structure measured by redshift space distortions.

I. INTRODUCTION

Gravitational waves (GW) provide a new probe of cos-
mology as well as of gravitation in the strong field regime.
For cosmology, standard siren distances from GW are a
new type of distance measure, crosschecking those from
photon luminosity distance (e.g. Type Ia supernovae) and
angular distance (e.g. baryon acoustic oscillations). Thus
they can map out the cosmic expansion history. How-
ever, the GW distance depends on the propagation of
gravitational waves – if this differs from that in general
relativity then one must account for this in interpretation
of the distance.
GW propagation can differ from general relativity in

its speed of propagation and an additional friction be-
yond the Hubble friction of expanding space. This new
spacetime friction is due to a change in the coupling of
gravity to spacetime curvature, and can be thought of as
an evolving gravitational strength (Newton’s constant) or
running Planck mass. (Additional effects such as gravi-
ton mass and source terms can enter, but do not in the
Horndeski class of gravity we consider here.)
Thus GW not only map out cosmic expansion history,

but cosmic gravity history, and we will highlight as well
a connection to cosmic growth history. Thus a simple ex-
pression for the deviation of GW propagation from gen-
eral relativity is of interest. This is constrained by the
implication of near simultaneous GW and electromag-
netic bursts from GW170817 [1] indicating that the speed
of GW propagation equals the speed of light, within the
most direct interpretation (see [2, 3] for other possibili-
ties). This stringently restricts the gravitation theory.
Working within the class of Horndeski theory, the most

general scalar-tensor theory with second order equations
of motion, the restriction to the speed of light is usually
taken to remove one of the four terms in the action and
prevent another from depending on the scalar field mo-
tion. This is not absolute, however, and can lead to some
interesting cases.
In Section II we show how the general expression for

the GW distance deviation looks in the usual interpreta-
tion and in the extended one. Section III treats a special

case of the latter situation, involving a coupling to the
Gauss-Bonnet term, of particular interest since it is a ge-
ometric invariant. In Section IV and V we examine a gen-
eralization, and another special case, respectively. The
extraordinary connection between GW propagation and
cosmic structure growth deviations from general relativ-
ity in some theories is visited in Sec. VI and we conclude
in Sec. VII.

II. GW DISTANCE DEVIATION

The propagation equation for the GW amplitude h in
a cosmological background is [4–7]

ḧ+ (3 + αM )Hḣ+ k2h = 0 , (1)

where an overdot is a derivative with respect to time,
αM = d lnM2

⋆/d lna is the Planck mass evolution rate,
H = ȧ/a is the Hubble parameter, a the cosmic scale
factor, and k the wavenumber. As stated, we work within
the Horndeski class of gravity and have already set the
GW speed of propagation to the speed of light (i.e. cT =
1).
The emitted amplitude is predicted by general relativ-

ity based on the detected GW characteristics (and it is
assumed general relativity holds in the emission process,
as most viable cosmic gravity theories have screening
mechanisms that restore to general relativity in regions of
much higher density than the cosmic background). Com-
paring this to the observed amplitude gives a GW dis-
tance to the source through the cosmic inverse square
distance law (energy ∼ amplitude2 ∼ 1/distance2 so
dL ∼ 1/h).
A clear derivation of the solution to the GW propaga-

tion Eq. (1) was given by [7, 8], and related directly to
GW distances for Horndeski gravity by [9, 10]:

dL,GW (a) = dGR
L (a)

[

M2
⋆ (a = 1)

M2
⋆ (a)

]1/2

. (2)

Thus the key quantity of interest from modified gravity
is the Planck mass evolution.
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In a general Horndeski theory,

M2
⋆ = 2

(

G4 − 2XG4X +XG5φ −Hφ̇XG5X

)

, (3)

where G4(φ,X) and G5(φ,X) are two of the Horndeski
Lagrangian terms (the others do not enter GW propaga-

tion), X = φ̇2/2, φ is a scalar field, and subscripts φ or
X denote derivatives with respect to that quantity [11].
Conventionally when the GW propagation speed cT is
the speed of light, G5 = 0 and G4X = 0, leaving just
M2

⋆ = 2G4(φ). For general relativity, G4 = M2
pl/2 so

M2
⋆ = M2

pl, a constant; we will work in units such that

M2
pl = 1.
Thus in the conventional case,

dL,GW (a) = dGR
L (a)

[

G4(φ(a = 1))

G4(φ(a))

]1/2

. (4)

However, one can also have the GW propagation speed
cT ≡ 1 + αT equal to the speed of light when

αT ∼ 2G4X − 2G5φ − (φ̈−Hφ̇)G5X = 0 . (5)

Substituting this into Eq. (3) gives

M2
⋆ = 2G4(φ,X)− φ̇Ġ5(φ,X) , (6)

where Ġi = φ̇Giφ + ẊGiX = φ̇Giφ + φ̇φ̈GiX .
The general expression for distance deviations then be-

comes

dL,GW (a) = dGR
L (a)

(

[2G4 − φ̇Ġ5](a = 1)

[2G4 − φ̇Ġ5](a)

)1/2

. (7)

Given a Horndeski theory, one solves the equations of
motion (including for φ(a)), and can determine the GW
distance deviation from general relativity.

III. COUPLED GAUSS-BONNET GRAVITY

For certain theories within the Horndeski class, the
above expressions work out particularly simply. An in-
teresting case is coupled Gauss-Bonnet gravity, demon-
strated to be part of the Horndeski class in [12]. The
Gauss-Bonnet invariant

G = R2 − 4RabR
ab +RabcdR

abcd , (8)

is a particular scalar combination of the Riemann, Ricci
tensor, and Ricci scalar curvatures, and so an important
geometric object. Being a topological term, by itself it
does not alter the equations of motion from general rel-
ativity, however promoting it to a function f(G) or cou-
pling it to a scalar field as f(φ)G in the action gives it
dynamics and hence modifies gravity.
We consider the latter case, with the action being the

usual Ricci scalar plus a f(φ)G term. There can be ki-
netic and potential terms of the scalar field as well, but

they will not affect GW propagation. As coupled Gauss-
Bonnet (CGB) gravity possesses a G5 term and a G4

term depending on X , normally it has a GW speed of
propagation different from the speed of light. However,
[13, 14] demonstrated the condition such that a restricted
case survives: the CGB speed of GW propagation will be
the speed of light if the coupling satisfies

f̈ = Hḟ . (9)

If we then evaluate Eq. (3) or (6) for the CGB terms

G4 =
1

2
+ 4fφφX(2− lnX) , G5 = −4fφ lnX , (10)

then we obtain

M2
⋆ = 1 + 8Hḟ = 1 + 8Hφ̇fφ . (11)

Eq. (9) can be readily solved to give ḟ = ca, where c is a
constant. Note that we never need to solve the scalar field
equation of motion – this is a model independent result!
(If we are given f(φ), then we can find φ(a) through

fφφ̇ = ca.)
Thus, independent of the specific coupling,

dL,GW (a) = dGR
L (a)

(

1 + 8cH0

1 + 8caH

)1/2

. (CGB) (12)

Given a cosmological background expansion, i.e. Hub-
ble parameter H(a), which may depend on the coupling
form, as well as kinetic and potential terms, one has an
exact prediction for the GW distance deviation.
Note that since M2

⋆ = 1 + 8caH = 1 + 8cȧ, then M2
⋆

blows up as a → 0. We explore this further below. CGB
is also sometimes used as an inflation theory, and note
that for H constant the solution to Eq. (9) is ḟ = ceHit

and M2
⋆ = 1 + 8cHie

Hit.
Let us examine some of the other gravity theory quan-

tities, such as the Planck mass evolution rate αM . We
have

αM ≡
Ṁ2

⋆

HM2
⋆

=
8cä

H(1 + 8cȧ)
. (13)

Note that

αM →
aä

ȧ2
= −q , (a → 0) (14)

where q is the cosmic deceleration parameter. Thus, in
CGB αM directly measures the acceleration of the uni-
verse. (And since we do not have αM → 0, general rel-
ativity is never fully restored in the early universe.) For
the inflation case we indeed find αM = 1.
Since in our universe ä changes sign as the expansion

moves from matter domination to our present accelerated
epoch, then there will be a time when αM crosses zero.
Recall that αM = 0 is referred to as No Run Gravity
[15] (when it is a persistent condition) and gives zero
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gravitational slip. That is an interesting, if momentary,
property of CGB.
The property functions such as αM and αT give a use-

ful perspective on observational effects of modified grav-
ity [11]. Computing the function αB that describes the
braiding, or mixing between the scalar kinetic term and
the metric,

αB =
−8Hḟ

M2
⋆

=
−8caH

1 + 8caH
. (15)

We see that this has αB → −1 at early times, and this
holds for the inflationary solution as well. This means
that in early matter domination αB = 2αM = −1, in
radiation domination αB = αM = −1, and in inflation
αB = −αM = −1. The last relation is characteristic of
f(R) gravity as well. The remaining property function
αK , the kineticity, does not have much observable im-
pact, affecting the spatial clustering of the scalar field.
We find it depends on fφφφφ, and hence is not model
independent.
The gravitational strength, relative to Newton’s con-

stant in general relativity, entering the growth of struc-
ture is denoted Gmatter, and that for light propagation is
Glight; the difference between them is referred to as the
gravitational slip. Both involve combinations of αM and
αB; their expressions can be found in, for example, [16].
Evaluating for CGB,

Gmatter =
2Hä−H2ȧ− 8c(H2ȧ2 − 2ä2)

H(1 + 8cȧ)[2ä−Hȧ− 4c(3Hȧ2 − 4ȧä)]
(16)

Glight =
2Hä−H2ȧ+ 4cHȧä− 8c(H2ȧ2 − ä2)

H(1 + 8cȧ)[2ä−Hȧ− 4c(3Hȧ2 − 4ȧä)]
.(17)

Note that when c → 0, and the coupling vanishes, then
Gmatter → 1, Glight → 1, i.e. we recover general relativity.
In the matter dominated or radiation dominated eras

(or any with background equation of state wb > −1/3),
Gmatter and Glight approach zero going into the past.
This is not surprising since we found that αM and αB

go to constants, and M2
⋆ in the denominator blows up.

This vanishing of gravity does not make for a viable cos-
mology. If the dominant component has wb < −1/3 then
Gmatter and Glight approach one going into the past. For
inflation, with wb = −1, going back into the past Gmatter

and Glight will be one as in general relativity, but when
inflation lasts more than a few e-folds, i.e. c eHit gets
large, then again gravity vanishes.
Thus there is no valid inflation nor late time cosmology

for coupled Gauss-Bonnet gravity with GW propagation
at the speed of light, independent of the model, i.e. cou-
pling function. (One could use it for inflation with GW
speed cT 6= 1, but the gravitation theory must somehow
change by the late universe.)

IV. GENERALIZING THE COUPLING

While coupled Gauss-Bonnet gravity has some attrac-
tive features, such as use of the geometric invariant, it

did not give rise to a viable cosmology with GW speed
cT = 1. Let us explore whether we can keep some useful
features to find the GW distance deviation in a viable
theory. In setting αT = 0, CGB led to the constraint
on the coupling f̈ = Hḟ , which has the advantage of a
model independent form ḟ = ca, and one does not have
to know the dependence f(φ) to compute the GW dis-
tance deviation and property functions.
We can achieve this generally by writing

G4 = fφφ(φ) g4(X) , G5 = fφ(φ) g5(X) . (18)

One obtains αT = 0 with f̈ = Hḟ when

g5(X) = −X

∫

dx
g4x
x2

. (19)

Solutions include

g5 = c+ d lnX , g4 = X [(c− d− 1) + d lnX ] (20)

g5 = cXn , g4 =
c(1− n)

1 + n
Xn+1 (21)

g5 = cX−1 , g4 = 2c lnX , (22)

leading respectively to

M2
⋆ = −2dHḟ + 2(d− 1)Xfφφ , (23)

M2
⋆ = −2ncXnHḟ + 2[n2c/(1 + n)]Xn+1fφφ (24)

M2
⋆ = 2cX−1Hḟ + 2c(−3 + 2 lnX)fφφ . (25)

One could proceed with all the observables for these
theories, however the presence of fφφ in M2

⋆ means that
we have lost model independence. Only in the first case
can we remove fφφ, by choosing d = 1. Eqs. (20) and
(23) generalize the CGB case, which has c = 0 (and note
that fhere = −4fCGB), but note this makes no difference
for M2

⋆ . On the other hand, the fφφ term in M2
⋆ offers

the hope that M2
⋆ will not blow up in the past, allowing

for a viable cosmology. Since one would have to compute
this model by model, we do not pursue it further.
There is another method for removing fφφ from ap-

pearing in M2
⋆ . One takes both the condition g4X =

g5 −Xg5X that led to Eq. (19), and a further condition
g5 = 2g4X −X−1g4. This then gives

M2
⋆ = 2Hḟ

(

−g4
X

+ g4X − 2Xg4XX

)

. (26)

Having X in M2
⋆ is also model independent so we want

to remove it as well. This is accomplished with

g5 = c+2d+d lnX, g4 = X(c+d lnX), M2
⋆ = −2dHḟ .

(27)
This will have the same problems of M2

⋆ blowing up in
the past as CGB (which is a special case with c = −2,
d = 1).
Thus, the model independent cases we have examined

are not viable, and the potentially viable gravity theories
are not independent of the form of the φ dependence. The
next section explores a middle path.
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V. G5X = 0

In Eq. (5) for αT , a term with φ̈ appears explicitly.
We can remove this by setting G5X = 0, in the hopes
of avoiding having to be explicit about the scalar field
evolution. To keep the GW speed cT = 1, this then
implies G4X = G5φ. That in turn gives

M2
⋆ = 2(G4 −XG4X) . (28)

When forming αM , we will end up with a term involv-
ing ẊG4XX , which again introduces φ̈, so we also take
G4XX = 0.
This implies

G4 =
1

2
+Xfφ + g(φ) , G5 = f(φ) + c , (29)

yielding the simple expressions

M2
⋆ = 1 + 2g(φ) (30)

αM =
2φ̇gφ

H [1 + 2g(φ)]
(31)

αB =
2φ̇ (XG3X − 3Xfφφ − gφ)

H [1 + 2g(φ)]
. (32)

Gravitational wave distances go as

dL,GW (a) = dGR
L (a)

[

1 + 2g(a = 1)

1 + 2g(a)

]1/2

. (33)

It is interesting to note that G5 does not affect them, i.e.
f(φ) does not enter (though it appears in αB). Note that
f = 0 gives a theory with simple scalar coupling g(φ) to
the Ricci scalar, equivalent to f(R) gravity.
While model dependent, this class of theories at least

has the virtue of simplicity. In the early universe, we
want general relativity to describe cosmology soM2

⋆ → 1,
implying g → 0 (or a constant) there, and αM , αB → 0
(neglecting G3X) if g and fφ start out slowly rolling. At
late times, if the cosmology goes to a frozen de Sitter
state, then the numerators of αM and αB, which involve
ġ = φ̇gφ and ḟφ, vanish, again restoring general relativity.

VI. CONNECTING GW DISTANCES TO

COSMIC GROWTH

The relation between GW distance deviations and
growth of cosmic structure deviations from general rela-
tivity is an intriguing connection, developed in [10] and
elaborated in [16]. There it was pointed out that in Horn-
deski theories where αB is a function of αM , then Gmatter

and M2
⋆ , and hence dL,GW are connected. Not all the-

ories do have a relation αB(αM ) since G3, G4, and G5

are generally independent functions, even if we impose
cT = 0.
However the class of No Slip Gravity has the very di-

rect Gmatter = 1/M2
⋆ (as does the non-Horndeski non-

local gravity model in [17]). For the class of standard

scalar-tensor theories, Glight = 1/M2
⋆ . Another inter-

esting case is Only Run Gravity [16], where there is no
braiding (αB = 0). In that theory

Gmatter =
M2

⋆ + (M2
⋆ )

′

(M2
⋆ )

2
, (34)

where a prime denotes d/d ln a. Illustrations of the con-
nection between the cosmic structure redshift space dis-
tortion quantity fσ8(a), basically the growth rate, and
dL,GW/dGR

L are shown in [16] for several theories.
Suppose we ask the inverse question, whether there

could be no deviation in GW distances, yet deviation in
cosmic growth, and vice versa. If dL,GW = dGR

L then
M2

⋆ = 1 and αM = 0. This is called the class of No Run
Gravity [15]. Eq. (6) indicates this can occur if either
there is G5 = 0, G4 = 1/2, or a balance such that

G4 =
1

2

[

1 + φ̇Ġ5

]

=
1

2
+XG5φ +Xφ̈G5X . (35)

This imposes a constraint on the scalar field evolution
so it is not very generic. Regardless, since Gmatter also
depends on αB, which can involve G3, we can indeed
have deviations in growth.
If growth does not deviate from general relativity, this

is called the class of Only Light Gravity [16]. Then
there is a differential equation relating αB and αM . This
does give a deviation in dL,GW that depends on the form
adopted for αM (or equivalently G4 and G5).
Thus, GW distance deviations and cosmic growth de-

viations do serve as complementary probes in general,
while in a few interesting classes of gravity they can be
critical crosschecks on each other.

VII. CONCLUSIONS

Gravitational wave propagation has already had a dra-
matic impact on cosmological gravitation theory, severely
restricting models that do not predict propagation at the
speed of light. The GW distance deviation from general
relativity maps the Planck mass evolution; in the sim-
plest interpretation it traces out the gravitation history
of the universe.
There are ways around the usual interpretation within

Horndeski gravity that cT = 1 implies G5 = 0, G4X = 0.
We give the general expression for the GW distance de-
viation that does not have this, yet preserves cT = 1.
A particular interesting example involves coupling to the
Gauss-Bonnet geometric invariant, but we demonstrate
a no go theorem that coupled Gauss-Bonnet gravity can-
not have cT = 1 and give a viable description of our
cosmology, regardless of the exact coupling.
We extend this exploration to further forms of G4 and

G5 that obey cT = 1, giving the forms for the GW dis-
tance deviation. Some have attractive properties in being
model independent, but are not viable, while others are
viable, but one must treat model by model.
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Other probes of cosmological gravity such as the
growth rate of structure and light propagation can be
connected to GW distance deviation. We show that
in some cases this is a direct relation, hence an impor-
tant crosscheck that deviations from general relativity are
real, against systematic effects; in other cases the probes
are complementary, working together to reveal the un-
derlying nature of gravitation and the gravity history of

our universe.
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