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Abstract

The curved spacetime Maxwell equations are applied to the anisotropically expanding Kasner

metrics. Using the application of vector identities we derive 2nd-order differential wave equa-

tions for the electromagnetic field components; through this explicit derivation, we find that the

2nd-order wave equations are not uncoupled for the various components (as previously assumed),

but that gravitationally-induced coupling between the electric and magnetic field components is

generated directly by the anisotropy of the expansion. The lack of such coupling terms in the

wave equations from several prior studies may indicate a generally incomplete understanding of

the evolution of electromagnetic energy in anisotropic cosmologies. Uncoupling the field com-

ponents requires the derivation of a 4th-order wave equation, which we obtain for Kasner-like

metrics with generalized expansion/contraction rate indices. For the axisymmetric Kasner case,

(p1, p2, p3) = (1, 0, 0), we obtain exact field solutions (for general propagation wavevectors), half

of which appear not to have been found before in previous studies. For the other axisymmetric

Kasner case, {p1, p2, p3} = {(−1/3), (2/3), (2/3)}, we use numerical methods to demonstrate the

explicit violation of the geometric optics approximation at early times, showing the physical phase

velocity of the wave to be inhibited towards the initial singularity, with v → 0 as t → 0.

Keywords: Geometric optics violation; Kasner metric; Cosmology; Curved spacetime Maxwell equations

I. INTRODUCTION

In this paper we study the propagation of electromagnetic waves in the homogeneous but

anisotropic Kasner metrics. These metrics are interesting physically, as exact solutions to

the Einstein field equations possessing a singularity (for most Kasner metric parameters) at

t = 0; and they are interesting cosmologically, as building blocks which can be generalized

to help construct the Mixmaster universe model [1].

With a convenient alignment of our spatial axes, and noting that we set the speed of light

to unity (c ≡ 1) throughout this paper, the Kasner metric is written as [2]:

ds2 = −dt2 + t2pxdx2 + t2pydy2 + t2pzdz2 , (1)

∗ Brett.D.Bochner@hofstra.edu, brett bochner@alum.mit.edu
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where the indices are typically assumed to satisfy the conditions:

(px + py + pz) = (p2x + p2y + p2z) = 1 . (2)

These Kasner conditions, if applied, ensure the vacuum nature (stress-energy tensor T µν = 0)

of the metric.

Modeling the propagation of light as null rays here, using the geometric optics approx-

imation [2], would be comparatively straightforward; but to study much of the interesting

physics, a wave treatment using Maxwell’s equations is needed. For example, it is known

that plane wave solutions will in general not follow null geodesics in anisotropic spacetimes,

except in the high frequency (geometric optics) limit; hence effects such as birefringence

(and other important phenomena) will be missed in a null ray treatment [3].

Investigations of Maxwell’s equations in the Kasner metric, however, have proven to gen-

erate wave equations that only in rare or special cases have analytical solutions. Specifically,

the problem of finding exact solutions for general wavevectors (all propagation directions),

which are good for all values of time t, only appears achievable (among those cases obeying

Eq. 2) for the (px, py, pz) = (1, 0, 0) case. For that case specifically, analytical wave solutions

were derived in Sagnotti and Zwiebach [4] as linear combinations of Bessel functions (i.e.,

Hankel functions) of purely imaginary order; and derivations by other authors [e.g., 5] have

led to equivalent results.

For other sets of Kasner indices – even the other axisymmetric vacuum case, {px, py, pz} =

{(−1/3), (2/3), (2/3)} – analytical solutions appear to be unavailable, without adopting var-

ious simplifications. Using a superpotential formalism developed by Kegeles and Cohen [6]

for calculating electromagnetic (as well as neutrino and gravitational) metric perturbations,

this Kasner case was studied in a series of papers by different authors [7–9], in which an-

alytical solutions were obtained only within early-time (t << 1) and late-time (t >> 1)

approximations. Alternatively, some authors [4, 5, 10] have found solutions to this case (or

for more general choices of Kasner parameters) by restricting the wave propagation direction

to be along a single coordinate axis (i.e., along one of the principal expansion axes); and

some [e.g., 11] have employed combinations of both approximations.

In some recent papers [5, 12, 13], wave propagation has been studied in the Kasner metric

using the scalar wave equation:

✷g ≡ gµν∇µ∇νφ = 0 , (3)
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with the d’Alembertian transformed appropriately for the relevant metric being studied. In

a lengthier exposition by Petersen [14], it is made clear (for example in their expression,

“Scalar wave equation for light”) that this equation is actually being used to study the

propagation of electromagnetic fields in the Kasner metric. While this may or may not cause

discrepancies in some particular study (e.g., deriving cosmological redshifts [5, 14]), it is not

a rigorous procedure in general to apply a scalar wave equation individually to the various

components of a vector field, implicitly assuming that they are mutually independent.

On the contrary, one of the principal findings of our paper – to be shown via explicit

step-by-step derivations using Maxwell’s equations in curved spacetime – is that one can-

not specify homogeneous 2nd-order differential wave equations for all of the electromagnetic

fields in the anisotropic Kasner metric. (Note that for brevity, we will often use the terms

“field components” and “fields” interchangeably in this paper.) Assuming a general wave

propagation direction, nonhomogeneous terms appear on the right-hand side (RHS) of the

equations analogous to Eq. 3 for some of the fields – even in this charge-free spacetime –

generated directly by the anisotropy of the axis expansion rates. The RHS term(s) for one

given field component are proportional to other electromagnetic field components, thus link-

ing the fields together, making them mutually dependent (an effect which would be absent

in any analysis based upon Eq. 3). For any two axes expanding/contracting according to

different Kasner parameters (pi 6= pj), and for a wavevector possessing nonzero components

along both of those axes, the electric (E−) or magnetic (B−)field in the direction normal

to that “ij-plane” will experience a driving term from its complementary fields within the

plane. (For example, if py 6= pz, and wavevector components (ky, kz) 6= 0, then Ex would be

driven by nonzero By and/or Bz; Bx would be driven by nonzero Ey and/or Ez; and so on.)

The main effect of these driving terms, is that unlike the situation for flat spacetime,

the individual electromagnetic field components (for general wavevector directions) are not

uncoupled in the 2nd-order wave equations; instead, one must go on to derive 4th-order

differential equations in order to obtain truly independent wave equations for the six elec-

tromagnetic fields. The fact that these fields must satisfy 4th-order equations means that

there are actually four solutions for each of them, in general, instead of two; and previous

results in the literature for such fields that have specified only two field solutions are actually

missing half of the solution functions.

Below, we will derive the 4th-order wave equation (which is identical for all six of the
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electromagnetic fields), obtaining a general expression that is valid for any values of the

Kasner parameters (px, py, pz), including those “Kasner-like” metrics not restricted to obey

the vacuum Kasner conditions (Eq. 2). Furthermore, re-examining the (px, py, pz) = (1, 0, 0)

case, we will find all four solutions (including the two already known), group them into the

two natural polarization states for that axisymmetric metric, and obtain the general solution

(including all field amplitudes) that completely solves the Maxwell equations in the case of

a general propagation direction, with nonzero wavevector components along all distinctly

evolving axes.

These additional field solutions – and the field-coupling driving terms on the RHS of the

2nd-order wave equations – have not been seen by us to have been derived in any previous

work. Why these additional terms and field solutions have been missed previously (if indeed

they have been), is not immediately clear. One likely contributing factor, is that given

the difficulty of finding solutions for general propagation directions, the simplification of

restricting the wave propagation to lie along one of the principal axes is often made almost

immediately [e.g., 3, 10, 11, 15]; and as will be evident in our formulas below, the RHS

driving terms in the 2nd-order wave equations can be made to vanish for propagation along

a single axis. Alternatively, for the superpotential formalism of Kegeles and Cohen [6] (upon

which several other papers are based), the derivation is considerably involved; but it would

appear that the homogeneous scalar wave equation (Eq. 3) has been assumed by fiat, as has

also been done – appropriately in places, perhaps inappropriately in others – in [5, 12–14, 16].

(Interestingly, the discussion involving Equations 2.1−2.3 of Alho et al. [13] claims to show

the scalar wave equation to be a sufficient condition for energy conservation, ∇aTab = 0; but

no indication is given there to show the scalar wave equation to be a necessary condition

for it.) Additionally, in Sagnotti and Zwiebach [4], a subtle argument is made involving

the introduction of time-dependent tetrad basis vectors in order to produce their Equation

(1.18), a 2nd-order wave equation derived for a Bianchi type-I background metric (of which

the Kasner models are a subclass); this formula, from which all of the wave equations for

their subsequent Kasner metric analyses are derived, is somehow missing the RHS driving

term(s), and thus those terms are absent throughout the paper.

Given that studies such as these are analyzing many important aspects of electromag-

netic wave propagation – including field amplitude and energy bounds (i.e., whether or not

field solutions “blow up”) close to the Kasner singularity [e.g., 5, 13] – it seems particularly
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important to avoid missing any terms which represent the exchange of energy between the

different electric and magnetic field components (or, for that matter, between the electro-

magnetic and gravitational fields). And since this effect is due directly to the anisotropy of

the expansion rates, it is reasonable to assume that such gravitationally-induced coupling

of energy between the fields may very well occur in any anisotropic cosmological metric.

It is therefore a real possibility that the evolution of electromagnetic energy in anisotropic

cosmologies has been incompletely understood in all previous studies which have relied upon

the homogeneous scalar wave equation for understanding vector fields such as light.

In this paper, the derivation of the wave equations for Kasner metrics with general indices

will be carried out in Section II, with some of the detailed steps shown in Appendix A. The

complete solution of the fields for the (px, py, pz) = (1, 0, 0) case, for waves with general

propagation directions, will be given in Section III, with some technical discussion of the

link between this Kasner case and Minkowski spacetime given in Appendix B.

Additionally, we note that while the Kasner wave equations are certainly apt for numer-

ical calculations, the literature on this topic appears to be quite sparse. (Referring here

specifically to numerical studies of the propagating electromagnetic fields on the predefined

Kasner background metrics; not to numerical gravitational studies of the evolution of these

metrics themselves, or of related spacetimes.) As a step towards providing results in this

area, in Section IV we present the findings from a numerical simulation program that we have

developed and applied to the study of the {px, py, pz} = {(−1/3), (2/3), (2/3)} case – specif-

ically to the propagating wave behavior of the electromagnetic field component along the

axis of expansion rate symmetry. Notably, we demonstrate how the physical phase velocity

of the light wave deviates from the null ray speed (v = c ≡ 1), detailing how light propa-

gation is slowed and ultimately stopped going back towards the singularity (t → 0) for this

particular Kasner metric. Furthermore, we will recall an interesting class of cosmology-like

metrics that reduce to this Kasner case as a vacuum limit, and will note how the formalism

and numerical tools developed for this paper can be extended to study that class of metrics

in future studies.

Lastly, in Section V, our final discussion and summary of these results will be presented.
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II. FORMULATING THE WAVE EQUATIONS

A. Electromagnetic conventions

For a metric gµν representing a spacetime containing only radiation (or vacuum), and no

source charges or currents (Jµ = 0), the curved spacetime Maxwell equations in terms of

the electromagnetic field tensor are [2, 17]:

Fαβ,γ + Fβγ,α + Fγα,β = 0 , (4a)

F αβ
;α ∝ (

√

−|gµν | F αβ),α = 0 , (4b)

where |gµν | is the determinant of the metric tensor, semicolons refer to covariant derivatives,

and commas to partial derivatives.

We wish to define the electric and magnetic fields in a way that will usefully represent

the observable physical fields as seen by a “fiducial” observer. In a metric with coordinates

(t, x, y, z), and a convenient comoving reference frame, this would represent a stationary

observer with dx = dy = dz = 0 for all time.

For metrics with some symmetry-breaking physical behavior (such a distinct “flow” of

radiation in a particular direction), it might also be interesting to define a different class of

fiducial observers (i.e., those stationary with respect to that flow); but for now, we will define

our fields by considering a network of observers who are at least instantaneously stationary

in (x, y, z) position.

Such observers will have timelike worldlines as long as t is a timelike coordinate, with

gtt < 0. For the formalism presented here, the only assumptions we make are that t is

indeed timelike, and that (for considerable simplification) all metrics under consideration

will be diagonal. We do not assume them to be synchronous or comoving, although all of

the metrics used for calculations in this particular paper will be.

With those considerations, the normalized (gαβU
αUβ = −1), future-directed timelike

four-velocity of a fiducial observer at a given spacetime location will be:

Uα = (1/
√

−gtt(t, x, y, z), 0, 0, 0) . (5)

The electric and magnetic fields, respectively, measured by such an observer will be [18]:

Eα = FαβU
β , (6a)
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Bα = −1

2
ǫαβγδF

γδUβ , (6b)

where ǫαβγδ is the covariant Levi-Civita totally antisymmetric tensor.

For ease of calculations, we express the Levi-Civita tensor in terms of the Levi-Civita

symbol, ǫ̃αβγδ, a tensor density of weight w = 1, filled solely with values (+1,−1, 0) [19].

Thus, for a metric that is diagonal:

ǫαβγδ =
√

−|gµν | ǫ̃αβγδ =
√

−gttgxxgyygzz ǫ̃αβγδ . (7)

Using the sign convention from [18] of ǫ̃0123 ≡ ǫ̃txyz = +1, each of Equations 6b can

individually be inverted to yield the components of F γδ in terms of the B-fields, and then

we can obtain the covariant version of the electromagnetic field tensor via Fαβ = gαγgβδF
γδ.

Similarly (and more simply), we can invert Equations 6a to yield: Fi0 = −F0i =
√−gttEi,

for i 6= 0. So to sum up, for the sake of clarity – given variations among different authors

on the distribution of signs and metric factors – we explicitly write out this tensor as:

Fαβ =



















0 −√−gttEx −√−gttEy −√−gttEz

√−gttEx 0
√

gxxgyy
gzz

Bz −
√

gxxgzz
gyy

By

√−gttEy −
√

gxxgyy
gzz

Bz 0
√

gyygzz
gxx

Bx

√−gttEz

√

gxxgzz
gyy

By −
√

gyygzz
gxx

Bx 0



















. (8)

Employing these conventions for the electromagnetic tensor in Equations 4 will produce

observationally sensible definitions for the E− and B-fields.

B. Deriving wave equations for the evolving metric

Wemust now choose a particular class of metrics for the derivation of the curved spacetime

Maxwell equations via Eq’s. 4,8. Here we are interested in the well known Kasner metrics,

the homogeneous but anisotropic spacetimes discussed above in the Introduction. They are

as defined in Eq. 1, where vacuum spacetimes are obtained by imposing the usual Kasner

index conditions, specified by Eq. 2.

There is no necessity to assume these conditions, however – for example, the isotropic

Friedmann universes filled with matter or radiation can be recovered via the choices (re-

spectively) of px = py = pz = 2/3 or 1/2. We will place no a priori restrictions (other than

realness) on the Kasner indices; we simply note that there must be some physical motivation
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for the nature of the cosmic mass-energy that results from a particular choice of (px, py, pz),

especially if such a choice violates reasonable energy conditions.

For our work here, we will be considering the application of these wave equations under

the commonly used “test field” approximation, in which we assume that the amplitudes and

energy densities of the electromagnetic fields being studied are always small enough so that

their gravitational perturbations onto the background metric can be neglected. (In cases

where gravitational energy from the background metric can pump energy into the fields

to increase their amplitudes significantly, it is therefore imperative to make sure that the

test fields actually stay small enough during the propagation to continue neglecting their

gravitational effects.)

Applying the formulas of Section IIA to this metric, we see that the electromagnetic field

tensor becomes:

Fαβ =















0 −Ex −Ey −Ez

Ex 0 t(px+py−pz)Bz −t(px−py+pz)By

Ey −t(px+py−pz)Bz 0 t(−px+py+pz)Bx

Ez t(px−py+pz)By −t(−px+py+pz)Bx 0















. (9)

Equations 4 then give us eight distinct field equations. Two of these equations (one each

from Eq. 4a and Eq. 4b) are modified versions of the usual divergence equations; dividing

out common powers of t, we can write them as:

t−2pxEx, x + t−2pyEy, y + t−2pzEz, z = 0 , (10a)

t−2pxBx, x + t−2pyBy, y + t−2pzBz, z = 0 . (10b)

The remaining six equations are the “curl”-like equations, which are:

(Bz, y − By, z) = [t(−px+py+pz)Ex], t , (11a)

(Ez, y − Ey, z) = −[t(−px+py+pz)Bx], t , (11b)

plus four more analogous equations obtained through cyclic permutations over (x, y, z) and

corresponding factors indexed to (x, y, z) – such as (px, py, pz), and spatial partial derivatives.

These strongly resemble the usual flat spacetime Maxwell equations, just with the ap-

pearance of additional powers of t; and at first glance, it might seem possible to absorb these
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factors through alternative definitions of the fields comprising Fαβ . For example, with the

redefinitions:

E
′

x ≡ t(−px+py+pz)Ex , B
′

x ≡ t(−px+py+pz)Bx , (12)

(and cyclic permutations thereof), the divergence equations (Eq’s. 10) can be simplified to

∇ · E′

= ∇ · B′

= 0 (using the flat spacetime version of the dot product here), and the

right hand sides of Eq’s. 11 reduce simply to the relevant spatial components of E
′

, t, B
′

, t.

However, additional factors appear on the left hand sides of the equations as a consequence;

for example, Eq’s. 11 become:

[t(−px−py+pz)B
′

z, y]− [t(−px+py−pz)B
′

y, z] = E
′

x, t , (13a)

[t(−px−py+pz)E
′

z, y]− [t(−px+py−pz)E
′

y, z] = −B
′

x, t , (13b)

(and cyclic permutations), which does not succeed in removing the (physically meaningful)

powers of t in these equations, but just shifts them around. However, these redefinitions do

succeed in greatly simplifying the derivations and forms of the wave equations (as well as

their eventual solutions), so we will work with these redefined fields from this point on.

Normally, the next step is to convert the coupled 1st-order differential equations for the

fields into uncoupled 2nd-order wave equations. In charge-free Minkowski space, where the

fields obey ∇ · E = ∇ · B = 0, ∇ × E = −B, t, and ∇ × B = E, t, the usual trick is

to apply vector identities to write ∇ × ∇ × E = ∇(∇ · E) − ∇2E = −∇2E, and then

use ∇ × ∇ × E = −(∇ × B), t = −E, t, t to complete the wave equation. But in the

Kasner case, there are unavoidable powers of t in Eq’s. 13 which do not commute with the

time derivatives ∂/∂t during the aforementioned steps. Therefore, the resulting 2nd-order

differential equations are not entirely uncoupled here, in general.

Applying the same “curl of a curl” trick with these equations anyway, modified as neces-

sary by these extra powers of t, after some work we derive:

E
′

x, t, t +
(px
t

)

E
′

x, t − [(t−2pxE
′

x, x, x) + (t−2pyE
′

x, y, y) + (t−2pzE
′

x, z, z)] =

(pz − py)

t
{[t(−px−py+pz)B

′

z, y] + [t(−px+py−pz)B
′

y, z]} , (14)

where similar equations for E
′

y and E
′

z can be obtained from this via cyclic permutations

over (x, y, z) and corresponding factors; and the analogous equations for the magnetic fields

are obtained via the substitutions E
′

i → B
′

i, B
′

i → −E
′

i . The full details of this derivation

are given in Appendix A.
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Note first that the plus sign between the two terms on the right hand side (RHS) of Equa-

tion 14, instead of a minus sign, means that the RHS cannot be eliminated via any manipu-

lations of the curl-like equations, Eq’s. 13. (These are, in fact, the field-coupling nonhomoge-

neous terms discussed significantly in the Introduction.) Using Eq’s. 13 in conjunction with

Eq. 14, however, does allow us to present this wave equation in multiple alternative forms.

Using the shorthand notation of “{t∇2}” ≡ [(t−2px)∂2/∂x2+(t−2py)∂2/∂y2+(t−2pz)∂2/∂z2],

we can present the 2nd-order wave equation for E
′

x (and analogously for the other fields) in

three useful variants for each field:

E
′

x, t, t+
(px
t

)

E
′

x, t−{t∇2}E ′

x =
(pz − py)

t
{[t(−px−py+pz)B

′

z, y]+[t(−px+py−pz)B
′

y, z]} , or, (15a)

E
′

x, t, t +

[

px + (pz − py)

t

]

E
′

x, t − {t∇2}E ′

x = 2
(pz − py)

t
{[t(−px−py+pz)B

′

z, y]} , or,

(15b)

E
′

x, t, t +

[

px − (pz − py)

t

]

E
′

x, t − {t∇2}E ′

x = 2
(pz − py)

t
{[t(−px+py−pz)B

′

y, z]} .

(15c)

Rather than creating ambiguity, however, having these different variants available will end

up aiding us in deriving further wave equations that are ultimately uncoupled.

These equations take the form of damped (or pumped), driven oscillators. The nonhomo-

geneous driving terms on the RHS of these 2nd-order wave equations can be interpreted as

the anisotropically evolving spacetime behaving somewhat like an active medium, causing

the magnetic fields to drive the electric fields, and vice versa, in a more involved manner

than happens in Minkowski space [e.g., 20].

In a specific set of cases, the RHS terms do properly equal zero – particularly in the case

of axisymmetric Kasner metrics (e.g., py = pz), for the fields along the distinctly-evolving

direction (e.g., Ex and Bx). But for other fields and cases, dropping the RHS terms causes

one to lose about half of the solutions, as we will see below.

Examining these 2nd-order partial differential equations, a way to simplify them immedi-

ately is through separation of variables. For each electric or magnetic field, F
′

i assume the

following solution:

F
′

i (t, x, y, z) = F
′′

i (t) Si(x, y, z) =

= F
′′

i (t)[c1 sin(kxx) + c2 cos(kxx)][c3 sin(kyy) + c4 cos(kyy)][c5 sin(kzz) + c6 cos(kzz)] ,(16)

where {c1, . . . , c6} are arbitrary constants dependent upon initial conditions. (To simplify
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our numerical calculations, we have chosen to work with real functions throughout.) The

constants (kx, ky, kz) ≡ k are real, positive numbers with k ≡
√

k2
x + k2

y + k2
z . This form of

solution means that the light waves “breathe” with the expansion or contraction along differ-

ent axis directions, as a particular set of coordinate distances, say (∆x,∆y,∆z), represents

different physical distances at different times.

With substitutions like Eq. 16, Equation 14 becomes:

E
′′

x, t, t +
(px
t

)

E
′′

x, t +

(

k2
x

t2px
+

k2
y

t2py
+

k2
z

t2pz

)

E
′′

x =
1

Sx(x, y, z)
×

(pz − py)

t
{[t(−px−py+pz)B

′

z, y] + [t(−px+py−pz)B
′

y, z]} , (17)

where equations for all of the other fields are obtained from this via cyclic permutations as

before, and where the alternative versions for each field, as given in Eqn’s. 15, still apply.

Now, it should be understood that the Equations 14-17 were written assuming that

(kx, ky, kz) are nonzero. Letting one or two of these wavenumbers equal zero (e.g., propaga-

tion along a Kasner axis) could cause confusion. The form of the spatial functions Si(x, y, z),

plus ∇ ·E′

= ∇ ·B′

= 0, clearly shows that the wave fields are transverse to the instanta-

neous propagation direction. So for example, suppose k = (kx, 0, 0). Clearly all of the fields

then satisfy F
′

i, y = F
′

i, z = 0, and Equations 15 seem to imply that “adding zero” to the

RHS in different ways gives us three meaningfully different versions of the left hand side.

But in this case, the transverse nature of the fields tells us that E
′

x = 0 (as well as B
′

x = 0),

hence all three versions are moot. Alternatively, if we suppose k = (0, ky, 0), then all three

versions make sense; with the simplest one being Eq. 15c, where the RHS now does equal

zero, and the coefficient of the (E
′

x, t/t) term is [px − (pz − py)]. If one assumes the usual

Kasner condition, (px + py + pz) = 1, then our resulting equation is equivalent to Equation

(3.18) of Sagnotti and Zwiebach [4] for this special case.

To ultimately disentangle the wave equations, we can use the alternative formulations of

Eq’s. 15 to tailor the couplings between the electric and magnetic fields to group them as

three disconnected pairs of fields – for example, (Ex ↔ By), (Ey ↔ Bz), and (Ez ↔ Bx).

The equations for the first pair would look like this:

E
′

x, t, t +

[

px − (pz − py)

t

]

E
′

x, t − {t∇2}E ′

x = 2
(pz − py)

t
{[t(−px+py−pz)B

′

y, z]} , (18a)

B
′

y, t, t +

[

py + (px − pz)

t

]

B
′

y, t − {t∇2}B′

y = −2
(px − pz)

t
{[t(px−py−pz)E

′

x, z]} , (18b)
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We then take ∂/∂z of Eq. 18a, apply our spatial functions from Eq. 16 as necessary, and

invert to get:

B
′

y = −
(

1

k2
z

)[

t

2(pz − py)

]

[t(px−py+pz)]×
{

E
′

x, t, t, z +

[

px − (pz − py)

t

]

E
′

x, t, z +

(

k2
x

t2px
+

k2
y

t2py
+

k2
z

t2pz

)

E
′

x, z

}

, (19)

This expression for B
′

y is then inserted back into Eq. 18b to eliminate it in favor of E
′

X .

Then we apply ∂/∂z once more – getting another common factor of (−k2
z) – and then divide

out the spatial functions, and any other factors in front of the highest time derivative term.

The result is a fourth-order ordinary differential equation for E
′′

x(t). This equation is the

same for the magnetic fields also (no sign changes or other factors). So for F
′′

x (t) ≡ E
′′

x(t)

or B
′′

x(t), we have the formula:

F
′′

x, t, t, t, t +

[

2(1 + 2px)

t

]

F
′′

x, t, t, t

+

{

2

(

k2
x

t2px
+

k2
y

t2py
+

k2
z

t2pz

)

+
1

t2
[2px + 5p2x − (py − pz)

2]

}

F
′′

x, t, t

+

(

2

t

{

k2
x

t2px
+ [1 + 2(px − py)]

k2
y

t2py
+ [1 + 2(px − pz)]

k2
z

t2pz

}

+ { 1
t3
(2px − 1)[p2x − (py − pz)

2]}
)

F
′′

x, t

+

[

(

k2
x

t2px
+

k2
y

t2py
+

k2
z

t2pz

)2

+
2

t2
{[(px − py)(1 + px + pz − 3py)

k2
y

t2py
] + [(px − pz)(1 + px + py − 3pz)

k2
z

t2pz
]}
]

×F
′′

x = 0 , (20)

with the analogous equations for {E ′′

y , B
′′

y }, {E
′′

z , B
′′

z } obtained as usual through cyclic per-

mutations over (x, y, z), (px, py, pz), and (kx, ky, kz). (Note that we get the exact same

4th-order equations even if we derive them via (Ex ↔ Bz) instead of (Ex ↔ By), and so on.)

The above procedure is only valid for fields where the RHS of formulas like Eq. 18a are

nonzero. For those where the RHS is zero – say, through ky = kz = 0 (in which case the

field itself is zero), or through py = pz (axisymmetric Kasner case), where the RHS for the

F
′′

x fields (but not for the F
′′

y or F
′′

z fields) are zero – then the 2nd-order wave equation is

all we have for that field, and we only have two (if any) nontrivial solutions for it. But,

for the general case in which Equation 20 holds, then we actually have four independent

solutions for the temporal wave function. In the next section, we will see that the correct

set of solutions to use depends upon the polarization of the waves.
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While Eq. 20 appears well suited for numerical calculations, one might despair of finding

analytical solutions (or any clear understanding of the solutions) for a 4th-order differential

equation, especially one as complicated as this one. But that is not necessarily the case.

First, just from the nature of the 2nd-order equations, it is clear that the ubiquitous

expression (t−2pxk2
x + t−2pyk2

y + t−2pzk2
z) tells us a great deal about the effective frequency of

oscillations at all times, especially in early-, mid-, or late-time regimes where one or another

of the three factors is dominant. Also, the presence of the term (F
′′

i, t/t) implies that we

will have Bessel-function-like behavior as t → 0, but almost pure sinusoidal behavior (with

adiabatically-varying frequency) at late times. Much of the qualitative behavior of the fields

is therefore obvious.

Furthermore, we will show that it is also possible to “guess” the exact solution to the

4th-order equation, by inferring it from known solutions to a 2nd-order equation like Eq. 17

when the RHS happens to equal zero. (In fact, it may not be a bad trick to try this in

general, by temporarily setting the RHS to zero to search for solutions, even if the RHS

does not properly equal zero for that case.) It is an unfortunate drawback that even for

2nd-order equations of this type with a RHS equal to zero, known solutions still seem to be

rare; but this is a promising path to follow when possible.

For axisymmetric Kasner models, for which two of the parameters pi are equal, the RHS

of the 2nd-order equation for the fields parallel to the axis of symmetry is automatically

equal to zero. If one sticks to the usual parameter constraints of Eq. 2, then the only two

possibilities are the models: (p1, p2, p3) = (1, 0, 0), and {p1, p2, p3} = {(−1/3), (2/3), (2/3)}.
These are therefore the most heavily studied Kasner cases. Although our formalism so far

has placed no such restrictions on the pi parameters, we will nevertheless focus the rest of

this paper upon these two cases, because of these reasons: the first case is (almost uniquely)

completely solvable for all of the fields, as we will show; the second case exhibits interesting

violations of geometric optics as t → 0; and, the second case is the vacuum limit of a class

of non-vacuum, inhomogeneous metrics of particular interest to us for future cosmological

study.
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III. KASNER SPECIAL CASE (1,0,0)

Choosing the axes such that (px, py, pz) = (1, 0, 0), the metric becomes:

ds2 = −dt2 + t2dx2 + dy2 + dz2 . (21)

Now, the parameter choices p = (1, 0, 0) (or equivalently (0, 1, 0) or (0, 0, 1)) represents a

unique Kasner case because it is actually a flat spacetime – all Riemann tensor components

are zero. It can therefore be transformed into the Minkowski metric, with the implication

that the field equations must be those of ordinary flat spacetime, with their purely sinusoidal

solutions. But the formulas to be presented in this section will not look very much like those

of flat spacetime.

This is due to the fact that the transformation producing the metric in Equation 21 has

the effect of nontrivially mixing together the different coordinates and field components. In

particular, note that the “separation of variables” from Eq. 16 – with terms like sin(kxx) –

is not at all the same kind of separation of variables that one would do in static Minkowski

spacetime, since the argument “kxx” actually represents a physical distance that increases

in time like t, rather than a static wavelength.

It is therefore important to remember that the solutions presented here for this case are

merely an unusual way of combining and transforming the different flat spacetime solutions.

(A derivation of how Kasner (1, 0, 0) fields are related to the Minkowski frame fields is given

in Appendix B.) Nevertheless, it is instructive to use this metric to demonstrate the method

of finding solutions, and their properties; and it is probably not a coincidence that the least

physically complicated case is also the most mathematically solvable one.

Referring back to Eq. 17, the wave equation for F
′′

x (t) ∈ {E ′′

x(t), B
′′

x(t)} now becomes:

F
′′

x, t, t +

(

1

t

)

F
′′

x, t +

(

k2
x

t2
+ k2

y + k2
z

)

F
′′

x = 0 , (22)

which we recognize as an example of the transformed Bessel equation [21] with solutions

J±ikx [(k
2
y + k2

z)
1/2t]. For Bessel functions of purely imaginary order like these, real solutions

(for t > 0) can be constructed [22] as:

J2+
ikx

[(k2
y + k2

z)
1/2t] ≡ 1

2
{Jikx [(k

2
y + k2

z)
1/2t] + J−ikx [(k

2
y + k2

z)
1/2t]} ,

J2−
ikx

[(k2
y + k2

z)
1/2t] ≡ 1

2i
{Jikx [(k

2
y + k2

z)
1/2t]− J−ikx [(k

2
y + k2

z)
1/2t]} . (23)
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These are equivalent to (i.e., linear combinations of) the previously known solutions, as given

in (for example) Sagnotti and Zwiebach [4] and Petersen [5]. They turn out to represent

only half of the space of solutions for this Kasner case, however.

For the four remaining fields, the right hand sides of the 2nd-order wave equations cannot

generally be made equal to zero; but those driving terms can be manipulated, analogously

with Eq’s. 15, to make them dependent only upon E
′

x(t) or B
′

x(t). All of those equations

end up having the same form:

F
′

a, t, t +

(

1

t

)

F
′

a, t +

(

k2
x

t2
+ k2

y + k2
z

)

F
′

a = 2F
′

b , (24)

with (F
′

a, F
′

b) representing the pairs of fields, respectively: (E
′

y, B
′

x, z), (E
′

z,−B
′

x, y), (B
′

y,−E
′

x, z),

and (B
′

z, E
′

x, y).

We note that this is the same differential equation (with the same temporal solutions) as

Eq. 22 for E
′′

x(t) and B
′′

x(t), if we can set the right hand sides equal to zero. If not, then each

field obeys the relevant 4th-order equation instead. A simplification of the physical situation

therefore presents itself, where we break the solutions down into the two distinct, nontrivial

possibilities: (i) Polarization “XE”, where E
′

x 6= 0, B
′

x = 0, so that (E
′′

x , E
′′

y , E
′′

z ) are all

linear combinations of the functions (J2+, J2−) from Eq’s. 23, and (B
′′

y , B
′′

z ) are solutions of

the 4th-order equations; and, (ii) Polarization “XB”, where E
′

x = 0, B
′

x 6= 0, and vice-versa

(E ↔ B) for the solutions of the nonzero fields. The general solution can then be given as

an appropriate combination of Polarization XE and Polarization XB.

Now recalling Eq. 20, as applied to this Kasner (1, 0, 0) metric, we obtain the 4th-order

wave equation:

F
′′

i, t, t, t, t +

(

2

t

)

F
′′

i, t, t, t +

[

2

(

k2
x

t2
+ k2

y + k2
z

)

− 1

t2

]

F
′′

i, t, t

+

[

2

t

(

−k2
x

t2
+ k2

y + k2
z

)

+
1

t3

]

F
′′

i, t +

[

(

k2
x

t2
+ k2

y + k2
z

)2

+

(

4

t4
k2
x

)

]

F
′′

i = 0 , (25)

which turns out to be the same equation applicable for all four remaining fields, F
′′

i ∈
{E ′′

y (t), B
′′

y (t), E
′′

z (t), B
′′

z (t)}. One can immediately verify that two good solutions to this

4th-order equation are (J2+, J2−) from Eq’s. 23; or in other words, Jikx [(k
2
y + k2

z)
1/2t] and

J−ikx [(k
2
y + k2

z)
1/2t] are still good solutions. We must therefore find the two remaining ones.

One interesting possibility for doubling a single Bessel function solution into two solutions,

is by recalling their recurrence relations. These Bessel functions of imaginary order satisfy
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the usual relation [22]:

J±ikx [(k
2
y+k2

z)
1/2t] =

[

(k2
y + k2

z)
1/2

(±ikx)

]

(

t

2

)

{J(±ikx)−1[(k
2
y+k2

z)
1/2t]+J(±ikx)+1[(k

2
y+k2

z)
1/2t]} .

(26)

Two interesting trial solutions can therefore be obtained by flipping the sign between the two

contributing Bessel functions (i.e., the sign in bold above), and using the other recurrence

relation involving the Bessel function time derivative:

[

(k2
y + k2

z)
1/2

]

(

t

2

)

{J(±ikx)−1[(k
2
y + k2

z)
1/2t]− J(±ikx)+1[(k

2
y + k2

z)
1/2t]}

= t{J±ikx [(k
2
y + k2

z)
1/2t], t} . (27)

Explicit substitution into Eq. 25 does indeed verify that (t{J±ikx[(k
2
y+k2

z)
1/2t], t}) are indeed

the two remaining solutions. To this author’s knowledge, these expressions have not been

identified elsewhere by other researchers as solutions to the wave equations in the Kasner

(1, 0, 0) metric.

One way of organizing the basis set of four independent solutions could be by using the

four variations, (t{J(±ikx)±1[(k
2
y + k2

z)
1/2t]}). In practice, however, our choice is to organize

them into purely real solutions, which we do as follows. Let ωyz ≡ (k2
y + k2

z)
1/2, and kR ≡

(ωyz/kx). Then, using the recurrence relations in Eq’s. 26-27, the previously defined solutions

(J2+, J2−) from Eq’s. 23 become:

J2+
ikx

(ωyzt) =

(

kR t

4i

)

{J(ikx)−1(ωyzt) + J(ikx)+1(ωyzt)− J(−ikx)−1(ωyzt)− J(−ikx)+1(ωyzt)} ,

J2−
ikx

(ωyzt) =

(

−kR t

4

)

{J(ikx)−1(ωyzt) + J(ikx)+1(ωyzt) + J(−ikx)−1(ωyzt) + J(−ikx)+1(ωyzt)} .(28)

Now consider the Bessel time derivative expressions:

Jd+ ≡ t

kx
[Jikx(ωyzt), t] =

(

kR t

2

)

{J(ikx)−1(ωyzt)− J(ikx)+1(ωyzt)} ,

Jd− ≡ t

kx
[J−ikx(ωyzt), t] =

(

kR t

2

)

{J(−ikx)−1(ωyzt)− J(−ikx)+1(ωyzt)} . (29)

These two expressions are clearly complex conjugates of one another, thus we can take the

real combinations: J4+
ikx

(ωyzt) ≡ [(Jd+ + Jd−)/2], J
4−
ikx

(ωyzt) ≡ [(Jd+ − Jd−)/(2i)]; or, written

out in full:

J4+
ikx

(ωyzt) =

(

kR t

4

)

{J(ikx)−1(ωyzt)− J(ikx)+1(ωyzt) + J(−ikx)−1(ωyzt)− J(−ikx)+1(ωyzt)} ,

J4−
ikx

(ωyzt) =

(

kR t

4i

)

{J(ikx)−1(ωyzt)− J(ikx)+1(ωyzt)− J(−ikx)−1(ωyzt) + J(−ikx)+1(ωyzt)} .(30)
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We thus take (J2+, J2−, J4+, J4−) as our basis set of real solutions for the Kasner (1, 0, 0)

case.

Now, it is not enough to specify the form of these temporal solutions, but we must know

the amplitudes of all terms as well (for general propagation wavevector k), to ensure that

we have self-consistent solutions to be used to form propagating waves. We can obtain

these amplitudes using the constraints from applying the 1st-order Maxwell equations – i.e.,

∇ · E′

= ∇ ·B′

= 0, and Eq’s. 13 (with cyclic permutations), as applied for (px, py, pz) =

(1, 0, 0).

To form waves, we must use combinations of the temporal solutions with the spatial

functions (recall Eq. 16), Si(x, y, z). By analogy, in flat spacetime one defines forward

and backward propagating waves via cos[kt ∓ (kxx + kyy + kzz)] ≡ cos[kt ∓ (k · r)] =

[cos(kt) cos(k · r) ± sin(kt) sin(k · r)], with k = (k2
x + k2

y + k2
z)

1/2. We can do the same

thing here with combinations like [J2+
ikx

(ωyzt) cos(k · r) ± J2−
ikx

(ωyzt) sin(k · r)], and so on

(still using expressions like (k · r) to refer to the flat spacetime version of the dot product).

Numerical calculations performed by this author show that these are not precisely the exact

forward/backward-propagating combinations, but have some standing wave admixture –

something that can be numerically removed using the late-time, almost purely sinusoidal

behavior of the Bessel solutions. But for our purposes here (defining real analytical solutions)

these are adequate; we just make sure to note that they produce slightly mixed linear

combinations of the pure forward/backward waves when used in this way.

Next, we recover the observable electromagnetic fields by undoing the transformation

from Eq. 12, to transform E
′ → E, and B

′ → B. We assume the wavenumbers (kx, ky, kz)

to be real and nonzero (though not necessarily positive). After substantial work to complete

the aforementioned steps – including an explicit verification that all of the Maxwell and

wave equations described above (as applied to this Kasner case) are satisfied – we obtain

the (real by construction) general solutions as:
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Polarization XE , forward/backward propagation:

{Ex, Ey, Ez} = E
f/b
0 [J2+

ikx
(ωyzt) cos(k · r + φ

f/b
E )± J2−

ikx
(ωyzt) sin(k · r + φ

f/b
E )]

× {(tω2
yz), (−

kxky
t

), (−kxkz
t

)} ,

{Bx, By, Bz} = E
f/b
0 [J4+

ikx
(ωyzt) sin(k · r + φ

f/b
E )∓ J4−

ikx
(ωyzt) cos(k · r + φ

f/b
E )]

× {0, (−kxkz
t

), (
kxky
t

)} ; (31a)

Polarization XB, forward/backward propagation:

{Ex, Ey, Ez} = B
f/b
0 [J4+

ikx
(ωyzt) sin(k · r + φ

f/b
B )∓ J4−

ikx
(ωyzt) cos(k · r + φ

f/b
B )]

× {0, (kxkz
t

), (−kxky
t

)} ,

{Bx, By, Bz} = B
f/b
0 [J2+

ikx
(ωyzt) cos(k · r + φ

f/b
B )± J2−

ikx
(ωyzt) sin(k · r + φ

f/b
B )]

× {(tω2
yz), (−

kxky
t

), (−kxkz
t

)} , (31b)

where {Ef
0, E

b
0 , B

f
0, B

b
0} are arbitrary constant amplitudes, and {φf

E, φ
b
E, φ

f
B, φ

b
B} are arbitrary

constant phases, as determined by the initial conditions.

(Note that if any of the wavevector components, (kx, ky, kz), happen to be zero – such

as for propagation along an axis, or within a plane – then this simplifies matters, since we

could use either Eq. 15b or 15c to make the right-hand side of the 2nd-order wave equation

for some of the fields go to zero, making the number of solutions for each drop from 4 to

2. For example, kz = 0 means that B
′

x, z = 0 (and E
′

x, z = 0), so that cyclic permutation

of Eq. 15b leads to a wave equation for E
′

y, z (and B
′

y, z) with no driving term and only 2

solutions, J2±. And this works similarly with other restricted propagation directions, leading

to appropriately simplified versions of the most general solutions given above in Eq’s. 31.)

To study the energetics of these solutions, we compute the electromagnetic stress-energy

tensor via [e.g., 17]: T µν = F µ
λF

νλ − (gµνFαβF
αβ)/4. Following Misner et al. [2], we write

the four-momentum density per unit volume (as measured in an observer’s local Lorentz

frame) as: dP µ/dV = −T µνgνγU
γ ; and by choosing a stationary, comoving observer in the

Kasner metric, we have Uγ = (1, 0, 0, 0). Then, following Weinberg [17], we write the total

integrated four-momentum with a specified volume as P µ =
∫

(dP µ/dV )
√

−|gµν |d 3x =

[t(dP µ/dV )∆x∆y∆z].

For simplicity, we restrict the calculation to a single component: the forward-propagating

XE polarization solution. Even so, the results are too complicated to easily evaluate analyt-

ically. Instead we study the behavior numerically, selecting a variety of (order-unity) values
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for (kx, ky, kz), adopting some particular value of (x, y, z) in this (homogeneous) model, and

examining the behaviors of the energy and momenta P µ over time.

At large t, these P µ all oscillate with a period of ∼ (π/
√

k2
y + k2

z), which makes sense

because equations like Eq. 22 become F
′′

x, t, t + (k2
y + k2

z)F
′′

x ≈ 0, with obvious solutions

∼ cos / sin[(k2
y + k2

z)
1/2t].

As small t, however, the oscillation frequency increases at an increasing rate and without

bound, leading to a self-similar behavior with an infinite number of oscillations as t → 0.

Analytically this makes sense because the z → 0 limit of a Bessel function (at fixed order)

is known [23] to be Jν(z) ≈ (z/2)ν/Γ(ν + 1), and thus for very small t we can approximate:

J(±ikx)(ωyzt) ≈
(ωyzt/2)

±ikx

Γ(±ikx + 1)
∝ (ωyzt/2)

±ikx

= exp {ln [(ωyzt/2)
±ikx]} = exp [(±ikx) ln (ωyzt/2)]

= cos [kx ln (ωyzt/2)]± sin [kx ln (ωyzt/2)] , (32)

justifying the self-similar, infinitely oscillatory behavior described above for t → 0. This

result is consistent with the analysis in Sagnotti and Zwiebach [4], where they found an

infinite number of phase oscillations to occur as t → 0; and in our numerical studies, we

similarly find oscillations (varying ∼ 20−30% for order-unity ki choices) in the phase velocity

of the fields satisfying Eq. 22 as t → 0. Zooming in on the small-t regime, those oscillations

also seem to be self-similar in character, becoming increasingly frequent as we get to the

smallest simulated values of t.

Now considering the overall amplitude envelope of these oscillating P µ, we find that

T 0y ∼ T 0z ∝ t−1, so that P y ∼ P z are constant in time, which makes physical sense given

that the x- and y−axes are static, and it agrees with Equation 3.9 of Sagnotti and Zwiebach

[4]. However, we find that T 0x ∝ t−3 (such that P x ∝ t−2), which is not predicted by their

Equation 3.9, and reflects the evolving nature of the x-axis, the only non-static direction. A

result reminiscent of this can, in fact, be seen in their Equation 3.10, where their T 00 energy

expression contains terms proportional both to t−1 and to t−3; though that expression was

obtained for t → ∞ (where the WKB/geometric optics approximation holds), and ignoring

interference terms. From our explicit calculation, at large t – where P y and P z dominate –

we find that T 00 ∝ t−1, just like T 0y and T 0z, so that the envelope of P t is constant; but

for t → 0, where P x dominates, T 00 makes a sharp turn at some small, critical value of t

(determined by the ki parameters), and its envelope becomes proportional to t−2 for smaller
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t values, so that P t ∝ t−1. (These results also seem generally in line with those of Goorjian

[10]; though they restricted their electromagnetic vector potential fields to lie along a specific

spatial axis, a condition which we have not imposed here.)

Lastly for this case, considering that T 00 ∝ t−2 at small t, there may be concern that

the energy density increases so much that the “test field” approximation mentioned in Sec-

tion IIB might break down back towards the initial singularity. However, for Kasner cases

with general indices (px, py, pz), one finds that the Ricci tensor components (and the Ricci

scalar) due to the vacuum gravitational fields are also proportional to t−2, so that they

increase just as fast as this electromagnetic T 00 does as t → 0, thus the gravitational feed-

back by the electromagnetic fields would remain equally unimportant (relative to that of

the vacuum gravitational fields) at all times. But before one concludes that the test field as-

sumption should never be a problem for stress-energy terms with this time dependence, one

must recall that this particular Kasner (1, 0, 0) case is actually flat spacetime, and thus the

Ricci tensor and scalar are always zero, apparently making this case somewhat ambiguous.

(In fact, in Appendix B below, we show that this problem transforms exactly to the case

of the ordinary fields oscillating on a Minkowski background.) However, this also allows us

to draw the obvious conclusion that as long as one does not start out with electromagnetic

waves of such an intensity that they would create significant curvature even in flat space,

then the test field assumption should remain a safe one here.

IV. KASNER SPECIAL CASE {(−1/3), (2/3), (2/3)}

The other axisymmetric case satisfying the vacuum Kasner conditions is the one where

two axes expand as ∼ t2/3, with the third contracting as ∼ t−1/3. Sticking to the convention

of choosing the x-axis as the one with the “unique” expansion rate, we define {px, py, pz} =

{(−1/3), (2/3), (2/3)}.
Applying these indices to Eq. 17, the 2nd-order wave equation for F

′′

x ∈ {E ′′

x(t), B
′′

x(t)}
becomes:

F
′′

x, t, t −
(

1

3 t

)

F
′′

x, t +

(

k2
x t2/3 +

k2
y + k2

z

t4/3

)

F
′′

x = 0 , (33)

Alternatively, the temporal functions for the remaining fields, F
′′

y ∈ {E ′′

y (t), B
′′

y (t)} and

F
′′

z ∈ {E ′′

z (t), B
′′

z (t)}, will satisfy 4th-order wave equations derived from appropriate cyclic

permutations of Eq. 20 for these pi values.
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As we saw for the Kasner (1, 0, 0) special case, the easiest way to solve the 4th-order equa-

tions would be by guessing modified versions of the solutions to the homogeneous 2nd-order

equation. Unfortunately for this case, Eq. 33 does not appear to be a simply transformable

variation of any standard differential equation that has known analytical solutions. (In gen-

eral, it does not appear that there are known analytical solutions to this type of equation

when one has at least two distinct pi indices that are each unequal to 1.)

It is known [e.g., 5], as can easily be determined using standard mathematical software,

that solutions to equations like Eq. 33 can be expressed as non-resolved integrals of Heun

Biconfluent functions; but it is unclear if such expressions are more useful than just obtaining

direct numerical solutions to the equation. In any case, this author has not found any

convenient analytical solutions to the 2nd-order wave equation for this Kasner case.

This problem has long been a stumbling block for researchers studying this (and more

complicated) Kasner cases, so that various simplifications or approximations are necessary

to obtain some kind of analytical understanding and solutions. As discussed above in the

Introduction, a number of authors have opted either to restrict the wave propagation to be

along a single spatial axis [3, 4, 10], to focus on early- and late-time approximations [7–9],

or both [11]. Previously, we have obtained solutions for specific cases involving restricted

propagation wavevectors in metrics with carefully chosen axis expansion rates [24]; but as we

are mainly interested in the most general propagation behaviors, we will primarily employ

fully numerical methods for these studies going forward.

One interesting use of numerical methods here is to study the phase velocity of the

propagating F
′′

x fields obeying Eq. 33. Some of the results can be predicted from the easily

obtained early- and late-time solutions, as are given (for example) in Dhurandhar et al.

[7]; while some other results are discovered numerically. But considering the approximated

solutions first can provide insight for interpreting the full numerical solutions.

For late times, where [(k2
y+k2

z) t
−4/3] << (k2

x t
2/3), we drop the former term from Eq. 33 –

essentially equivalent to setting k2
y ≈ k2

z ≈ 0 – and the “exact” solution for that approximated

equation is a linear combination of sinusoids, F
′′

x ∝ cos / sin[(3/4) kx t4/3]. The implies an

adiabatically-varying temporal oscillation frequency of ωa ≡ [(3/4) kx t4/3], t = (kx t
1/3),

which makes sense given that Eq. 33 becomes F
′′

x, t, t ≈ −[(kx t1/3)2]F
′′

x for very large t. Since

the solution is sinusoidal, we can read off the (coordinate) phase velocity of this late-time

wave as v ≈ vx ≈ ωa/k ≈ ωa/kx = (kx t
1/3)/kx = t1/3 (and where we recall that c ≡ 1). Thus
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the late-time physical speed (aligned almost entirely along the contracting x-axis) is equal

to vPhys ≈ gxx(vx)
2 = t−2/3(t1/3)2 = 1. Recalling also that gtt = −1, the wave thus behaves

now exactly as a light ray would, propagating at null speed and obeying the geometric

optics approximation, just as one expects to be true when the frequencies and/or time t are

sufficiently large [7].

We cannot, however, assume geometric optics behavior all the way down to t → 0,

where the terms containing negative powers of t and the first time derivative of the field are

important. For early times, where [(k2
y + k2

z) t
−4/3] >> (k2

x t
2/3), we drop the latter term,

and the “exact” solution to Eq. 33 approximated in this way involves linear combinations of

Bessel and Neumann functions of order 2, becoming: F
′′

x ∝ {(t2/3) J2/Y2[3
√

(k2
y + k2

z) t
1/3]}.

The argument of these solutions looks right, giving an effective (when adiabatically-

varying) frequency of ωa ≡ [3
√

(k2
y + k2

z) t
1/3], t = [

√

(k2
y + k2

z) t
−2/3], which makes sense

to the extent that Eq. 33 for early times may almost be approximated as F
′′

x, t, t ≈
−{[

√

(k2
y + k2

z) t
−2/3]2}F ′′

x . But in this case, the [F
′′

x, t/(3t)] term remains important, and

the Bessel/Neumann function solutions here will deviate significantly from sinusoidal prop-

agating behavior at small-t. (Dropping the [F
′′

x, t/(3t)] term as well, of course, would finally

result in sinusoidal solutions with argument proportional to t1/3; but numerical work con-

firms that the Bessel/Neumann functions are actually the correct (approximate) solutions

down to t → 0, as will be demonstrated shortly.) Hence we expect (and indeed find) the

wave phase velocity to differ significantly from the geometric optics expectation for null rays

as t → 0; namely, failing to evolve as {vy, vz} ∝ t−2/3. (Though vx ≈ 0 still remains true).

In Section III above, we briefly discussed the construction of purely forward- and

backward-propagating waves from the known analytical temporal solutions for the Kas-

ner (1, 0, 0) case, in conjunction with the sinusoidal spatial functions. Using the almost

purely sinusoidal behavior of Bessel functions at large-t, we combined the spatial and

temporal functions in a way that numerically eliminated nearly all of the standing wave

contributions for the forward (or backward) – i.e., rightward (or leftward) – traveling waves.

From those constructed unidirectional waves, we obtained the phase velocity of each by

following a wavefront of its {E ′

x(t, x, y, z), B
′

x(t, x, y, z)} fields, after which we used the

metric to calculate the true physical speed of that wave phase velocity. As noted in that

section, our simulations for the Kasner (1, 0, 0) case found phase velocities that oscillated

(about the null speed of vPhys = 1), in a presumably infinite series of self-similar oscillations
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as t → 0; results that were in qualitative agreement with findings from prior authors.

For this Kasner {(−1/3), (2/3), (2/3)} case, we conduct a similar procedure; but, not hav-

ing analytical solutions for the F
′′

x fields obeying the full Eq. 33, we used a pair of numerical

solutions (similarly treated to remove standing-wave contributions) in order to construct

the rightward- and leftward-propagating waves. (Note that the waves propagating in ei-

ther direction behaved indistinguishably from one another, as they should for this spatially

homogeneous spacetime.) But what we do find for this metric, is that wave propagation

speeds are inhibited as the initial singularity is approached. The phase velocity of the waves,

though staying very close to the null ray speed of vPhys = 1 for sufficiently large t, begins to

decrease for t values close to unity (the transition time depending quantitatively upon the

particular ki values), and as t → 0 here, vPhys → 0.

A plot of this (physical) wave phase velocity is shown in Figure 1, for three sets of

wavevector values: kx = {0.5, 1.0, 2.0}, where for all of those we set kyz ≡
√

k2
y + k2

z = 1.

As expected, we see that higher frequencies (i.e., larger kx here) insures better agreement

(down to earlier time t) with the v = c light ray speed expectation; but in all cases, as

t → 0, there is a point where the predictions of geometric optics break down, and the phase

velocity of the waves (in all propagation directions, as our numerical results show) become

inhibited by the anisotropically-contracting nature of this metric. While it is difficult to

make conclusions about energy propagation speeds based solely upon phase velocities, a

naive conclusion would be that energy propagation may very well get choked off as t → 0

in this metric; a purely wave-based effect that has no analogous implication from simple

null-ray estimations.

Beyond the obvious interest in such findings obtained for these homogeneous vacuum

metrics, it is especially intriguing that the Kasner {(−1/3), (2/3), (2/3)} case is equivalent

to the vacuum-limit of a radiation-filled metric that is not just anisotropic, but also in-

homogeneous; yet which remains highly symmetrical nevertheless, and thus amenable for

study.

Specifically, what may be called the Kuang-Li-Liang (KLL) metric – i.e., one particular

variety of the cases given in Kuang et al. [25] – is defined as:

ds2 =
J2(T ±X)

T 1/2
(−dT 2 + dX2) + T (dY 2 + dZ2) , (34)

where J is a general (real) function of the variable (T + X) – or alternatively, of (T −
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FIG. 1. Total physical speed of the phase velocity for the {E′

x, B
′

x} fields obeying Eq. 33 in

the Kasner {(−1/3), (2/3), (2/3)} metric, plotted versus time from the initial singularity. The

wavenumber kx is varied, while holding (k2y + k2z) = 1. For each numerical simulation, rightward

and leftward propagating waves for each case are found to produce indistinguishable results. The

line v = 1 represents the prediction for null rays according to geometric optics.

X) – which to satisfy reasonable energy conditions must obey J
′

/J > 0. This metric

breaks homogeneity but remains planar-symmetric gravitationally, and is filled with pure

electromagnetic radiation. (That background radiation is semi-plane-symmetric, in the sense

that rotations within the Y Z-plane will alter the electromagnetic polarization but not its

energy density.)

This non-vacuum, conformally non-flat metric also possesses a cosmological (expand-

ing/contracting) quality, in that it is known [26] that the limit J → 1 makes this metric

exactly equivalent to the Kasner {(−1/3), (2/3), (2/3)} case. One can verify this using the

substitutions: t = [(4/3) T 3/4], x = [(3/4)−1/3 X ], y = [(3/4)2/3 Y ], z = [(3/4)2/3 Z].

Such properties all make this KLL metric (for various choices of J(T ±X)) an extremely

interesting physical system for studying wave propagation, using the formalism, methodol-

ogy, and numerical tools developed for and demonstrated in this paper. As a generalization

of Kasner {(−1/3), (2/3), (2/3)}, the KLL metric almost certainly needs a numerical treat-

ment; and we intend to use the intuition gained from all of our results from the Kasner cases
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discussed here as a stepping stone for interpreting future results that will be obtained for

that physically richer (though more mathematically complicated) system.

V. DISCUSSION AND SUMMARY

In this paper, we applied the curved spacetime Maxwell equations to the general class

of Kasner metrics, and used the usual vector identities to produce 2nd-order differential

equations for the full set of electromagnetic fields.

Unlike the results from previous authors that we have seen, our 2nd-order wave equations

were not fully uncoupled (as they are in flat spacetime), but contained nonhomogeneous

driving terms indicating a mixing between the electric and magnetic field components, gen-

erated directly by the anisotropic nature of the Kasner expansion/contraction rates. To

eliminate the coupling in the wave equations, it was necessary to produce 4th-order differen-

tial equations; and consequently we derived 4th-order wave equations that are valid for all

of the fields in any metric with Kasner-like axis expansion rate coefficients (i.e., whether or

not they satisfy the Kasner vacuum conditions).

We then considered two special axisymmetric Kasner cases, for which the wave equations

for the fields along the axis of symmetry are greatly simplified. First, for the (px, py, pz) =

(1, 0, 0) case, we obtained the explicit solutions for all of the fields, for a wave with the

most general wavevector components, traveling in a general direction through the three

dimensional space. This included full solutions to the 4th-order wave equations, deriving

what we believe are additional field solutions that had not been found in previous studies

of this Kasner case. We also studied the energetics of the fields, showing them to agree

(where comparable) with previous studies, and in general providing us with confidence in the

appropriateness of the assumption made by treating these solutions as test fields, propagating

upon an essentially unchanged background Kasner metric.

Next, we considered the {px, py, pz} = {(−1/3), (2/3), (2/3)} case, deriving our 2nd-order

wave equations for the fields, and pointing out (as noted by previous researchers) that the

equations (even without considering the nonhomogeneous driving terms) are analytically

unsolvable. Using late-time and early-time approximations, we set expectations for what

the temporal oscillation frequencies would be; and we also noted that the geometric optics

approximation should be valid at late times, but should be expected to break down at early
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times, leading to deviations from null ray behavior that only become apparent as t decreases

below (approximately) unity and heads to zero.

Using a numerical program written specifically for this research, designed to compute

phase velocity of the wave by following a wavefront through the evolving metric, we find

that the above expectations were correct: at late times, the physical speed of the phase

velocity is nearly exactly equal to v = c ≡ 1; but as t → 0, the wave propagation is sharply

inhibited, causing v → 0. Again as expected, larger wavenumbers (i.e., larger kx) allowed

the geometric optics approximation to remain valid longer, down to smaller t, forestalling

(but not preventing) the ultimate breakdown of the validity of the null ray treatment of the

light waves.

Lastly, we noted a very interesting class of non-vacuum, radiation-filled, inhomogeneous

metrics with cosmology-like behavior, for which the Kasner {(−1/3), (2/3), (2/3)} case is

the vacuum limit; and which should be perfectly suited for future study using the analytical

formalism and numerical tools developed in this paper.

Appendix A: Derivation of the 2nd-order wave equation

Here we derive the inhomogeneous wave equation for E
′

x, Eq. 14 – from which similar

equations can be inferred for all of the fields – from the 1st-order curved space Maxwell

equations for such fields.

Recall that these renormalized fields obey ∇ ·E′

= ∇ ·B′

= 0 (the dot products being

defined here as in flat spacetime); and the three curl equations which we need here (of the

six inferred from Eq’s. 13), are reproduced here as:

E
′

x, t = [t(−px−py+pz)B
′

z, y]− [t(−px+py−pz)B
′

y, z] , (A1a)

B
′

y, t = [t(−px−py+pz)E
′

z, x]− [t(px−py−pz)E
′

x, z] , (A1b)

B
′

z, t = [t(px−py−pz)E
′

x, y]− [t(−px+py−pz)E
′

y, x] . (A1c)

Next, we take the combination:

∂/∂y{[t(−px−py+pz)]× Eq. A1c} − ∂/∂z{[t(−px+py−pz)]× Eq. A1b} . (A2)

For clarity, we will treat the left hand side (LHS) and right hand side (RHS) of the resulting
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equation separately. Working out the combination just mentioned, we get:

LHS = [t(−px−py+pz)]B
′

z, t, y − [t(−px+py−pz)]B
′

y, t, z , (A3a)

RHS = [t−2pyE
′

x], y, y − [t−2pxE
′

y], y, x − [t−2pxE
′

z], z, x + [t−2pzE
′

x], z, z . (A3b)

Note that we have used the fact that we can exchange (commute) the spatial partial deriva-

tives freely here.

Then, using ∇ ·E′

= 0, and thus [t−2px(∇ ·E′

), x] = 0, we can write:

[t−2pxE
′

x], x, x = −[t−2pxE
′

y], y, x − [t−2pxE
′

z], z, x , (A4)

and hence we get:

RHS = [t−2pxE
′

x], x, x + [t−2pyE
′

x], y, y + [t−2pzE
′

x], z, z ≡ {t∇2}E ′

x . (A5)

Next, for the LHS, we commute the time derivatives outward in Eq. A3a; though since

∂/∂t cannot be moved through powers of t without generating extra product rule terms, we

add them in as necessary, to get:

LHS = {[t(−px−py+pz)]B
′

z, y − [t(−px+py−pz)]B
′

y, z}, t

−
[

(−px − py + pz)

t
t(−px−py+pz)B

′

z, y

]

+

[

(−px + py − pz)

t
t(−px+py−pz)B

′

y, z

]

= {E ′

x, t}, t +
(px
t

)

{[t(−px−py+pz)B
′

z, y]− [t(−px+py−pz)B
′

y, z]}

+
(py − pz)

t
[t(−px−py+pz)B

′

z, y + t(−px+py−pz)B
′

y, z]

= E
′

x, t, t +
(px
t

)

E
′

x, t

+
(py − pz)

t
[t(−px−py+pz)B

′

z, y + t(−px+py−pz)B
′

y, z] , (A6)

where the second and third equalities were obtained using repeated applications of Eq. A1a.

Finally, setting the LHS from Eq. A6 equal to the RHS from Eq. A5, we get:

E
′

x, t, t +
(px
t

)

E
′

x, t +
(py − pz)

t
[t(−px−py+pz)B

′

z, y + t(−px+py−pz)B
′

y, z] = {t∇2}E ′

x , (A7)

which is the same as Equations 14,15a, as promised.
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Appendix B: Reduction of the Kasner (1,0,0) electromagnetic tensor to Minkowski

Form

It is known [27] that the metric in Eq. 21 can be transformed to Minkowski space with

the substitutions:

t̃ ≡ t cosh x , x̃ = t sinh x . (B1)

The reverse transformations are thus given by:

t = (t̃2 − x̃2)1/2 , x = arctanh (x̃/t̃) . (B2)

The covariant electromagnetic tensor can be transformed to the new coordinate system

via [17]:

F̃ µν =
∂x̃µ

∂xα

∂x̃ν

∂xβ
F αβ , (B3)

with:

MK ≡ ∂x̃µ

∂xα
=















cosh x t sinh x 0 0

sinh x t cosh x 0 0

0 0 1 0

0 0 0 1















=















t̃(t̃2 − x̃2)−1/2 x̃ 0 0

x̃(t̃2 − x̃2)−1/2 t̃ 0 0

0 0 1 0

0 0 0 1















. (B4)

As defined in Section IIA, and applied to this Kasner (1, 0, 0) metric, we can write the

(contravariant) electromagnetic tensor as:

F αβ =















0 (t−2Ex) Ey Ez

−(t−2Ex) 0 (t−1Bz) −(t−1By)

−Ey −(t−1Bz) 0 (t−1Bx)

−Ez (t−1By) −(t−1Bx) 0















. (B5)

Now, remembering that the new coordinates are Minkowski space – so that we raise and

lower indices with η = Diag(−1, 1, 1, 1) – the transformed electromagnetic (covariant) tensor

is calculated as:

F̃µν = ηF̃ µν(η)T = ηMKF
αβ(ηMK)

T

=
1

(t̃2 − x̃2)1/2















0 −Ex −(Ey t̃+Bzx̃) −(Ez t̃− Byx̃)

Ex 0 (Bz t̃ + Eyx̃) −(By t̃− Ezx̃)

(Ey t̃+Bzx̃) −(Bz t̃ + Eyx̃) 0 Bx

(Ez t̃−Byx̃) (By t̃− Ezx̃) −Bx 0















. (B6)

29



Comparing this result to the corresponding flat spacetime tensor:

F̃ (Flat)
µν =















0 −Ẽx −Ẽy −Ẽz

Ẽx 0 B̃z −B̃y

Ẽy −B̃z 0 B̃x

Ẽz B̃y −B̃x 0















. (B7)

we see that the Kasner (1, 0, 0) electromagnetic fields are exactly the same as in Minkowski

space, if we relate the Kasner fields (before the separation into non-static variables via

Eq’s. 16-17) to Minkowski ones, by taking combinations like:

Ẽy ≡
(Ey t̃+Bzx̃)

(t̃2 − x̃2)1/2
= (Ey cosh x+Bz sinh x) ,

B̃z ≡
(Bz t̃+ Eyx̃)

(t̃2 − x̃2)1/2
= (Bz cosh x+ Ey sinh x) , (B8)

and so on.

Finally, note that the Kasner (1, 0, 0) metric is not equivalent to the entire flat spacetime;

but, as is obvious from Eq. B6 (and from the definitions in Eq. B2), the region of Minkowski

space bounded by |t̃| ≥ |x̃|, t ≥ 0 is enough to cover the entire Kasner allowed coordinate

range of tKas ≥ 0, −∞ < {xKas, yKas, zKas} < ∞.

ACKNOWLEDGMENTS

I am grateful to Austin Nguyen for introducing me to the Julia programming environment

that has been used for the calculations in this research; and to Elizabeth Wu for collaboration

on preliminary numerical work regarding wave propagation restricted to each of the principal

Kasner expansion axes.

[1] V. A. Belinskii, E. M. Lifshitz, and I. M. Khalatnikov, Oscillatory approach to the singular

point in relativistic cosmology, Sov. Phys. Usp. 13, 745 (1971).

[2] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman and Company,

1973).

[3] F. A. Asenjo and S. A. Hojman, Birefringent light propagation on anisotropic cosmological

backgrounds, Phys. Rev. D 96, 044021 (2017).

30



[4] A. Sagnotti and B. Zwiebach, Electromagnetic waves in a bianchi type-i universe, Phys. Rev.

D 24, 305 (1981).

[5] O. L. Petersen, The mode solution of the wave equation in kasner spacetimes and redshift,

Math. Phys. Anal. Geom. 19, 26 (2016).

[6] L. S. Kegeles and J. M. Cohen, Constructive procedure for perturbation of spacetimes, Phys.

Rev. D 19, 1641 (1979).

[7] S. V. Dhurandhar, C. V. Vishveshwara, and J. M. Cohen, Electromagnetic, neutrino, and

gravitational fields in the kasner space-time with rotational symmetry, Class. Quant. Grav. 1,

61 (1984).

[8] R. Pons and G. Marcilhacy, Exact solutions for electromagnetic, neutrino, and gravitational

fields in kasner spacetime, Class. Quant. Grav. 4, 171 (1987).

[9] A. Ansary, Electromagnetic, neutrino, and gravitational fields in kasner model, Indian. J.

Theor. Phys. 45, 343 (1997).

[10] P. Goorjian, Electromagnetic plane-wave perturbation in kasner cosmologies, Phys. Rev. D

12, 2978 (1975).

[11] M. Wollensak, Maxwell fields in anisotropic space-times, J. Math. Phys. 39, 5934 (1998).

[12] G. Esposito, E. Battista, and E. D. Grezia, Bicharacteristics and fourier integral operators in

kasner spacetime, Int. J. Geom. Methods Mod. Phys. 12, 1550060 (2015).

[13] A. Alho, G. Fournodavlos, and A. T. Franzen, The wave equation near flat friedmann-lemâitre-
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