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The Einstein- Gauss- Bonnet (EGB) gravity is an important modification of the Einstein theory
of gravity and, for many gravitational phenomena, the Gauss- Bonnet (GB) correction term leads to
drastic differences. In this paper, we study gravitational collapse in the 5-dimensional EGB theory.
We construct the spherical marginally trapped surfaces and determine the evolution of marginally
trapped surfaces when the infalling matter admits a wide variety of initial density distribution. We
show that the location of black hole horizon depends crucially on the initial density and velocity
profile of the inflating matter as well as on the GB coupling constant. A detailed comparison is
made with the results of Einstein’s theory.

PACS numbers: 04.70Bw, 98.62Mw

I. INTRODUCTION

The study of gravitational collapse of a self- gravitating isolated system remains a matter of great physical impor-
tance in understanding large scale structures in the universe, as well as towards discerning the formation of black hole
horizons, spacetime singularities and the cosmic censorship conjecture [1–6]. In general relativity (GR), the spherical
gravitational collapse and the singularity theorems have been studied at length. Although several important aspects
including the cosmic censorship, non- symmetrical collapse remain to be understood completely, the progress in this
direction has been remarkable.

The models of gravitational collapse in alternate theories of gravity, including higher dimensional ones, are also
being studied with interest since it is believed that one (or some) of these theories may solve problems affecting GR,
including spacetime singularities [7–13]. Among these, modified gravity theories with higher curvature corrections
arise naturally. Indeed, GR is viewed as an effective field theory in which the Einstein- Hilbert action is only a low
energy contribution and higher curvature terms consistent with the diffeomorphism invariance may become relevant
as one goes to higher energies [14–21]. Such higher curvature terms have been explicitly obtained in string theories
[22–26]. These higher curvature corrections should leave imprints at low energy scales which become important for low
energy physics too, affecting the horizon structure of large black holes. The Einstein- Gauss- Bonnet (EGB) theory
is possibly the simplest diffeomorphism invariant modification of GR whose equations of motion contain no more
than second order in time derivatives [15–17, 27–29]. This generalization is also known to be the unique lowest order
correction in the Lovelock action. Furthermore, since the EGB gravity is free from ghosts (if the coupling constant
has the same sign as the GR term) and leads to a well-defined initial value problem, it is a respectable theory of
gravity in higher dimensions, and its solutions have also been a matter of interest. In particular, black hole solutions
in the EGB theory are well known. They include the Boulware- Deser, and other spherically symmetric solutions
[24, 30–32]. Black holes in EGB theory are also testbeds to gain fundamental insights into various quantum aspects
of gravity like the horizon entropy [33–35].

Thus, because of importance of the EGB theory as a natural higher dimensional theory, effect of the GB correction
term on the spherically symmetric gravitational collapse and singularity structure have received attention. Naturally,
particular emphasis has been placed on the inhomogenous dust collapse models of Lemaitre- Tolman- Bondi (LTB)
type [7–11]. In particular, [7] has carried out a complete study of the singularity structure of all the collapse models
for spacetime dimensions n ≥ 5. It arises from this study that (i) all naked singularities for n ≥ 6 are massless,
and (ii) for n = 5, all singularities with mass > 2λ, with λ being the GB coupling constant, are censored. This
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feature was also studied in the context of a marginally bound LTB spacetime by directly solving for the singularity
curves, and the apparent horizon, for a simple matter model [10]. Although, some features of [7] were borne out in
[10], in particular that the central (as well as non-central) singularity is naked, and this untrapped region increases
with coupling constant λ > 0, it remains a possibility that these structures of local naked singularity may well wash
out if a more complicated or realistic matter profile is considered. This expectation is not unwarranted since the
occurrence of naked singularities break the Censorship conjecture [6], and the Seifert conjecture [36], which essentially
states that massive singularities must be censored inside a trapped region. Of course, it remains a possibility that
these conjectures themselves need modifications in higher dimensions, just like the Hoop conjecture [37]. Hence, it
is essential that gravitational collapse in the 5- dimensional EGB model be studied in the full generality, using a
large class of models where the matter admits a wide variety of initial density and velocity profiles. This study shall,
therefore be useful to identify the region of the parameter space where such singular structures arise.

Here, we develop the formalism of gravitational collapse in the EGB theory further to the scenarios where, (a) the
collapse is bounded (or, for that matter, unbounded), and that (b) density function of the collapsing matter has a
realistic initial density distribution profile, and (c) use this formalism to locate spherical (marginal) trapped surfaces
developing during the collapse of matter fields. This shall be carried out by directly solving the equations of motion
arising in the EGB theory of gravity. This, to our knowledge, are significant improvements since direct study using
explicit solutions have been carried out only for marginally bound collapse models (see for example [10]). Additionally,
in the literature, the density of the collapsing matter profiles are restricted to simple power law models (including
those carried out in [10]) and hence, these studies exclude possible realistic scenarios in which matter admits wider
class of density distributions. Such density distributions include for example, a gaussian, or a matter profile with more
complicated dependence on space, including the angular coordinates (although, here we shall only concern ourselves
with matter profiles depending on radial coordinates). Indeed, the formation of spacetime singularity, the apparent
horizon (AH), the event horizon (EH) and their time development, depend not only on the theory, or the initial
velocity profile, but are also intimately connected with the density distribution of the collapsing matter. For example
in GR, the formation and dynamics of the AH changes drastically with variations in the density profile [38, 39], and
it is natural to expect that such time- development of horizons will also be observed for the GB modification too.

In this paper, we study these issues in the context of the inhomogeneous LTB collapse models in the EGB theory,
by carefully addressing them with examples. We track the motion of the collapsing shells, and simultaneously follow
the time development of horizon in relation to this collapsing matter. In particular, we consider the horizon to be
foliated by closed spherical 3- dimensional surfaces, such that the expansion scalar of the outgoing null normal vanishes
θ(`) = 0, while that of the ingoing null normal is negative θ(n) < 0. This formulation of the black hole horizon is called
Marginally Trapped Tube (MTT) and has found use in analytical and numerical studies of black holes, in particular
in understanding their classical nature, quantum behaviour, as well as their stability under various geometric and
physical variations [38, 40–57]. Note that since MTT is not associated with a particular signature, it can describe
various states of a horizon. For example, a black hole horizon in equilibrium is a null MTT and is referred to as
an isolated horizon (IH) (see [41, 42, 45, 52, 57]. A growing black hole admits a spacelike MTT, and is called a
dynamical horizon (DH) (see [43–45, 54, 55] for these horizons as well as their variations). Further, it is useful to
describe a MTT with timelike signature, which admits matter flow in both directions, and is called a timelike tube.
Thus MTTs provide an unified framework to study time evolution of black holes through different phases. The nature
of spherical MTTs during gravitational collapse in GR has been studied in detail for various class of matter fields
[38, 39]. However, spherical MTTs in the EGB theory remains to be studied in the context of gravitational collapse
of inhomogeneous matter fields (the LTB models), and here we fill this gap by making a detail study of these matter
collapse models. We carry out, (i) study the collapse end state with special emphasis on the formation of horizons,
and in particular, track the location of spherical marginally trapped tubes with variation of matter profile, and (ii)
for the mass profiles considered here, identify the regions of the parameter space where the MTT evolves as a DH
(spacelike), where it might be timelike, and when it reaches equilibrium and become a null IH. This shall also help
us to (iii) correctly locate the spherical outermost trapped surface developing during gravitational collapse. We must
stress that although MTTs in 4- dimensions have been studied [38, 39], their behaviour is drastically different in the
EGB models, even for large coupling constants.

The paper is arranged as follows: In the next section, we briefly discuss the equations of motions for the EGB
theory and it’s reduction in the context of spherically symmetric spacetimes, in the (t, r, θ, φ, ψ) coordinates. We
shall also discuss the matter contributions to these equations and the way to determine the spherically symmetric
MTTs for these spacetimes. In section III, we solve the equations of motion directly for the marginally bounded and
bounded cases. The solution for the unbounded case is similar, and so we shall not repeat it here. We conclude in
section IV with discussions.
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II. MARGINALLY TRAPPED TUBES IN THE EGB THEORY

The formalism of MTT as a quasilocal description of black hole horizons was developed in [46]. In the following,
we present a brief discussion on this formalism, and set up the basic notations for our later use. Let us consider
a 5- dimensional spacetime (M, gµν) with signature (−,+,+,+,+). Let ∆ be a hypersurface in M which may be
spacelike, timelike or even null. ∆ is taken to be topologically S3×R. At each point of the spacetime, we shall have 2
null vectors and three spacelike vectors. The null vector fields `µ and nµ are respectively the outgoing and the ingoing
vector fields orthogonal to the 3- sphere cross-sections of ∆, with ` · n = −1. The three normalised spacelike vectors

tangential to the 3- sphere are called θ̂, φ̂, and ψ̂ respectively, and are orthogonal to the null vectors `µ and nµ. If tµ is
a vector field tangential to ∆ and normal to the S3 foliations, then tµ = `µ−Cnν . Now, assume that the S3 foliations
are such that its null normals satisfy the following conditions: (i) θ(`) = 0, and (ii) θ(n) < 0. The hypersurface ∆
foliated by such surfaces is called a MTT. Note that MTT does not carry a specific signature. Since t · t = 2C, the
constant C determines the signature of ∆. When C = 0, ∆ is null, foliated by `µ and it describes a black hole in
equilibrium (an IH). it describes a black hole in equilibrium (an IH), a DH when it is spacelike (C > 0), or simply a
timelike membrane when C < 0 and ∆ is timelike. Thus, MTT is an unified formalism for horizon evolution. The
value of C can be determined for various gravitational collapse processes, and for a wide class of energy momentum
tensors. Hence, the entire evolution of the MTT can be unambiguously determined throughout the evolution process,
if the signature of C is known.

As tµ is orthogonal to the foliations and tangential to ∆, it generates a foliation preserving flow so that on ∆, the
following condition holds:

£t θ(`) , 0. (1)

This equation implies that C =
[
£` θ(`)/£n θ(`)

]
. To determine the value of the constant C, we use the geometrical

equations of 3-surface geometry given in the appendix (V B). These equations imply that the constant C which
determines the nature of the MTT is given by:

C =
Gµν `

µ`ν

3(2π2/A)2/3 −Gµν `µnν
, (2)

where we have used the relation between area of the round 3-sphere A, and the scalar curvature: R = 6(2π2/A)2/3.
We shall also assume that the Einstein- Gauss- Bonnet field equations Gµν ≡ Rµν − (1/2)Rgµν = Tµν

1, holds on ∆.
The signature of C in eqn. (2) is a quantity of utmost importance since it decides the nature and stability of horizon

[47, 51], and, as may be observed from the above equation, this value is regulated by the null components of the energy-
momentum tensor as well as area of the cross-sections of the MTT. However, in the following sections where we shall
treat a wide class of energy-momentum tensors for collapse models of the LTB type, we shall observe that details
like the initial velocity profile, initial density profile of the collapsing matter, and the dimension of the spactime play
important role as well. Indeed, in several cases, simple changes in the density profile alters the nature and time of
formation of the spacetime singularity, and that of the MTT quite drastically. For example, in 4- dimensions, if the
matter profile is smooth, the MTT begins as a spacelike hypersurface from the center of the cloud as soon as matter
begins to fall, and asymptotes to the null event horizons as infall of matter is discontinued. Trapped surfaces in 4-
dimensions are discussed in [38, 49, 58–68]. However, in the 5- dimensional EGB theory, even for the collapse of
marginally bound matter with density admitting a Gaussian distribution, the central singularity forms earlier than
the corresponding MTT. This happens because the EGB equations allow the formation of MTT only at the later shell
coordinates, and hence, the collapse of the first few shells leads to an untrapped singularity.

In the following section, we shall discuss the EGB equations of motion for the spherical collapse of matter fields,
and determine the requirements for formation of trapped surfaces in the 5- dimensions.

A. The equations of motion

The action for the 5- dimensional EGB theory is given by

S =

∫
d5x
√
−g (R+ λLGB) + Smatter, (3)

1 We use the units of c = 1 and 8πG = 1, or equivalently, we scale the components of the energy- momentum tensor by 8πG. In case of
the EGB theory too, we shall write the Einstein equations in the similar manner, Gµν = Tµν . In that case, Tµν shall imply a sum of
terms, due to matter variables Tµν and, due to extra geometric variables arising out of the GB correction.
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where R is the Ricci scalar, g denotes determinant of the metric gµν and, λ is coupling constant of the Gauss- Bonnet
term. The Gauss- Bonnet Lagrangian (LGB) is given by

LGB = R2 − 4RµνR
µν +RµνσδR

µνσδ. (4)

The action eqn. (3) leads to the following field equations

Gµν ≡ Rµν −
1

2
Rgµν = Tµν − λHµν , (5)

where the term Gµν is the usual Einstein tensor as in GR, Tµν is the energy momentum tensor, and Hµν is the
contribution due to the Gauss- Bonnet term. In the above equation (5), the term Hµν signifies the following

Hµν = H ′µν −
1

2
gµν LGB

= 2
[
RRµν − 2RµλR

λ
ν − 2RλσRµλνσ +Rµ

λσδ Rνλσδ
]
− 1

2
gµν LGB . (6)

Note that Hµν may be considered as an effective energy momentum tensor adding to the usual matter tensor.
Now, we consider a general spherically symmetric collapsing cloud of fluid bounded by a spherical surface. In the

comoving coordinates, the line element of a 5 dimensional spherically symmetric spacetime geometry can be written
as

ds2 = −e2α(r,t)dt2 + e2β(r,t)dr2 +R(r, t)2
[
dθ2 + sin2 θ dφ2 + sin2 θ sin2 φdψ2

]
, (7)

where α(r, t), β(r, t) and R(r, t)2 are metric functions to be determined. R(r, t) is radius of the collapsing matter
cloud whereas, θ, φ, ψ are the angular coordinates of that 3-sphere. The energy momentum tensor for the fluid is
taken to be

Tµν = (pt + ρ)uµuν + ptgµν + (pr − pt)XµXν (8)

where ρ(r, t) is density, whereas pr(r, t) and pt(r, t) are the radial and tangential components of pressure. The uµ and
Xµ are unit time-like and space-like vectors satisfying uµu

µ = −XµX
µ = −1 In the comoving co-ordinates the four

velocity and the unit space-like vector of the fluid as uµ = e−α(∂t)
µ and Xµ = e−β(∂r)

µ.
The equation of motion for this metric in the EGB theory are given by

ρ(r, t) =
3

2

F ′(r, t)

R3R ′
, (9)

pr(r, t) = −3

2

Ḟ (r, t)

R2 Ṙ
, (10)

Ṙ ′ = Ṙ α′ +R ′ β̇, (11)

α′ =
3R ′

R

pt − pr
ρ+ pr

− p ′r
ρ+ pr

, (12)

F (r, t) = R2 (1−G+H) + 2λ(1−G+H)2, (13)

where the superscripts primes (′) and dots (·) represent partial derivatives with respect to r and t respectively. The
quantity R(r, t) is physical radius for matter configuration and F (r, t) is the Misner-Sharp mass function. The first
and the second equations, (9) and (10), are the G00 and the G11 equations. The third is the R01 equation. The fourth
equation is the Bianchi identity ∇µTµr = 0, which for the pressureless matter implies that the metric variable α′ = 0.

The equation (13), is the equation for the mass function with the functions H(r, t) and G(r, t) defined as H = e−2αṘ2

and G = e−2βR′ 2.
Several points are to be noted regarding the abovementioned equations of motion. First, the relation between the

matter variables and the geometric variables in the above equations (7)- (13) are modified in comparison to the 4-
dimensional Einstein theory. The changes in the numerical factors are due to dimensionality of the spacetime as well
as due to change in the theory itself, see for example equation (13).

2 The symbol R is used to denote both Ricci scalar and the radius of the matter configuration. We deliberately kept the same symbol
since they will not appear simultaneously to cause any confusion.
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Second, the number of independent equations are five in number. The unknown functions in this problem are the
three metric variables α(t, r), β(t, r), R(t, r), three matter variables pr(r, t), pt(t, r), ρ(t, r), and the mass-function
F (t, r). This combination allows two freely specifiable functions. Since the equations give dynamical evolution of the
functions, it is natural to specify these functions at an initial time t = ti, and allow the Einstein equations to evolve
the dynamical functions. Since we shall be dealing with pressureless (dust) collapse, it is useful to point out that for
dust collapse, pr and pt are taken to vanish at ti, and this fixes the function α(t, r) = α(t). We shall show below that
this effectively implies α = 0, since we can rescale the time coordinate. The remaining freely specifiable functions are
the density ρ(r, ti), and β(r, ti) which, as we shall show below, implies the specification of initial density and velocity
profiles of the collapsing matter. We shall also assume that R(r, ti) = r. This requirement is consistent with the
regularity conditions discussed below. By choosing different values of r at the initial surface gives the time evolution
of the various shells of matter.

Thirdly, few regularity conditions on the metric functions must also be enforced during the collapse process. The
positivity and regularity of the density ρ(t, r), and equation (9) imply that the mass function F (t, r) must smoothly
vanish at the center of the matter configuration at r = 0. The condition R(t, r) = 0 is the genuine spacetime singularity
where the density and the curvature scalars blow up. Note that the density also blows up for R ′ = 0, although this
is not a genuine spacetime singularity and can be removed. This condition in fact implies shell-crossings, when shells
of fixed r cross each other. The sufficient condition which guarantees no shell-crossing is R ′ > 0, which ensures that
shells maintain their ordering. Note that R(r, ti) = r, and any other index on r leads either to shell- crossing or affects
differentiability of metric functions at center of the matter configuration. An important requirement for gravitational
collapse is to require Ṙ(r, t) < 0. Finally, we shall ensure in our study that no trapped surface is present at the initial
data, by checking that the value of r at the initial surface is greater than the condition of formation of trapped surface
at that coordinate.

Now, with the metric given in equation (7), the outgoing and the incoming null normals to the 3-sphere are given
by3:

`µ = (∂ t)
µ + e−β(t,r) (∂r)

µ (14)

nµ = (1/2)(∂ t)
µ − (1/2) e−β(t,r) (∂r)

µ. (15)

This leads to the following expressions for the expansion scalars:

θ(`) =
3

R(r, t)
[Ṙ+R′ exp(−β)] =

3

R(r, t)
[Ṙ+

√
1− k(r)], (16)

θ(n) =
3

R(r, t)
[Ṙ−

√
1− k(r)], (17)

where we have used the relation R′ = eβ(r,t)
√

1− k(r). This relation is obtained as follows: For the case of pressureless
matter, eqn. (12) gives α′ = 0 which along with eqn. (11) implies:

G(t, r) = e−2β(r,t)R ′ 2 ≡ E(r) ≡ 1− k(r), (18)

where k(r), E(r) are the integration functions. From the equation (13), the equation of motion of collapsing configu-

ration gives the following expression for Ṙ(t, r):

Ṙ(r, t) = −
[
(1/4λ){

√
R4 + 8λF (r, t)−R2} − k(r)

]1/2
, (19)

where we have used the −ve sign, as required for gravitational collapse. It follows from this equation (19), and the
equation (16) that the condition for θ(`) = 0 requires:

RM (r, t) =
√
F (r, t)− 2λ, (20)

which at the same time is also the condition for θ(n) < 0. Thus, for the spacetimes we are studying, all the three
spheres which satisfy eqn. (20) are marginally trapped spheres.

3 These expressions are valid for dust collapse. In general, one has e−α(r,t) (∂ t)µ in place of (∂ t)µ in equations (14) and (15).
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As discussed earlier following eqn (2), the dynamics of the marginally trapped surfaces (whether they are timelike,
spacelike or null), depends upon sign of the expansion parameter C. On the trapped surface, it is defined by

C =
Tµν`

µ`ν − λHµν`
µ`ν

3/R(r, t)2 − Tµν`µnν + λHµν`µnν
, (21)

where eqn.(2) and eqn.(5) have been used. Now, the task is to write down all the components in Tµν as well as in
Hµν in terms of the matter variables. The expression for Tµν is already given in equation (8). The details of the
calculation for Hµν is carried out in the appendix (V A). The quantity Hµν `

µ`ν in equation (21) is given by:

Hµν`
µ`ν = 2

[
6F (ρ+ pr)

(F − 2λ)
2 + 2p2

θ − 4prpθ −
2

3
pθ (ρ+ pr)

]
, (22)

Similarly, the expressions for Hµν `
µ nν involves two terms, which are given by:

H ′µν `
µ nν = 2

[
4pθ

(
pθ +

2

9
ρ− 4

3
pr

)
− 2

(F − 2λ)
2 {6Fpt + (F + 4λ) (ρ− pr)}

− 6

{
pt +

2

3
(ρ− pr)−

3F

(F − 2λ)
2

}2

+
16

9

(
ρ2 + p2

r

)
− 72

λ2

(F − 2λ)
4

 .
(23)

The term involving the LGB gives the following expression in terms of the matter variables:

LGB = R2 − 4RttR
tt − 4RrrR

rr − 12RθθR
θθ + 6RtrtrR

trtr + 18RtθtθR
tθtθ + 18RrθrθR

rθrθ + 18RθφθφR
θφθφ

=

[
2

3
(ρ− pr)− 2pt

]2

+ 18

[
F 2 + 32λ2

(F − 2λ)
4

]
+ 6

[
pt +

2

3
(ρ− pr)−

3F

(F − 2λ)
2

]2

− 12

9
(ρ− pr)2 − 4

[
2

3
(ρ+ pr) + pt

]2

− 4

[
2

3
(ρ+ pr)− pt

]2

. (24)

Using these expressions in equation (21), we shall understand the evolution of spherical MTTs for various collapse
scenarios.

III. GRAVITATIONAL COLLAPSE FOR PRESSURELESS MATTER

Let us use the equations derived above to understand the dynamics of collapse process for pressureless matter
configuration. In the absence of pressure, the EGB equation (10) implies that F = F (r), whereas eqn. (12) gives
α′ = 0. The metric function α(t, r) is a function of t only. This allows the rescaling of the time coordinate so that
effectively α(t, r) = 0. The metric function β(t, r) follows from eqn. (18). This two solutions implies that the metric
is given by:

ds2 = −dt2 +
R ′ 2

1− k(r)
dr2 +R(r, t) 2 dΩ3, (25)

where dΩ3 is the metric of an unit round 3-sphere, and R(t, r) is obtained from the equation (13), which gives the
equation of motion of the collapsing matter configuration in 5D-EGB theory:

Ṙ 2(r, t) = −k(r)− R2

4λ
+
R2

4λ

[
1 +

8λF

R4

]1/2

, (26)

where we have used eqn.(18). The function k(r) can take either signatures or zero. The situation where k(r) remains
vanishing during the collapse process is called a marginally bound collapse, whereas the one in which k(r) admits a
positive signature is called a bounded collapse. We shall deal with these two cases only. The behaviour for unbounded
gravitational collapse in EGB theory is similar and shall not be carried out here.

Now, one has to ensure that this metric existing inside the collapsing matter cloud must be matched to an exterior
static spherically symmetric metric. Such a metric is already well known as the Boulware- Deser- Wheeler solution
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[24, 30–32]. We shall always ensure that metric of the collapsing matter cloud remains matched to an external
Boulware- Deser- Wheeler solution of mass M , across a timelike hypersurface rb. As we show in the appendix (V C),
such a matching leads to the condition that F (rb) = M .

In the following, we shall consider a wide variety of density profiles for matter fields and note the formation of
singularity and spherically symmetric trapped surfaces and horizons.

A. Marginally bound collapse

For the marginally bound collapse, we have k = 0. From the equations (13) and (26), the equation of motion is

Ṙ 2(r, t) = −R
2

4λ
+
R2

4λ

[
1 +

8λF

R4

]1/2

. (27)

Using some simple substitutions and algebra we get the equation for matter shells corresponding to values of R(r, t)
(see also [10])

tsh = ts −
[

λR2

√
R4 − 8λF −R2

]1/2

−
√
λ

2
√

2
tan−1

 3R2 −
√
R4 − 8λF

2
√

2
{√

R4 − 8λF −R2
}1/2

 , (28)

where ts is the time of the formation of singularity, and is given by:

ts =

√
λ

2
√

2
tan−1

 3r2 −
√
r4 − 8λF

2
√

2
{√

r4 − 8λF − r2
}1/2

+

[
λr2

√
r4 − 8λF − r2

]1/2

. (29)

The expression of the time for shells reach the Boulware- Deser-Wheeler horizon or the MTT, obtained for R(r, t) =√
F (r, t)− 2λ is given by tAH :

tAH = ts −

 λ (F − 2λ)√
(F − 2λ)

2 − 8λF − (F − 2λ)

1/2

−
√
λ

2
√

2
tan−1

 3 (F − 2λ)−
√

(F − 2λ)
2 − 8λF

2
√

2

{√
(F − 2λ)

2 − 8λF − (F − 2λ)

}1/2

 .(30)

Given these expressions we now proceeds to understand the nature of MTTs for some realistic mass profiles.

Examples

1. Let us first consider a collapsing matter profile which admits a variation in the density distribution according
to the choice of two parameters ς and r0. The density distribution is of the following form:

ρ(r) =
m0E(ς)

r4
0

[
1− Erf

{
ς

(
r

r0
− 1

)}]
, (31)

where m0 = m(r →∞) is the total mass of the cloud, r0 is the label on the matter shell coordinate where the
variation of the density with the radial coordinate is largest, i.e −(dρ/dr) is highest. We shall choose the value
of r0 = 2. The parameter ς in equation (31) controls the variation of density function. A similar density profile
was also studied for LTB models in 4-d GR [38, 39]. As seen from the plot in figure (1)(a), a larger value of
ς implies a step- function- type distribution of the density, whereas, for a lower value of ς, the density varies
slowly with r. So, ς is a control parameter for approach towards the OSD model- larger the value of ς, closer
is the density to isotropy, and smaller values of ς implies inhomogeneities. The function E(σ) has the following
form:

E(ς) = 3ς3
[
2πς(2ς2 + 3)(1 + Erf ς) + 4

√
π exp(−ς)(1 + ς2)

]−1
, (32)

and Erf is the usual error function. We consider the cases where ς = 5 and 15. The graphs are given in figure
(1).
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FIG. 1: These figures give the gravitational collapse for the density profile of eqn. (31). For the plot we have used the EGB
coupling constant λ = 0.1. The figure (a) gives the density fall-off for two choices of the control parameter ς, (b) is the plot of
the function C for ς = 5. The signature of C shows that the MTT in this case is spacelike. (c) is the plot of the function C
for ς = 15. The signature of C shows that the MTT in this case is timelike. The figure (d) is R(r, t) vs t graph for ς = 5, (e)
gives the time development of MTT for ς = 15 along with the collapse of each shell. In the R− t graphs, the shells are denoted
by blue lines whereas the red lines are the MTT. The straight vertical red lines in (d) and (e) represents the isolated horizon
phase of the MTT and is reached when no more matter falls in.

From figure (1)(d), we note that as shells begin to collapse, the MTT begins to form, and grows with the fall
of the shells, until the growth stops when all the shells upto r = 2 has fallen in. This happens since the matter
density is almost zero after r = 2. After all the matter goes in, the MTT becomes null, as seen by the straight
line in figure (1)(d). The MTT becomes null at R = 0.89 since the total mass of the cloud is unity, and hence

for λ = 0.1, the MTT is obtained from eqn. (20) to be
√

0.8 = 0.894.In this region, the MTT has reached the
IH phase.

Two further points need to be noticed. First, for ς = 5, the MTT are spacelike. This may be seen from the
values of C in figure (1)(b). However, if we look at the R(r, t)− t graph in figure (1)(d), it seems that the MTT
may have become timelike in certain regions. This apparent contradiction was also noted earlier in [38, 47] and
happens due to non- trivial ways in which the MTT crosses the chosen folations. For ς = 15, the MTT is surely
timelike, as may be noted from figures (1)(c) and (1)(e). The MTT begins to form earlier at r = 1.7 at t = 1.8
and then begins to grow on either side to match with the MTT at the center R = 0, and also towards the IH at
R = 0.89. This possible points towards an unstable MTT. as was pointed out in the case of GR in [38, 39, 47]

Secondly, as can be noted from the graph in figure (1)(e), all the shells, denoted by the blue lines reach the
singularity at R = 0 at the same time, which is a distinctive feature of the OSD process. As the value of ς
is lowered, the example of (1)(d) shows that the shells begin to deviate marginally from this feature since the
deviation in the density profile remains small. This also points to the fact that this collapse process is similar
to that in GR, at least in this particular case of isotropic collapse.

2. For the next example, we take the mass density to have following form [10, 39]:

ρ(r) = m0[1− (r/r0)] Θ(100− r) (33)

where Θ(x) denotes the Heaviside theta function, and r0 = 100m0. The graph of ρ, C and R(r, t)-t are given
in the figure (2)(a), (2)(b), and (2)(c) respectively. Note that the MTT begin around t = 2900 when the shell
at r = 50 has already fallen in. After this growth, it remains a dynamical horizon throughout and becomes an
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FIG. 2: The graphs show the (a) density distribution ρ, for equation (33), (b) values of C, and (c) formation of MTT along
with the shells. For the plot we have used λ = 0.1. Note that the MTT begins to form only after some shells have fallen in
the singularity. This is a direct consequence of the fact that eqn. (20) requires the mass function F (r) to exceed 2λ for a real
valued RM (r, t) in the equation of MTS.

isolated horizon only when the matter shells stops falling at r = 100 and all the matter has collapsed. This
behaviour in the R − t plot is reflected in the graph of C quite faithfully. Indeed, the signature of C indicates
that MTT is spacelike, beginning at r = 50 and continues until the shell at r = 100 falls, after which it becomes
null.

Note however that MTT does not begin to form immediately, but only after some shells have fallen in. This is
because of a simple reason but leads to some important consequences, and is discussed below: The MTT forms
only when the condition in eqn. (20) is satisfied. Indeed, for the early shells, the value of F (r) for these shells,
i.e. the amount of matter contained inside the sphere of radius r at the initial time, is smaller than the value of
λ, which here is taken to be 0.1. For that reason, RM (r, t) does not admit real values. It is only after sufficient
number of shells have fallen in, that condition of trapped surface can be evaluated to obtain a real value. Until
that time, the central singularity remains naked for a trapped surface. Our study reveals this feature in a direct
manner since we have been able to probe each and every matter shells quite elaborately.

3. Let us now consider a Gaussian density profile with the density given by the following form:

ρ(r) =
3m0

r4
0

exp(−r2/r2
0), (34)

where m0 is the total mass of the matter cloud, r0 is a parameter which indicates the distance where the density
of the cloud decreases to [ρ (0)/e]. In our example, we have chosen r0 = 100m0 and the EGB coupling constant
λ = 0.1. Note that the MTT begins only after the shell at r = 90 has fallen in. As explained in the previous
subsection, this is a direct consequence of the relation eqn.(20). The MTT in Fig. (3)(b) and (3)(c) clearly
shows that the MTT is spacelike, and attains the IH phase when the shells at r = 300 has fallen in.

4. Let us consider a density profile given by the following form for r ∈ [0, πr0]:

ρ(r) = (γ/r2
0)
[
π − (r/5r0){3 + 2 cos2(5r/r0)}

]
(35)
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FIG. 3: The graphs show the (a) density distribution for eqn. (34), (b) values of C, and (c) formation of MTT along with the
shells. The straight lines of MTT in (c), after the shell r = 300, represents the isolated horizon phase.

where γ is a dimensionless constant. This example constitutes a situation where the MTTs are a series of timelike
membranes interspaced with dynamical horizons. A similar profile was used to study gravitational collapse in
4d GR [38, 39]. In our example, we have chosen r0 = 1 , γ = 1/120, and the EGB coupling constant λ = 0.1.
Note the peculiar dynamics of the MTT from figure (4)(c). The MTT first forms for the shell at r = 1.5, and
then evolves in a timelike manner to reach towards the MTT formed after the shells at r = 1.35 have fallen in.
Again note that during the initial period, the central singularity is not covered by the MTT and remains naked,
as expected due to equation (20). During the period the shells from r = 1.7 to r = 2.0 collapse, the MTT is a
dynamical horizon, as may also be confirmed from the graph of C in figure (4)(b). This behaviour is repeated
until matter stops falling at r = 3.0, when the MTT reaches the equilibrium state of an IH.

5. Two shells falling consecutively on a black hole: Let us assume that a black hole of mass M exists, upon which
a density profile of the following form falls:

ρ(r) =
12 (m0/ r

4
0 ) [(r/r0)− ς] 2

[2 (4 + ς2) + (9 + 2ς2)
√
πeς2{1 + ς Erf(ς)}]

exp[(2r/r0)ς − (r/r0) 2 ], (36)

where m0 = M/2, (M = 1) is the mass of the shell, 2r0 is the width of each shell, and ς = 10m0. The graphs
corresponding to this case is given in (5). Note that these graphs constitute the case where two mass profiles
fall on a black hole one after the other. The spacetime singularity already exists into which these shells fall in.
Note that as the fist profile falls, the MTT begins from the already existing horizon at R = 0.89 and develops
until the shells corresponding to r = 23 to r = 25 fall in carrying no mass with them. At these times, the MTT
reaches an equilibrium state, and becomes dynamical only after the second mass profile begins to fall. So, the
MTT passes through multiple stages of dynamical horizon, interspaced with isolated horizons when no matter
is infalling. This behaviour is easily verifiable from figures (5)(b), and (5)(c).
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FIG. 4: The graphs show the (a) density distribution, (b) values of C, and (c) formation of MTT along with the shells for the
density in equation (35).

B. Bounded collapse

For bounded collapse, we again have α′ = 0 and G(r, t) = e−2β(r,t)R′2 = 1 − k(r) = E(r), where E(r) is the
integration function. For this case k > 0, the equation of motion is given by (26)

Ṙ 2(r, t) = −k(r)− R2(r, t)

4λ
+
R2(r, t)

4λ

[
1 +

8λF (r, t)

R4(r, t)

]1/2

. (37)

This equation of motion (37) can be rewritten in the following form:

dt = − 2
√
λ dR√

−R2 − 4λk +
√
R4 + 8λF

(38)

To integrate this equation of motion (38), we consider a parametric choice of R(r, t) of the following form:

x = −R 2(r, t)− 4λk(r) +
√
R 4(r, t) + 8λF (r) (39)

A simple calculation of squaring both sides leads to the following expression:

R(r, t) =
1√
2

[
8λF

(x+ 4λk)
− (x+ 4λk)

]1/2

(40)

Using this expression of eqn. (40), a simple calculation leads to modification of (38):

dt =

√
λ
(
(x+ 4λk)2 + 8λF

)
dx

√
2
√
x(x+ 4λk)3/2

√
8λF − (x+ 4λk)2

(41)



12

10 20 30 40 50
r

5.×10-7

1.×10-6

1.5×10-6

2.×10-6

2.5×10-6

3.×10-6

3.5×10-6
ρ

(a)

10 20 30 40
r

0.001

0.002

0.003

0.004

C

(b)

0.5 1.0 1.5 2.0
R

200

400

600

800

t_EGB

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

r=10

r=15

r=20

r=25

r=30

r=35

r=40

r=45

MTT
Shell

(c)

FIG. 5: The graphs show the (a) the density profile from eqn.(36), (b) values of C, and (b) formation of MTT along with the
shells which fall consecutively on a black hole.

The integration of the above equation gives the equation of the collapsing shell to be:

tsh = A1

[(
8λF − 2

√
2λF (x+ 4λk)

)
+A2

{(√
2F + 2

√
λk
)

EllipticE[N1, 2N2]

−
(√

2F − 2
√
λk
)

EllipticF[N1, 2N2]− 2
√
λkEllipticPi[N2, N1, 2N2]

}]
− (A1)0

[(
8λF − 2

√
2λF (x0 + 4λk)

)
+ (A2)0

{(√
2F + 2

√
λk
)

EllipticE[(N1)0, 2N2]

−
(√

2F − 2
√
λk
)

EllipticF[(N1)0, 2N2]− 2
√
λkEllipticPi[N2, (N1)0, 2N2]

}]
(42)

The equation for the spherical MTTs, are obtained for R(r, t) =
√
F (r)− 2λ and gives:

tAH = (A1)2M

[(
8λF − 2

√
2λF (x2m + 4λk)

)
+ (A2)2M

{(√
2F + 2

√
λk
)

EllipticE[(N1)2M , 2N2]

−
(√

2F − 2
√
λk
)

EllipticF[(N1)2M , 2N2]− 2
√
λkEllipticPi[N2, (N1)2M , 2N2]

}]
−(A1)0

[(
8λF − 2

√
2λF (x0 + 4λk)

)
+ (A2)0

{(√
2F + 2

√
λk
)

EllipticE[(N1)0, 2N2]

−
(√

2F − 2
√
λk
)

EllipticF[(N1)0, 2N2]− 2
√
λkEllipticPi[N2, (N1)0, 2N2]

}]
, (43)

where the coefficients A1, A2, and the arguments N1, N2 are given by:

A1 =

√
x

k(x+ 4λk)3/2
√

8λF − (x+ 4λk)2
, A2 =

(25λ2F )1/4
√
x+ 4λk

√
−8λF + (x+ 4λk)2√

x
√

2F + 2
√
λk

N1 = sin−1

[
(
√

2F + 2
√
λk)(x+ 4λk)

2λk{2
√

2λF + (x+ 4λk)}

]1/2

, N2 =
2
√
λk√

2F + 2
√
λk
.
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FIG. 6: The graphs show the (a) values of C, and (b) formation of MTT along with the shells for the Gaussian distribution
of eqn. (34).

The terms with subscript 0 and 2M represents its value at the initial shells at r = r0 and at the formation of MTT
with R = R =

√
F − 2λ. For example, x = −R2 − 4λk +

√
R4 + 8λF , whereas, its value at 0 represents x0 =

−r2− 4λk+
√
r4 + 8λF . The EllipticF[φ, z] represents an incomplete elliptic integral of the first kind, EllipticE[φ, z]

is elliptic integral of the second kind, whereas EllipticPi[y; φ, z] is an elliptic integral of the third kind [69].
In the following we shall take several examples to show how a MTT develops during the bounded gravitational

collapse in EGB theory.

Example

1. Let us consider a Gaussian profile with the density given by eqn. (34). The form of the density is same as in
figure (3)(a). In our example, we have chosen r0 = 100m0. The behaviour of MTT is similar to that discussed
for the marginally bound case, see figure (6). However, the time of formation of MTT and the value of the
C has changed in comparison. Again note that the MTT forms only after shells at r = 90 collapse. Before
that shell falls in, the singularity remains naked. The time of formation of MTT changes in comparison to the
marginally bound case of figure (3). The straight lines of MTT in (b), after the shell r = 300, represents the
isolated horizon phase.

2. Let us consider a density profile given by the following form:

ρ(r) =
(
m0/8πr

4
0

)
exp(−r/r0), (44)

where m0 is the total mass of the matter cloud, r0 is a parameter which indicates the distance where the density
of the cloud decreases to [ρ (0)/e]. The MTT begins after the shells at r = 30 have fallen into the singularity.
The MTT remains spacelike through out its time evolution, and reaches an equilibrium state only after the the
density reaches negligible values. These conclusions are easily be verified from the graphs in figure (7). Note
again that the MTT begins only after sufficient number of shells have collapsed to the singularity in accordance
to the choice of λ = 0.1 in eqn. (20).

3. Two shells falling consecutively on a black hole: The graphs corresponding to this case is given in figure (8).
Note that these graphs have a similar behaviour to those in figure (5), except that the times for formation of
MTTs have changed.

4. Let us again consider the density profile given by eqn. (35), given in figure (4)(a). The behaviour is of the
MTTs and the shells, for the bounded collapse as given in figure (9) is similar to the graphs in figure (4), with
the exception that the time of formation of MTTs, and as well as those of the shells reaching the singularity
has changed.

Similar study may be carried out for more complicated matter profiles and other matter sources. These studies can
be made using the techniques developed above.
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FIG. 7: The graphs show the (a) values of C, and (b) formation of MTT along with the shells for the matter profile with
exponentially falling density distribution given in eqn. (44). The MTT is spacelike.
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FIG. 8: The graphs show the (a) values of C, and (b) formation of MTT along with the shells which fall consecutively on
a black hole. The value of C remains positive and large, and for that reason it is not plotted here. As a consequence MTT
remains spacelike.
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FIG. 9: The graphs show the (a) density distribution, (b) values of C, and (c) formation of MTT along with the shells for
the bounded collapse of the density profile discussed in eqn. (35). The MTT is quite complicated and goes through various
modulations.

IV. DISCUSSIONS

This paper deals with the study of gravitational collapse in EGB gravity in 5- dimensions. The Gauss- Bonnet
modification of the Einstein gravity changes the geometry of the spacetime, and the structure of the horizon and
singularity quite drastically. We developed techniques to analyse these effects in the phenomena of gravitational
collapse in this theory. In this context, several questions arise naturally regarding the process of the collapse phe-
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FIG. 10: The graphs show formation of MTT along with the shells for marginally bound collapse of pressureless matter with
a Gaussian density profile of eqn. (34), in 5- dimensional GR.

nomenon itself as well as the outcome of gravitational collapse of matter. To understand these details, we have, in
this paper, developed a set of analytical and numerical techniques to locate spherical marginally trapped surfaces in
the spacetime, when the collapse is in progress. We locate these MTTs for a large class of matter profiles and initial
velocity profiles. This study helps us to address several questions regarding gravitational collapse in the EGB theory:

(i) Role of the GB term and the coupling constant λ: The GB term introduces several changes in the equation of
motion of the gravitational field. The most drastic is the change in the form of the mass function F (r, t) given in eqn.

(13). In fact, this equation shows that the GB term leads to quadratic effects involving Ṙ(r, t) and R′(r, t). As a result

of this quadratic contribution of Ṙ, the equation of motion of the radius of the dust cloud is altered significantly,
see eqn. (19). Naturally, this change in the equation of motion of the spherically symmetric matter configuration
implies that the collapsing matter spheres will get trapped at different times. A direct reflection of this fact is in
the expressions for the expansion of the outward and the inward null normals θ(`) and θ(n) in eqns. (14) and (15)
. It follows as a direct result of (15) that the equation defining a marginally trapped surface is dependent on the
GB coupling constant λ, see eqn. (20). The marginally trapped surface (MTS) forms at RM (r, t) = F (r, t)1/2 in the

5- dimensional Einstein theory, whereas it forms at
√
F (r, t)− 2λ in the EGB theory. In this paper, we have kept

the value of λ = 0.1, and so, the equation for MTS, eqn. (20) implies that real values of RM (r, t) is only possible
only if sufficient number of shells have fallen in so that the cloud if massive enough to overcome the effect of the GB
coupling constant λ. This effect on the formation of a MTS and the MTT is directly visible in the graphs in fig. (2),
fig. (3) as well as in the fig. (6). The coupling constant results in the delay in the formation of MTT, and as can be
noticed from these figures, begins to form quite later than the formation of central singularity due collapsing shells.
This effect is not visible in fig. (5), since the system already has a spacetime singularity, and so, this initial black hole
horizon censors all the singularities arising out of shell collapse.

It is also instructive to compare this same study of MTTs for the Gaussian profile in eqn. (34) in the 5- dimensional
Einstein theory. As expected, the MTT begins just as the first shells start to collapse and the MTT equilibriates at
R = 1, since the total mass of the profile is unity, and the MTT is RM (r, t) = F (r, t)1/2. This is given in fig. (10).

(ii) Nature of the central singularity: Since many of these configurations lead to shell collapsing naked singularities
due to gravitational collapse of the initial shells, and that MTTs do not cover them, it becomes essential to characterise
them, and make a clear classification. We have explicitly verified that, in each of the cases where the central singularity
is naked initially, satisfy the following relation: The weak cosmic censorship is violated for each of these collapse
processes until the mass function F (r) > 2λ (see also [7]). The fact that the curvature strength of the singularity
is a weak is obtained as follows: Note that the singularity is defined to be strong if the spacetime volume contained
within Jacobi vector fields is reduced to zero at the singularity. The singularity is weak otherwise. According to the
standard characterizations of singularities in 4- dimensions [4], a sufficient condition for a strong singularity is that
at least one causal geodesic tµ, with affine parameter v must satisfy the following condition:

lim
v→v0

(v → v0)2Rµνt
µtν > 0 (45)
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For our spacetime, and a radial timelike vector field, a simple calculation shows that limv→v0 (v → v0)2Rµνt
µtν = 0.

Here too, the role of the Gauss- Bonnet coupling becomes crucial, and plays an important role in weakening the
singularity. So, although the singularities are naked at the beginning of the collapse process, the singularity is
harmless since they are weakly naked.

(iii)Are MTT true black hole boundaries? The actual extent of a black hole region is a matter of great debate.
Over the years, global as well as quasilocal considerations have led to several formulations of horizon. Out of them,
event horizon, Killing horizons have been quite useful to study physical phenomena of black holes. The quasilocal
formulations based on trapped surfaces, and in particular the definitions of trapping horizons and MTTs [46, 60]
have been extensively used to prove classical and quantum laws of black hole dynamics. Although, it must also be
pointed out that the formulation of MTT as a black hole boundary may need modifications, in particular in respect
to the conditions on θ(n), they may be quite useful for this purpose. However, the main issue lies in locating the non-
spherically symmetric MTTs as well, and in the context of 4- dimensional spacetimes, they are yet to be completely
specified [63–65]. Furthermore, for some spacetimes, the black hole boundary is identical with the event horizon
[70, 71]. Our study using spherical MTTs in 5- dimensions show that they may indeed be used as a boundary of a
black hole region, although a non- spherical MTTs and their location is equally important to be understood in this
context. We must also point out that our study needs to be extended for more general matter fields and geometries,
so that such questions may be included in our discussions.

To conclude, we have explicitly shown, with a wide range of examples, that the nature of trapped surface, its
formation and time development, is intimately related to the initial velocity and the initial density profile of the
matter fields. Additionally, due to the presence of the EGB coupling constant λ, the formation of MTT gets delayed
further, depending on the amount of matter a particular matter shell encloses within its boundaries. All these effects
have been conclusively demonstrated through the examples considered in the main part of the paper. We must
however admit that a full understanding of these phenomenon of gravitational collapse and the censorship conjecture
shall require the methods of non-spherical gravitational collapse.
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V. APPENDIX

A. Expressions for curvature using matter variables

In the following, we collect the expressions of the various curvature components for the metric (7). These components
have been used in the main part of the paper to determine the evolution of MTT, and in determining the signature
of the MTT in eqn. (21). The quantities like the Ricci scalar (Rs), Ricci tensors and the Riemann tensors in terms
of the energy density, radial and tangential pressure and mass function.

First, the Riemann tensors are obtained using the metric functions and the matter variables:

Rθφθφ = F (r, t) sin2 θ , Rθψθψ = sin2 θRθφθφ , Rφψφψ = sin2 θ sin2 φRθφθφ,

Rtφtφ = sin2 θRtθtθ , Rtψtψ = sin2 θ sin2 φRtθtθ, Rtθrθ = 0

Rrφrφ = sin2 θ Rrθrθ , Rrψrψ = sin2 θ sin2 φRrθrθ,

Rtθtθ = −(1/2)e2αR

Ṙ

d

dt

[
F (r, t)

R2(r, t)
− 1

]
Rrθrθ = (1/2) e2β R

R′
d

dr

[
F (t, r)

R2(t, r)
− 1

]
,

Rrtrt = [pt − (2/3) (ρ+ pr)− (3F/R 4)] e2(α+β).
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The Ricci tensors are obtained similarly using the metric in eqn. (7).

Rtt = (−2ρ/3 + pr/3 + pt)e
2α, Rrr = (−ρ/3 + 2pr/3− pt)e2β ,

Rθθ = −(R2/3) (ρ+ pr) , Rφφ = sin2 θ Rθθ,

Rψψ = sin2 θ sin2 φRθθ, Rrt = 0,

The Ricci scalar is given by Rs = −(2/3) (ρ+ pr)− 2pt. Using these expressions, and the expressions for null normals
in eqns. (14) and (15), it can be shown easily that:

Hab`
a`b = 2

[
6F (ρ+ pr)

(F − 2λ)
2 + 2p2

θ − 4prpθ −
2

3
pθ (ρ+ pr)

]
,

Hab`
anb = 2

[
4pθ

(
pθ +

2

9
ρ− 4

3
pr

)
− 2

(F − 2λ)
2 {6Fpt + (F + 4λ) (ρ− pr)}

− 6

{
pt +

2

3
(ρ− pr)−

3F

(F − 2λ)
2

}2

+
16

9

(
ρ2 + p2

r

)
− 72

λ2

(F − 2λ)
4

 .
We can also similarly determine an expression for LGB in terms of matter variables and the mass function.

LGB = R2 − 4RttR
tt − 4RrrR

rr − 12RθθR
θθ + 6RtrtrR

trtr + 18RtθtθR
tθtθ + 18RrθrθR

rθrθ + 18RθφθφR
θφθφ

=

[
2

3
(ρ− pr)− 2pt

]2

+ 18

[
F 2 + 32λ2

(F − 2λ)
4

]
+ 6

[
pt +

2

3
(ρ− pr)−

3F

(F − 2λ)
2

]2

− 12

9
(ρ− pr)2 − 4

[
2

3
(ρ+ pr) + pt

]2

− 4

[
2

3
(ρ+ pr)− pt

]2

.

B. Three- surface geometry

The subspace in our problem is a three dimensional sphere. To understand the geometry of this subspace, we
shall present a general formulation of subspaces. Let (M, gµν ,∇µ) be a 5- dimensional time- oriented spacetime
with a metric compatible covariant derivative ∇µ gνλ = 0. Let us assume that S be a closed, orientable, spacelike 3-
surface embedded inM. Let us denote the two future pointing null vectors by `µ (outward pointing) and nµ (inward
pointing), such that ` · n = −1.

The induced metric hab on the 3- surface S is given by:

hab = eµae
ν
b gµν , (46)

where eµa denotes the pullback map, and a, b, . . . indicate indices on S. The functions eµa are orthogonal to `µ and
nµ. This implies that the pushforward of the inverse two- metric hab is given by:

gµν = eµae
ν
b h

ab − `µnν − ` νnµ. (47)

The second important quantities of importance are the extrinsic curvatures. This is vector on the normal bundle
N(S) of S, and it has two components.

k(`)
ab = eµae

ν
b∇µ `ν , k(n)

ab = eµae
ν
b∇µ nν , (48)

where the extrinsic curvature itself may be written as:

k µab = k(n)
ab `

µ + k(`)
ab n

µ. (49)

The Riemann tensor on M and on S are given respectively by:

(∇µ∇ν −∇ν∇µ)Zλ = Rµνλσ Z
σ (50)

(DaDb −DbDa)zc = Rabcd zd, (51)
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where D is the metric compatible derivative operator on S, so that Dahbc = 0. The Gauss equation for the spacetime
and submanifold gives the following equation:

eµae
ν
be
λ
ce
σ
dRµνλσ = Rabcd − (k(`)

ack
(n)

bd + k(n)
ack

(`)
bd) + (k(`)

adk
(n)

bc + k(n)
adk

(`)
bc), (52)

and the Codazzi equations may be written in the following forms corresponding to each of the two normals:

eµae
ν
be
λ
c `
σ Rµνλσ = (Db − ωb)k(`)

ac − (Da − ωa)k(`)
bc (53)

eµae
ν
be
λ
c n

σ Rµνλσ = (Db − ωb)k(n)
ac − (Da − ωa)k(n)

bc, (54)

where ω a←−
≡ eµa ωµ is the pullback of the connection on the normal bundle N (S), and is defined using the equation

for the Shape operator to get: ω a←−
= −nσ eλa∇λ`σ.

The variation of the submanifold S in the normal direction Nµ = A`µ − Bnµ, A and B being constants, is given
by the variation of the abovementioned spacetime variables. The variation in the induced metric is:

∇Nhab = 2Ak
(`)
ab − 2Bk

(n)
ab (55)

whereas, the variation of the area element
√
h =
√

dethab is given by:

∇N
√
h = (1/2)

√
hhab∇Nhab = (Aθ(`) −Bθ(n))

√
h. (56)

The extrinsic curvatures are written in terms of the expansion scalar and the shear tensors of the two null normals:

k(`)
ab =

1

(D − 2)
θ(`)hab + σ

(`)
(ab), k(n)

ab =
1

(D − 2)
θ(n)hab + σ

(n)
(ab) (57)

where the expansion scalar and the shear tensors are defined as:

θ(`) = ∇µ`µ − κ(`) (58)

σ
(`)
ab =

[
eµae

ν
b −

hab
(D − 2)

gµν
]
∇µ`ν + κ(`) hab, (59)

where κ(`) = −nν`µ∇µ` ν is the measure of affinity of the null normal. These equations for the other null- normal nµ

is obtained by `µ ↔ nµ.
Let us now consider how the foliation is evolved along Nµ. Since `µ and nµ are normal to S, their pullback on S

vanish. Thus, eµa`µ ≡ ` a←−
= 0, and also the same is true for n a←−

. This foliation is assumed to be preserved in the

evolution under Nµ, so that (£N `) a←−
= 0, and (£Nn) a←−

= 0 is assumed to hold true. These equations imply that:

Nµ∇µ` a←− = κ(N)` a←−
− (D a←−

− ω a←−)B, (60)

Nµ∇µn a←− = −κ(N)n a←−
+ (D a←−

+ ω a←−
)B, (61)

where κ(N) = −nµNν∇ν`µ is called the surface gravity corresponding to the vector field Nµ. A direct calculation
leads to the following results on the variation of θ(`) [50]

∇Nθ(`) − κNθ(`) = −d2B + 2ωµdµB −B[ωµωµ − dµωµ − (R/2)−Gµν`µnν − θ(`)θn]

−A[σ2
(`) +Gµν`

µ`ν + (1/2)θ2
(`)]. (62)

C. Matching conditions at shell boundary

In the following, we present the junction condition of a LTB metric, formed due to collapse of a spherically symmetric
matter configuration, with the spherically symmetric metric due to a body of mass M . The interior LTB metric of
the spacetime M− is given by eqn. (25):

ds2
− = −dt2 +

R ′ 2

1− k(r)
dr2 +R(r, t) 2 dΩ3, (63)
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where dΩ3 is the metric of an unit round 3-sphere, and R(t, r) is obtained from the equation (13). The metric of the
external spacetime M+ is the Boulware- Deser- Wheeler solution [24, 30–32], which for 5- dimensions is given by:

ds2
+ = −F (R̄) dT 2 + F (R̄)−1 dR̄2 + R̄ 2 dΩ3, (64)

where T and R̄ are the time and radial coordinates in M+, and the metric function F (R̄) is:

F (R̄) = 1 +
R̄2

4λ

[
1∓

√
1 +

8λM

R̄4

]
(65)

gives the external vacuum solution for a spherical body of mass M when the −ve sign is chosen.
The matching is to be carried out at the timelike hypersurface Σ given by rb. Let us denote the coordinates on

this surface Σ to be (τ, θ, φ, ψ). From M−, we can write down the surface Σ as f−(r, t) = r − rb = 0, and hence, the
induced metric on Σ is

ds2
− = −dτ2 + r2

b dΩ3 . (66)

From the point of view of the exterior spacetime, the hypersurface may be described by r = R̄Σ(τ) and t = TΣ(τ),
with no change in the angular variables. The line element of the hypersurface is then given by

ds2
+ = −

[
F (R̄Σ)Ṫ 2

Σ − F (R̄Σ)−1 ˙̄R2
Σ

]
dτ2 + R̄Σ(τ)2dΩ3 , (67)

where the dots imply derivative with respect to τ .
The induced metric in equations in (66) and (67) must have matched metric functions. This implies that:

F (R̄Σ)Ṫ 2
Σ − F (R̄Σ)−1 ˙̄R2

Σ = 1 (68)

Now, let uµ and nµ denote the velocity of the matter variables and the normal to the Σ respectively. They must
satisfy the conditions uµuµ = −1, nµnµ = 1, whereas, uµnµ = 0. From the interior spacetime, the expressions of
these vectors is easily obtained:

uµ = δµ0 ≡ (∂τ )µ, nµ =
R ′√

1− k(r)
(dr)µ. (69)

From the exterior spacetime, these vectors are also obtained similarly to give:

uµ = ṪΣ (∂τ )µ + ˙̄RΣ (∂r)
µ, nµ = − ˙̄RΣ (dτ)µ + ṪΣ (dr)µ. (70)

The extrinsic curvatures are easily determined from these normals for the exterior as well the interior spacetimes:

K−ττ = 0, K−θθ = R̄Σ

√
1− k(rb) (71)

K+
ττ = ˙̄R−1

Σ [Ḟ (R̄Σ) ṪΣ + F (R̄Σ) T̈Σ ] K+
θθ = R̄Σ F (R̄Σ) ṪΣ. (72)

The Kθθ equations imply the following relation:

dTΣ

dτ
=

√
1− k(rb)

F (R̄Σ)
, (73)

whereas the equation (68) gives the following equation for the function R̄Σ :

dR̄Σ

dτ
= [1− k(rb)− F (R̄Σ)]1/2. (74)

This implies that the following relation hold good:(
dR̄Σ

dτ

)2

= −k(rb) +
R̄2

Σ

4λ

[
1∓

√
1 +

8λM

R̄4
Σ

]
. (75)

A simple comparison with equation (26) implies that the condition M = F (rb) must be satisfied at the boundary.
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