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ABSTRACT

Cosmic-ray acceleration at non-relativistic shocks relies on scattering by turbulence that the cosmic

rays drive upstream of the shock. We explore the rate of energy transfer from cosmic rays to non-

resonant Bell modes and the spectral softening it implies. Accounting for the finite time available for

turbulence driving at supernova-remnant shocks yields a smaller spectral impact than found earlier

with steady-state considerations. Generally, for diffusion scaling with the Bohm rate by a factor η,

the change in spectral index is at most η divided by the Alfvénic Mach number of the thermal sub-

shock. For MA . 50 it is well below this limit. Only for very fast shocks and very efficient cosmic-ray

acceleration the change in spectral index may reach 0.1. For standard SNR parameters it is negligible.

Independent confirmation is derived by considering the synchrotron energy losses of electrons: if intense

nonthermal multi-keV emission is produced, the energy loss, and hence the spectral steepening, is very

small for hadronic cosmic rays that produce TeV-band gamma-ray emission.

Keywords: Gamma-ray astronomy — cosmic rays — supernova remnants — spectral index

1. INTRODUCTION

Bell et al. (2019) studied cosmic-ray acceleration at

nonrelativistic shocks using a tensor expansion of the

Vlasov equation, and they found a steepening of the

cosmic-ray spectrum at supernova remnants (SNR) aris-

ing from energy transfer from the cosmic rays to tur-

bulence in the precursor of the shocks. Assuming the

turbulence in question is nonresonant, the so-called

Bell mode (Bell 2004), and taking an estimate for its

magnetic-field energy density at the saturation level,

UδB ≈
vsh

2c
Ucr, (1)

where vsh denotes the shock speed and Ucr the energy

density in cosmic rays immediately upstream of the

shock, they find a spectral steepening by

∆s|Bell ≈
4

ε

UδB
Ucr
≈ 2

ε

vsh

c
. (2)

For young SNR this spectral change should be quite siz-

able. Here ε is the fraction of turbulent energy den-

sity that is in the form of magnetic-field fluctuations,

marpohl@uni-potsdam.de

UδB = ε Uwave. For an incompressive linear wave with

phase speed vφ < vA, like Bell’s mode, we have ε & 0.5.

Clearly, in the nonlinear phase quite a bit of energy is

transferred to velocity fluctuations (Stroman et al. 2009)

and local displacements of electrons and ions (Kobzar

et al. 2017), suggesting a moderate variation in ε. The

modification of the bulk flow speeds (Luo & Melrose

2009; Kobzar et al. 2017; Weidl et al. 2019) is a nonlin-

ear transfer of wave energy to the plasma, as are sec-

ondary instabilities that thrive on Bell modes (Bykov

et al. 2011). These processes do not change ε, and so

ε = 0.5 should be approximately valid for Bell modes in

the nonlinear stage.

The result conforms with intuition. The streaming of

cosmic rays is the energy supply of the turbulence. In

the steady state the production rates of turbulence and

cosmic rays in the upstream region and at the shock

must balance the loss incurred by advection to the far-

downstream region. The advection speed is the same

for the two. The energy density of the turbulence is

increased by compression at the shock, and so the frac-

tion of the cosmic-ray production power that is funneled

to turbulence is a few times the ratio of their upstream

energy density, UδB/εUCR. The cosmic-ray spectrum re-
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flects the balance between the energy gain and the reten-

tion probability for each acceleration cycle (Bell 1978).

Energy transfer to turbulence reduces the energy gain of

cosmic rays, hence the spectral steepening. Equation 2

then corresponds to the highest possible effect, given the

constraint krL � 1 for Bell’s instability.

What of the uncertainties in the estimate? Does tur-

bulence driving perhaps impose termination of acceler-

ation as opposed to a continuous spectral steepening?

Which fraction of the observed post-shock magnetic en-

ergy density is actually carried by Bell’s mode, and what

part is provided by other processes operating at the

shock (e.g. Giacalone & Jokipii 2007)? Do the waves

at the shock fully sample the cosmic-ray energy loss or

have the waves lost energy already in the upstream re-

gion? And is the analytically estimated saturation level

really relevant? Is there enough time for Bell’s mode to

grow to very high amplitude in the precursor of a shock,

before the plasma arrives at the shock and the driving

of waves stops? For simplicity we consider cosmic rays

with Lorentz factor Γcr. The peak growth rate of the

mode scales with the proton gyrofrequency, Ωp, as

γmax ' Ωp
vshNcr

2 vANp
= ωp,p

vshNcr

2 cNp
, (3)

where vA is the Alfvén speed, ωp,p stands for the proton

plasma frequency, and Ncr and Np denote the number

density of cosmic rays and of ambient protons, respec-

tively.

The cosmic-ray precursor has an extent that is de-

termined by the ratio of the diffusion coefficient, here

written as multiple of the Bohm diffusion coefficient,

κ = ηrLc/3, and the shock speed, vsh. Strong driving of

turbulence or cosmic-ray feedback can moderately mod-

ify, and in situations with efficient particle acceleration

reduce, the extent. Magnetic-field amplification reduces

the Larmor radius, and Reville & Bell (e.g. 2013) find

κ to be well described by either η being a few for rL as

measured immediately upstream of the shock or η . 1

with the far-upstream value of rL. In this paper we

shall use the former description and denote with δB the

amplitude of turbulent magnetic field very close to the

shock, unless it is explicitely written as δB(r). Following

the simulation results of Reville & Bell (2013) we shall

use η = 4 as a fiducial value and consider deviations

from that in the discussion section. The shock-capture

time needed for the shock to cross a region as wide as

the shock precursor is

τsc ≈
κ

v2
sh

=
η Γcr c

2

3 Ωp v2
sh

. (4)

The number of exponential growth cycles available for

Bell’s mode then is (Niemiec et al. 2008)

Nexp = γmaxτsc ≈
ηΓcrc

2Ncr

6 vAvshNp
=
ηMA

12

Ucr

Ubulk
, (5)

where MA is the Alfvénic Mach number of the shock,

and U denotes the energy density in cosmic rays and

in the bulk plasma flow (= 1/2 ρv2
sh). Efficient cosmic-

ray acceleration may funnel 10% of the bulk-flow energy

into cosmic rays. Given our expectation η ≈ 4, it be-

comes clear that one needs Alfvénic Mach numbers of

MA ≈ 300 or more to allow 10 exponential growth cy-

cles of the mode. Note that Bell’s mode is perceived to

grow out of the fluctuation spectrum in the interstellar

medium or in the wind bubble of a core-collapse su-

pernova, and it is supposed to reach an amplitude much

larger than that of the large-scale field, δB � B0, which

realistically takes an amplitude enhancement by much

more than a factor thousand (or more than seven expo-

nential cycles). We note that even the notoriously noisy

particle-in-cell simulations require ten growth cycles, if

not more, to reach significant magnetic-field amplifica-

tion (Riquelme & Spitkovsky 2009; Stroman et al. 2009;

Gargaté et al. 2010; Kobzar et al. 2017). For a low up-

stream gas density, Np . 0.5 cm−3, and standard values

of the interstellar magnetic field, B = 7 µG (Jansson &

Farrar 2012), this is difficult to establish, on account of

vA & 20 km s−1. In the environment of a core-collapse

supernova the magnetic field is less well known (Ro-

manova & Owocki 2015), but should eventually scale

inversely with the radius, B ∝ 1/r (Voelk & Forman

1982), implying a spatially constant Alfvén speed in the

free-wind zone. Whatever the value of the Alfvén speed

far upstream of the shock, significant magnetic-field am-

plification in the cosmic-ray precursor will reduce it. For

high-density environments damping may strongly limit

the growth of the mode (Reville et al. 2007). Reaching

a sufficient number of growth times for magnetic-field

amplification is certainly possible under specific condi-

tions, but not something one should expect for any SNR.

If the conditions are met, then for only a short period in

the evolution of the remnant, because the outer shock is

likely too slow already at the end of the free-expansion

phase.

Brose et al. (2020) demonstrated for Alfvénic turbu-

lence that slow build-up of turbulence in the upstream

region will rapidly reduce the maximum energy, to which

an SNR can accelerate. In any case, if turbulence driv-

ing would significantly soften the cosmic-ray spectrum,

Ucr would fall off with increasing energy. At very high

energy only very few growth cycles would be available
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and/or η would be very large, both of which would

stymie further acceleration.

In this paper we present estimates of the energy loss of

cosmic rays to turbulence that account for the limited

time available for the development of the nonresonant

streaming instability. In our discussion we shall use pa-

rameter values that may represent the forward shocks

of young SNRs, but in principle the analysis applies to

any fast non-relativistic shock at which diffusive shock

acceleration operates.

2. TIME-DEPENDENT MODELING OF

TURBULENCE BUILD-UP

We shall explore two independent ways to estimate

the energy transfer from cosmic rays to turbulence. One

will be a local consideration of turbulence driving in the

precursor, the other an integral assessment of the energy

transfer in the entire precursor. For simplicity we shall

assume that all ions in the cosmic rays and the back-

ground plasma are protons, i.e. hydrogen nuclei. The

non-resonant and broadband character of Bell’s mode

permits considering cosmic rays of a specific energy as

a proxy for particles in a wide energy band.

2.1. Local estimate

The growth rate of wave energy density is proportional

to the energy density in the unstable wave band,

U̇ '
∫
dk γ(k)

B2
k

4πε
. γmax

(δB)2

4πε
= γmax

2UδB
ε

, (6)

where again ε is the fraction of the wave energy that

is carried by magnetic field, δB is the magnetic wave

amplitude, and UδB the magnetic-field energy density

of the waves. Equation 6 indicates that most of the

energy transfer arises when the wave amplitude is high,

meaning near or at saturation. The expression is written

as an upper limit that is conservative for two reasons.

First, it applies the peak growth rate to the entire wave

spectrum, including spectral bands in which only cosmic

rays of vastly different energy can drive Bell’s mode.

Second, in the highly nonlinear phase the growth rate,

γmax, might be lower than it is for moderate δB. Both

effects can only strengthen the validity of our upper limit

for the growth rate of wave energy density. Inserting

Eq. 3 gives

U̇ .
ωp,p

ε

Ncr

Np

vsh

c
UδB . (7)

Here ωp,p is the ion (proton) plasma frequency. To be

noted from eq. 7 is that the energy-density transfer rate

is independent of the amplitude of the large-scale mag-

netic field, B0. It is evident that most of the energy

transfer occurs deep in the cosmic-ray precursor and

close to the shock, where both Ncr and UδB reach their

upstream peak values.

The energy gain by the waves imposes energy loss on

the cosmic rays. We can estimate the energy-loss time

per cosmic-ray particle as

τloss '
Ucr

U̇
&

2εΓcr

ωp,p

Ubulk

UδB

c3

v3
sh

, (8)

which evidently is independent of the number density of

cosmic rays. The only property of the cosmic rays that

enters Eq. 8 is their Lorentz factor.

We shall now compare the energy-loss time (Eq. 8)

with the acceleration time assuming diffusive shock ac-

celeration. As the nonresonant streaming instability op-

erates only upstream of the shock, our comparison can

ignore the part of the acceleration time that is spent

downstream. Particles spend approximately half of their

time in the upstream region, and so the effective energy-

loss time is twice that given in eq. 8,

τloss,eff ' 2τloss &
4εΓcr

ωp,p

Ubulk

UδB

c3

v3
sh

. (9)

Again expressing the diffusion coefficient of relativis-

tic cosmic rays in Bohm units, κ = ηc rL/3, we rewrite

equation (32) of Drury (1991) as

τacc =
8κ

v2
sh

=
8ηΓcr

3Ωp

c2

v2
sh

. (10)

Following Bell (1978), the integral cosmic-ray spectrum

reflects the balance between acceleration and escape by

advection to the far downstream region, hence for the

spectral index s−1 = τacc/τesc. Energy losses by driving

turbulence increase the effective acceleration time scale,

leading to a softened spectrum

dN(> E)

dE
≈ ∆N(> E)

∆E
' 1− s

1− τacc
τloss,eff

N(> E)

E
. (11)

For test particles at a strong shock in a hydrogen plasma

one expects s = 2. The ratio of timescales in the de-

nominator of eq. 11 must be less than unity, otherwise

acceleration is impossible. For a small ratio of accelera-

tion time and loss time the resulting change of spectral

index is

∆s =
s− 1

τloss,eff
τacc

− 1
' (s− 1)

τacc

τloss,eff
⇒

∆s .
2 (s− 1) η

3 ε

UδB
Ubulk

vsh

c

ωp,p

Ωp
. (12)

Here the proton gyrofrequency, Ωp, derives from the

scaling of the acceleration time with the Bohm diffusion
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coefficient. Reville & Bell (2013) noted that for efficient

magnetic-field amplification the diffusion coefficient is

well described by the amplified field strength and η ≈ 4.

One can rewrite expression 12 using the Alfvénic Mach

number, MA = vshωp,p/cΩp, that is calculated with the

amplitude of the amplified field without regard of direc-

tion,

∆s .
2 (s− 1) ηMA

3 ε

UδB
Ubulk

. (13)

2.2. Global assessment

We shall now conduct a global assessment of the

cosmic-ray energy loss incurred in the entire upstream

region. The spatial profile of cosmic-ray density in the

so-called precursor is dominated by the homogeneous

solution to the spatial part of the transport equation,

Ncr ' Ncr,sh exp

(
−
∫ r

rsh

dr′ v(r′)

κ(r′)

)
, (14)

where v(r) is the upstream flow speed measured in the

shock rest frame. This steady-state profile represents

a balance between the advective flux toward the shock

and the diffusive flux away from it. The diffusive flux,

−κ ∂Ncr/∂r, also determines the cosmic-ray current and

hence the driving rate of Bell’s mode. If the cosmic-

ray gradient were weaker than its steady-state value,

cf. Eq. 14, then advection would dominate the spatial

transport, and the density profile would evolve toward

the steady state; likewise for a steeper density profile.

Equation 14 hence represents a stable equilibrium and

can be used in our subsequent calculations.

The cosmic-ray density profile also determines the ac-

celeration timescale, because that depends on the aver-

age separation of upstream cosmic rays from the shock,

〈r − rsh〉. In each acceleration cycle, cosmic rays enjoy

a relative energy gain on the order of vsh/c and need a

few times 〈r− rsh〉/c for it. Hence the acceleration time

is a few times 〈r − rsh〉/vsh. If v and κ were constant,

then

〈r − rsh〉 =
κ

v
=

κ

vsh
, (15)

and we recover the formula τacc ∝ κ/v2
sh (Drury 1991).

If v/κ would significantly decrease at r−rsh � 〈r−rsh〉,
then we would arrive at approximately the same conclu-

sion, except that there might be some (weak) escape

toward the far upstream. If v/κ would significantly de-

crease already close to the shock, then 〈r−rsh〉 would be

very large and may in fact become unbound, in which

case many of the freshly accelerated cosmic rays escape

to the far upstream, and the cosmic-ray spectrum would

be very steep (Brose et al. 2020). The rapid increase of

volume with increasing r would contribute to the cut-off

in the spectrum of confined particles (Ohira et al. 2010).

In the steady state the cosmic-ray current would be

unaffected and could still drive the non-resonant mode

(Reville et al. 2009), thus reducing κ(r) and leading to

a seemingly universal profile of the cosmic-ray precursor

(Bell et al. 2013). In essence, a significant increase of κ

with distance from the shock would give ample time for

turbulence driving, but would make particle acceleration

slow and inefficient, and hence impose a cut-off in the

spectrum. If that were the case, young SNRs could not

have produced cosmic rays of very high energy. The

TeV-band detection of many SNRs suggests otherwise,

and so we will proceed with the assumption that the

variation in κ(r) does not preclude a rapid decline of the

cosmic-ray density in the precursor. In other words, we

consider cosmic-ray energies well below the maximum

the shock can presently provide. Studies of cosmic-ray-

modified shocks (Amato & Blasi 2006) suggest that this

approximation is good.

We shall now explicitly consider variations in the flow

speed and hence write eq. 3 with v(r) instead of vsh.

Using eq. 6 we integrate the energy transfer rate over

the entire precursor, which for a plane-parallel shock

means integration over r,

Ėtot .
Ncr,sh

8π ε c

∫ ∞
rsh

dr
ωpp v(r) (δB(r))2

Np exp
(∫ r

rsh
dr′ v(r′)

κ(r′)

) . (16)

Continuity mandates that ωpp/Np ∝
√
v(r). We can

scale the density and the flow speed to their values at

the thermal sub-shock, Np,sh and vsh, and pull these

quantities out of the integral,

Ėtot .
ωpp,shNcr,sh

8π ε cNp,sh
√
vsh

∫ ∞
rsh

dr
v(r)3/2 (δB(r))2

exp
(∫ r

rsh
dr′ v(r′)

κ(r′)

) .
(17)

Note that v(r) is measured in the sub-shock rest frame,

and so non-linear cosmic-ray feedback would lead to

a positive gradient in v(r) and a negative gradient in

(δB(r))2 on account of compression, that partially com-

pensate each other.

The energy density in the magnetic turbulence likely

increases toward the shock on account of turbulence

driving, and so (δB(r))2 falls off with increasing r. The

cosmic-ray scattering rate is linked to the intensity of

the turbulence, hence κ(r) will rise with increasing r.

We shall write the spatial profiles as

(δB(r))2 = (δBsh)2 b(r) κ(r) = κsh k(r). (18)

Note that δB(r) may include small-k turbulence that

is driven by cosmic rays of energies higher than that of
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the particles whose energy losses we calculate. The dif-

fusion coefficient increases with energy, and so does the

precursor length, implying that at any given location in

the precursor a particle sees turbulence that has been

driven by cosmic rays of higher energy further out in

the precursor. Part of that turbulence has a scale com-

mensurate with or larger than the Larmor radius of the

particle in question, which provides additional scattering

and possibly magnetic-field amplification, thus reducing

η in our description, but it does not necessarily impose

additional energy loss on our particle.

The variation of b(r) and k(r) may be huge, as

we observe evidence of strong magnetic-field amplifica-

tion. We noted above that κ(r) should not increase too

quickly, otherwise the acceleration is inefficient and the

cosmic-ray spectrum cuts off.

We shall now use the argument of the exponential in

eq. 17 as new variable of integration,

x =

∫ r

rsh

dr′
v(r′)

κ(r′)
, (19)

which leads to

Ėtot .
ωpp,shNcr,sh (δBsh)2 κsh

8π ε cNp,sh

×
∫ ∞

0

dx

√
v(x)

vsh
b(x) k(x) exp(−x), (20)

where b(x) and k(x) are defined in eq. 18. In the quasi-

linear limit κ ∝ 1/(δB)2 is approximately true, meaning

b(x)k(x) ≈ const, whereas for Bohmian scaling one ex-

pects b(x)k(x) ∝
√
b(x). In the general case, b(x)k(x) is

at most constant, but more likely a declining function,

because b(x) is expected to decline, and so the integral in

eq. 20 yields a numerical factor close to unity. Explicitly

considering the spatial variation of δB and of the diffu-

sion coefficient, κ(r), thus leads to the same conclusion

as the phenomenological analysis described in sec. 2.1:

a reasonable spatial variation of the relevant parameters

does not invalidate the calculations presented in this sec-

tion. The total energy-loss rate of cosmic rays in the

precursor then is

Ėtot . UδB
Ncr,sh

Np

ηΓcr

3ε

c2

vA
, (21)

where we again used Bohm scaling for the diffusion

coefficient, κ = ηrLc/3. The escape flux to the far-

downstream region,

Ṅesc = −Ncr,sh
vsh

4
, (22)

is in the steady state compensated by the energy gain

on account of acceleration at the shock, and the level of

balance determines the spectral index, s,

Ėacc =
mpc

2Γcr

s− 1
|Ṅesc| . (23)

The ratio of the two rates in eqs. 21 and 23 is a measure

of the spectral steepening,

∆s = (s− 1)
1

Ėacc

Ėtot
− 1

.
2 (s− 1)2 ηMA

3 ε

UδB
Ubulk

. (24)

As for eq. 12, we expanded this formula for weak losses

to derive the last expression. Apart from a factor s− 1,

we find the same level of spectral steepening as in eq. 12.

There we had used a formula for the acceleration time

scale that was strictly derived for test particles at a

strong shock, i.e. s = 2, for which there is no differ-

ence between the two estimates for the spectral steep-

ening. We remind the reader that we integrated out

spatial variations in the cosmic-ray precursor and that

all variables are supposed to be measured immediately

upstream of the thermal sub-shock.

3. SUMMARY AND DISCUSSION

We calculated the energy-transfer rate from cosmic

rays to non-resonant plasma waves in the precursor of

the forward shock of an SNR. Two different ways of cal-

culation led to essentially the same result for the soften-

ing of the particle spectra that is imposed by that energy

transfer. It can be related to the energy-density ratio of

amplified turbulent magnetic field and bulk plasma flow.

That ratio is at most the inverse square of the Alfvénic

Mach number of the thermal sub-shock, which we write

with the full turbulent field amplitude,

MA =

√
Ubulk

UδB + UB0

=

√
Ubulk

UδB

1√
1 +

UB0

UδB

. (25)

For a turbulently amplified magnetic field, UδB � UB0 ,

the spectral steepening can hence be written either with

the Alfvénic Mach number of the sub shock or with the

energy density of the turbulent field immediately up-

stream of the shock. The most important finding is then

that for Bohm scaling of diffusion in the precursor with

factor η, the change in spectral index is invariably

∆s .
2 (s− 1)2 η

3 εMA
=

2 (s− 1)2 η

3 ε

√
UδB
Ubulk

. (26)

Here s is the cosmic-ray spectral index without steep-

ening, and ε is the magnetic fraction of the turbulence

energy density immediately upstream of the shock. In

Figure 1 we show this constraint as red exclusion area

in a display of spectral softening vs. MA.
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The magnetic-field strength immediately upstream of

the shock, and hence MA, cannot be easily determined

through observations. Essentially all radiation is pro-

duced downstream of the shock, and there are numerous

processes operating at the shock that generate magnetic

fields and can cause a jump in rms(B) that is much

larger than the compression imposed at the shock (e.g.

Giacalone & Jokipii 2007; Fraschetti 2013). The true

Alfvénic Mach number would then be larger than naively

estimated.

The scale factor of the diffusion coefficient, η, could

be large, but not too large at very high energies, oth-

erwise a young SNR could not accelerate particles to

that energy. Simulations suggest that η ≈ 4, if only

the nonresonant mode is driven (Reville & Bell 2013;

Kobzar et al. 2017). Waves driven by cosmic rays in

one energy band also scatter cosmic rays with different

energies, albeit with somewhat modified efficiency (Re-

ville et al. 2008; Beresnyak & Li 2014), which suggests

that η ≈ 4 is also a reasonable estimate when one con-

siders the entire spectrum of cosmic rays accelerated at

the shock. Modes driven by cosmic rays of the highest

energies may provide large-angle scattering for lower-

energy cosmic rays, for which the size of individual mag-

netic filaments is commensurate with the Larmor radius

in those filaments. Any other MHD mode, including

those that are nonlinearly driven by Bell’s mode, could

lower η, because it may provide cosmic-ray scattering

and can reduce the Larmor radius, rL, through further

magnetic-field amplification. Likewise, MHD processes

that generate large-scale magnetic field in the precursor

(e.g. Beresnyak et al. 2009; Bykov et al. 2011; del Valle

et al. 2016; Xu & Lazarian 2017) would reduce κ and

hence ∆s.

A remaining possibility is that the magnetic field in

the precursor is not amplified, in which case one might

expect η ≈ B2/(δB)2. Inserting this into eq. 24 and

using eq. 25 again yields ∆s of the order of M−1
A . We

conclude that η can likely not significantly increase the

level of spectral softening.

Bell et al. (2019) based their estimate on the energy

flux of turbulence and cosmic rays through the shock,

and the finding ∆s ∝ vsh is a consequence of the as-

sumed saturation level UδB ∝ vsh. Hadronic gamma-ray

emission from SNRs shows soft spectra mainly for older

SNRs whose shocks have decelerated to about 0.01c or

less, for which eq. 2 yields negligible steepening. Radio

data are much more abundant, but they reflect electron

spectra. Technically, ultrarelativistic electrons can also

drive Bell’s mode, albeit with opposite circular polar-

ization (Bret 2009). As cosmic-ray ions typically carry

more energy density than do the electrons, they would

Figure 1. Exclusion limits for the spectral softening, ∆s,
as a function of the Alfvénic Mach number, MA, assuming
η = 4 and ε = 0.5. The red area indicates a violation of
eq. 26. The cyan and blue areas are excluded by eq. 29 for
vshUcr/cUbulk set to 10−3 and 4 · 10−3, respectively. The
black solid line indicates the softening that is imposed by
the magnetic pressure.

provide most of the amplified field, and it is question-

able whether any estimate of spectral steepening can

be directly applied to electrons and hence to radio syn-

chrotron spectra. Besides, the youngest known SNR in

the Galaxy, G1.9+0.3, has a very fast forward shock

(Reynolds et al. 2008), but the radio emission most likely

comes from the reverse shock whose speed is consider-

ably lower (Brose et al. 2019).

It is instructive to assess the energy losses of cosmic-

ray electrons. The ratio of the energy-loss time of pro-

tons (Eq. 8) and the synchrotron loss time of electrons

at the same energy is independent of the magnetic-field

strength. The nonresonant streaming instability oper-

ates only upstream of the shock, whereas the energy loss

electrons incur in the compressed magnetic field dur-

ing the downstream half-cycle of shock acceleration is

about ten times that of the upstream half-cycle. Then,

for parameters typical for young SNRs, a shock speed

vsh = 7000 km s−1, ωp,p = 1 kHz, and Np = 0.5 cm−3,

the energy-loss time ratio exceeds unity for 15-TeV par-

ticles and increases ∝ Γ2
cr. At 50 TeV the synchrotron

loss timescale of electrons would be 10% of the proton

loss time for driving Bell’s mode. Electron accelera-

tion to 50 TeV or more would imply that the accelera-

tion timescale is still significantly shorter than the syn-

chrotron loss time, and so the energy loss of cosmic-ray

protons is negligible at this energy. In other words, if

intense nonthermal multi-keV emission is produced, the

energy loss, and hence the spectral steepening, is very

small for hadronic cosmic rays that produce TeV-band

gamma-ray emission.
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Instead of a fixed saturation level, we consider the

energy transfer throughout the cosmic-ray precursor,

which accounts for the limited available time and in-

cludes energy that nonlinearly passes to heating or other

types of turbulence, but requires the assumption that

the linear growth rate of the non-resonant mode is also

valid in the nonlinear stage. A consistency check is pro-

vided by mandating that in the steady state the wave-

driving power per unit shock area (eq. 21) must be at

least as large as the escape flux through the shock,

vshUδB/ε. This yields an implicit lower limit on the

cosmic-ray density that with eq. 5 corresponds to re-

quiring at least one half exponential growth cycle for

the nonresonant mode,

Ucr ≥
6

η

Ubulk

MA
⇒ Nexp & 0.5. (27)

Evidently that condition is met for any significant

growth of the mode. As the mode has to grow from

small fluctuations to a level δB � B0 , one would in-

stead need around ten exponential growth cycles. In-

terestingly, we recover the result of Bell et al. (2019),

∆s|Bell ≈ 4UδB/(εUcr), if we assume a cosmic-ray den-

sity that equals the right-hand side eq. 27. In that case

Nexp ' 0.5, meaning there is no time for the mode to

grow, and so the steady-state level UδB/Ucr ≈ vsh/(2c)

cannot be reached.

Our calculation of the number of exponential growth

times in eq. 5 implicitly assumes that the mean diffusion

coefficient, κ, in the cosmic-ray precursor is not much

different from that immediately upstream of the shock,

at least for cosmic rays at energies well below the cut-

off. We noticed in section 2.2 that this must by roughly

true, otherwise most upstream cosmic rays would reside

very far from the shock and effectively escape, which is

a far more serious loss process than wave driving.

The spectral modification implied by Eq. 26 does not

explicitely depend on the energy density of cosmic rays,

Ucr. The spectral softening reflects the per-particle rates

of energy gain and escape from the shock. The energy

transfer rate from cosmic rays to turbulence scales lin-

early with the cosmic-ray density, but normalized to the

individual cosmic ray it is independent. Hence the in-

dependence of ∆s on the cosmic-ray density. We calcu-

lated the level of spectral softening ignoring the condi-

tion krL � 1, under which the non-resonant mode can

be driven. For δB � B0 this relation can be rephrased

as
vsh

4c

Ucr

UδB
� 1. (28)

This condition requires that the left-hand side be much

larger than unity, but how much larger? Let us conser-

vatively suppose that is it larger than or equal to two.

Inserting that into eq. 26 we find

∆s .
(s− 1)η

3
√

2 ε

√
vsh

c

Ucr

Ubulk
. (29)

This condition is also displayed in Figure 1 for two rather

high values of vsh and Ucr. It appears as a constant

limit at all MA, although some values of MA may not

be reached, at least not by magnetic-field amplification

through Bell’s mode.

Given that the standard jump condition increases√
UδB/Ubulk in the downstream region to about 8 times

its value in the upstream region, a strong magnetic field,

or small MA, will by itself modify the shock (e.g. Vainio

& Schlickeiser 1999; Lerche et al. 2000; Caprioli et al.

2009) and hence soften the particle spectrum in a sim-

ilar way as does the energy loss by driving turbulence.

The solid black line in Figure 1 indicates the magnitude

of this effect for a quasi-perpendicular shock with dy-

namically relevant field amplitude of
√

2/3 δB. There

is a marginal dependence of the curve on the shock-

parallel magnetic-field component that we ignore here.

Note also that a turbulently oriented magnetic field will

for MA . 20 induce vorticity at the shock that can drive

a turbulent dynamo in the downstream region and fur-

ther amplify the field there.

In conclusion, we find and show in Figure 1 that

even for very efficient cosmic-ray acceleration, for which
η ≈ 4, and the highest magnetic-field amplification that

is allowed for Bell’s mode, the spectral softening appears

to be moderate, ∆s . 0.1, and it is negligible for stan-

dard SNR parameters. As we explicitely allow for spatial

variation in the cosmic-ray precursor, the shock speed

in Eq. 29, vsh, is that of the thermal subshock, not that

measured in the far-upstream frame. This statement is

based on the energy transfer that can be accomplished

within the time available, and it does not assume that

a certain saturation level of the wave energy density is

reached.
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