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Abstract

We show that the precision of an angular measurement or rotation (e.g., on the orientation of

a qubit or spin state) is limited by fundamental constraints arising from quantum mechanics and

general relativity (gravitational collapse). The limiting precision is r−1 in Planck units, where r is

the physical extent of the (possibly macroscopic) device used to manipulate the spin state. This

fundamental limitation means that spin states S1 and S2 cannot be experimentally distinguished

from each other if they differ by a sufficiently small rotation. Experiments cannot exclude the

possibility that the space of quantum state vectors (i.e., Hilbert space) is fundamentally discrete,

rather than continuous. We discuss the implications for finitism: does physics require infinity or a

continuum?
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I. INTRODUCTION: FUNDAMENTAL LIMITS ON MEASUREMENT

Gedanken experiments can reveal fundamental limitations on measurements or other

experimental procedures that arise from the laws of physics, see e.g. [1–7]. The best known

example of this is the Heisenberg uncertainty principle, which is motivated by elementary

considerations of particle scattering. Heuristic arguments suggested that localization of a

particle in position space would inevitable contribute to uncertainty in its momentum, and

vice versa. It was only later that the formal theory of quantum mechanics incorporated this

uncertainty in the form of operator commutation relations [x, p] = i~.

More recently, it has been shown that discreteness of space-time on length scales smaller

than the Planck length cannot be detected due to limitations on measuring devices which

arise from quantum mechanics and general relativity [8–10]. This suggests, but does not

prove, that models of quantum gravity that are consistent with what is currently known

about low energy (long distance) physics will incorporate minimal length in some funda-

mental way. Examples are models which incorporate a minimal length via a generalized

uncertainty principle [11–14] or even string theory.

In this letter we deduce the existence of minimal rotations which are analogous to minimal

length. Specifically, we deduce limits on the precision with which a rotation can be applied

(e.g., to a microscopic state), or a device can measure spin orientation. These results suggest

a fundamental discreteness in the structure of Hilbert space itself [15, 16].

The result described here was first obtained in [15] using minimal length (the Planck

length) as an input assumption. Consider the rotation of a macroscopic device of size r. If

the angle of rotation is sufficiently small no part of the device is displaced by more than

the minimal length, and the device is not distinguishable from its unrotated configuration.

Thus rotations smaller than r−1 in Planck units cannot be realized and measurements with

better than this precision cannot be performed.

Below we give a more complete derivation of the result: we consider the angular displace-

ment operator ϕ(t)− ϕ(0) and examine limits on related experimental procedures. This is

analogous to the approach used in [8] to deduce minimal length.

II. ANGULAR MEASUREMENTS AND ROTATIONS

In this section, we show that quantum mechanics and general relativity considered simul-

taneously imply the existence of a bound on the precision of the measurement of an angle:

i.e., no operational procedure exists which can measure an angle less than this fundamental

angle. The key ingredients used to reach this conclusion are the uncertainty principle from

quantum mechanics, and gravitational collapse from general relativity in the form of the
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hoop conjecture.

A dynamical condition for gravitational collapse is given by the Hoop Conjecture [17]:

if an amount of energy E is confined at any instant to a ball of size R, where R < GNE

(GN is Newton’s constant), then that region will eventually evolve into a black hole. Recent

theoretical results [18–24] support the Hoop Conjecture : even the scattering of extremely

high energy particles cannot avoid black hole formation if their impact parameter is less

than of order R given above. Henceforth, we use natural units where ~, c and Newton’s

constant (or lP ) are unity. We also sometimes neglect numerical factors of order one.

Let us consider the Hamiltonian for a free particle on a circle of radius r. The Hamiltonian

is given by

H =
p2ϕ

2mr2
, (1)

where pϕ is the angular momentum. The angular position of the particle is given by the

classical equation of motion

ϕ̇ =
∂H

∂pϕ
= ω, (2)

which admits the solution

ϕ(t) = ωt+ ϕ(0). (3)

Passing to quantum mechanics, we can calculate the commutator of ϕ(t) and ϕ(0) and

obtain

[ϕ(0), ϕ(t)] = i
t

mr2
, (4)

where t is the time between the two measurements. From this we obtain

|∆ϕ(0)||∆ϕ(t)| ≥ t

2mr2
. (5)

As measuring an angle requires two measurements, it is limited by the greater of ∆ϕ(0)

and ∆ϕ(t), which is at least (t/2mr2)1/2. At first sight, it appears that one could make this

difference arbitrarily small by making m very large. However, in order to avoid gravitational

collapse, the size r of the object must scale proportionally tom so that r > m (the inequality

holds up to factors of order one). By causality r cannot exceed t. We thus find

|∆ϕ(t)| ≥ lP√
2r
, (6)

where, leaving natural units momentarily, lP is the Planck length given by
√

~GN/c3 ∼
1.6× 10−35 m. The uncertainty in the measurement of ϕ can be reduced by making r large,
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but it cannot approach zero without taking the rotational inertia of the device to infinity.

Of course, more practical limitations resulting from material properties (e.g., causal bounds

on rigidity) will intervene before this limit can be taken.

We neglected interactions between the experimental apparatus and the region of the

universe outside the causal region of the measurement. The possibility of interactions,

and a more complicated Hamiltonian, were considered in [8] and shown not to alter the

conclusions.

Our result can be interpreted as a proof of the existence of a minimal angle in full

analogy to the minimal length related to the Planck mass. This minimal angle could be

called the Planck angle. Basically, it implies that no operational procedure can exclude

the quantization of space-time for distances or angles less than the Planck length or the

Planck angle. We emphasize that our result does not rely on a discretization of space-time;

the angular evolution of the object on the circle is given by standard quantum mechanics

on a continuous space-time. However, given the existence of a minimal length, one could

speculate that space-time has a short distance (high momentum) cutoff, and thus physics in

a bounded region of space-time is described by a finite dimensional Hilbert space. We have

shown that no experiment could rule this out.

We note that canonical commutation relations such as [x, p] = i~ cannot be realized

in a finite dimensional Hilbert space. This is easy to verify by taking the trace of both

sides of the equation: the left hand side is traceless but the right hand side has trace

proportional to the dimensionality [25]. However, this is primarily a technical issue because

finite dimensional quantum systems continue to obey the usual uncertainty relations. For

example, a wavepacket state realized in a discrete and finite setting (e.g., a space-time

lattice with finite volume) cannot reduce its position uncertainty ∆x arbitrarily without

increasing the corresponding momentum uncertainty ∆p, and vice versa. It is sometimes

argued (erroneously) that quantum mechanics must have an infinite dimensional Hilbert

space because of the position-momentum commutation relation. However in fact what is

really known about quantum physics from direct observation is not the commutation relation

itself but the uncertainty relation that it encodes. The uncertainty relation persists in a finite

dimensional version of quantum mechanics (e.g., the Schrödinger evolution of states on a

discrete space-time lattice).
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III. SUPERPOSITIONS AND SPIN STATES

The results of the previous section limit the precision with which we can measure or

manipulate the state of a single qubit – the orientation of a spin:

|ψ〉 = cos θ |+〉 + eiφ sin θ |−〉 . (7)

Limits on the precision of (θ, φ) are actually limits on the precision of Hilbert space (or state

vector) coefficients. These limits, together with the Planck length short distance cutoff,

imply that no experiment can exclude the possibility that Hilbert space is discrete and finite

dimensional, i.e.,

|ψ〉 =
∑

cn |n〉 (8)

where 1. the values of the coefficients cn are only defined to some finite accuracy – they are

not continuous complex parameters, and 2. the sum itself is finite.

Physicists who simulate quantum phenomena on classical computers are already familiar

with properties 1 and 2. What we describe above as fundamental consequences for quantum

mechanics arising from gravity are approximations made out of necessity in everyday com-

putation. Any quantum phenomenon that can, in principle, be reproduced to satisfactory

approximation in computer simulation is entirely consistent with properties 1 and 2.

We can also pursue a quantum information approach to these questions. Consider an

experiment which takes place in a space-time region of extent r. Given the short distance

cutoff at the Planck length, lp, the number of degrees of freedom relevant to the experiment

is itself finite. For a given r, the number of distinct configurations of the experimental

apparatus (i.e., the number of distinct quantum operators represented by the possible mea-

surements) is bounded above. Thus the number of distinct spin orientations (qubit states

which are eigenstates of the measurement operator) that can be resolved is also bounded

above. Physics can therefore be described by a discretized Hilbert space in which the angles

(θ, φ) are discrete and take on only a finite (but presumably very large) number of values.

Holography (another aspect of quantum gravity) provides a stronger bound on the scale

of discreteness: the total entropy of the measurement apparatus is bounded above (i.e.,

limiting its configurations and accuracy of read out) by the boundary area rather than the

volume of the region in Planck units.

We can illustrate the connection to holography [15] using a composite state built from

many qubits:

Ψ = ψ1 ⊗ ψ2 ⊗ ψ3 ⊗ · · · ⊗ ψn . (9)

Assume a fundamental uncertainty ǫ in the state of each of the qubits, so that ψ and ψ′ are
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indistinguishable when |ψ − ψ′| < ǫ. Now consider the composite state

Ψ′ = ψ′
1 ⊗ ψ′

2 ⊗ ψ′
3 ⊗ · · · ⊗ ψ′

n . (10)

If uncertainties ǫ for each qubit are independent, the resulting uncertainty in the composite

state Ψ is

|Ψ−Ψ′|2 ∼ nǫ2 (11)

and requiring that this be less than unity implies the holographic bound

n < ǫ−2 ∼ r2 (12)

where r is the size of the system. In other words, the requirement of a small aggregate

uncertainty in the composite state Ψ due to the individual qubit uncertainties ǫ is equivalent

to the holographic upper bound on the entropy or number of degrees of freedom n in a finite

region of space of size r.

To summarize, the observation that only a finite amount of quantum information can

be encoded in a finite region provides an upper limit on the precision of a measurement

conducted in that region. However, we can go further: the measured state of a qubit can

only be determined to some limited precision, and this is consistent with a finite (rather

than infinite, as is usually assumed) set of possible orientations (θ, φ) for each qubit in the

universe.

IV. FINITISM: DOES PHYSICS REQUIRE A CONTINUUM?

Our intuitions about the existence and nature of a continuum arise from perceptions of

space and time [26]. But the existence of a fundamental Planck length suggests that space-

time may not be a continuum. In that case, our intuitions originate from something (an

idealization) that is not actually realized in Nature.

Quantum mechanics is formulated using continuous structures such as Hilbert space and

a smoothly varying wavefunction, incorporating complex numbers of arbitrary precision.

However beautiful these structures may be, it is possible that they are idealizations that do

not exist in the physical world. The introduction of gravity limits the precision necessary

to formulate a model of fundamental quantum physics. Indeed, any potential structure

smaller than the Planck length or the minimal angle considered here cannot be observed

by any device subject to quantum mechanics, general relativity, and causality. Our results

suggest that quantum mechanics combined with gravity does not require a continuum, nor

any concept of infinity.

It may come as a surprise to physicists that infinity and the continuum are even today the

subject of debate in mathematics and the philosophy of mathematics. Some mathematicians,
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called finitists, accept only finite mathematical objects and procedures [30]. The fact that

physics does not require infinity or a continuum is an important empirical input to the

debate over finitism. For example, a finitist might assert (contra the Platonist perspective

adopted by many mathematicians) that human brains built from finite arrangements of

atoms, and operating under natural laws (physics) that are finitistic, are unlikely to have

trustworthy intuitions concerning abstract concepts such as the continuum. These facts

about the brain and about physical laws stand in contrast to intuitive assumptions adopted

by many mathematicians. For example, Weyl (Das Kontinuum [26, 27]) argues that our

intuitions concerning the continuum originate in the mind’s perception of the continuity of

space-time.

There was a concerted effort beginning in the 20th century to place infinity and the

continuum on a rigorous foundation using logic and set theory. As demonstrated by Gödel,

Hilbert’s program of axiomatization using finitary methods (originally motivated, in part, by

the continuum in analysis) could not succeed. Opinions are divided on modern approaches

which are non-finitary. For example, the standard axioms of Zermelo-Fraenkel (ZFC) set

theory applied to infinite sets lead to many counterintuitive results such as the Banach-Tarski

Paradox: given any two solid objects, the cut pieces of either one can be reassembled into

the other [28]. When examined closely all of the axioms of ZFC (e.g., Axiom of Choice) are

intuitively obvious if applied to finite sets, with the exception of the Axiom of Infinity, which

admits infinite sets. (Infinite sets are inexhaustible, so application of the Axiom of Choice

leads to pathological results.) The Continuum Hypothesis, which proposes that there is no

cardinality strictly between that of the integers and reals, has been shown to be independent

(neither provable nor disprovable) in ZFC [29]. Finitists assert that this illustrates how little

control rigorous mathematics has on even the most fundamental properties of the continuum.

David Deutsch [31]:

The reason why we find it possible to construct, say, electronic calculators, and

indeed why we can perform mental arithmetic, cannot be found in mathematics

or logic. The reason is that the laws of physics “happen to” permit the existence

of physical models for the operations of arithmetic such as addition, subtraction

and multiplication.

This suggests the primacy of physical reality over mathematics, whereas usually the oppo-

site assumption is made. From this perspective, the parts of mathematics which are simply

models or abstractions of “real” physical things are most likely to be free of contradiction or

misleading intuition. Aspects of mathematics which have no physical analog (e.g., infinite

sets, the continuum) are prone to problems in formalization or mechanization. Physics – i.e.,
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models which can be compared to experimental observation, actual “effective procedures”

– does not ever require infinity, although it may be of some conceptual convenience. Hence

it seems possible, and the finitists believe, that the Axiom of Infinity and its equivalents do

not provide a sound foundation for mathematics.
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