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Abstract—The choice of the transmitting frequency to provide
cellular-connected Unmanned Aerial Vehicle (UAV) reliable con-
nectivity and mobility support introduce several challenges. Con-
ventional sub-6 GHz networks are optimized for ground Users
(UEs). Operating at the millimeter Wave (mmWave) band would
provide high-capacity but highly intermittent links. To reach the
destination while minimizing a weighted function of traveling
time and number of radio failures, we propose in this paper a
UAV joint trajectory and band switch approach. By leveraging
Double Deep Q-Learning we develop two different approaches to
learn a trajectory besides managing the band switch. A first blind
approach switches the band along the trajectory anytime the
UAV-UE throughput is below a predefined threshold. In addition,
we propose a smart approach for simultaneous learning-based
path planning of UAV and band switch. The two approaches are
compared with an optimal band switch strategy in terms of radio
failure and band switches for different thresholds. Results reveal
that the smart approach is able in a high threshold regime to
reduce the number of radio failures and band switches while
reaching the desired destination.

Index Terms—UAV, UE, trajectory, Deep Reinforcement Learn-
ing, cellular network, sub-6 GHz, mmWave

I. INTRODUCTION

Integrating Unmanned Aerial Vehicles (UAVs) into cellular

communication systems as User Equipments (UEs) is envi-

sioned as an effective solution to support the UAV’s mission

specific rate-demanding data communication while improving

the robustness of the UAV navigation [1]. This vision of

cellular connected UAVs communication, however, poses new

research challenges due to the significant differences from

conventional communication systems. UAVs-UE have typi-

cally higher altitude, higher mobility and have more stringent

constraints on the power and operational time than the corre-

sponding ground ones [2]. In addition, the existing cellular

network operating at sub-6 GHz is bandwidth limited and

perform poorly at high UAV heights, due to the interference

perceived from the down-tilted antennas at the ground Base

Stations (BSs) [3]. As a consequence, during its trajectory,

a UAV is very likely to experience radio link failures. The

UAVs’ mobility and flexibility offer a degree of freedom to

circumvent these issues. The UAV path design that aims to

respect a quality-of-connectivity constraint and minimize the

travelling time goes under the name of Communication-aware

trajectory. Several works have optimized the UAV trajectory

under connectivity constraints using graph based [4] or dy-

namic programming based solutions [5]. The above traditional

optimization solutions are time consuming and computation-

ally complex. For this reason, Reinforcement Learning (RL)

approaches have been recently investigated. Compared to a

traditional optimization approach, RL is able of making deci-

sions interacting iteratively with the environment. A double Q-

Learning approach is proposed in [6] to solve a joint trajectory

and outage time constraint problem. A Temporal Difference

(TD) learning method is utilized in [7] to design the UAV-UE

trajectory while minimizing the mission completion time and

the disconnection duration.

Besides, exploiting their mobility, UAVs can establish short

Line of Sight (LoS) communication links, that represents

an ideal situation to transmit at millimeter Wave (mmWave)

band. A mmWave link offers a wide spectrum and enables

the use of directional beamforming, providing high data rate

[8]. The work in [8] addresses the cellular connected UAV

communication-aware trajectory problem learning simultane-

ously the mmWave beam and trajectory via Deep Q-Network

(DQN) to improve the Uplink (UL) performance. However,

due to the severe attenuation and sensitivity to blockages,

mmWave links are highly intermittent, leading to frequent

radio failures at low UAV altitudes [9].

A promising solution to improve the system robustness is to

support two different frequency ranges, leading to integrated

dual mode sub-6 GHz/mmWave systems [10]. Dual connec-

tivity would allow to exploit the complementary advantages of

both the frequency bands and reduce consistently outage status

through band switch algorithms. Some literature has recently

studied the band switch problem for conventional ground UEs

in a 2D environment. Works in [11]-[12] propose Machine

Learning (ML) classifiers that select the best band based on

previous rate measurements within a temporal window. Within

the UAV communication context, in [13] UAVs are equipped

with dual band mmWave and sub-6 GHz communication

modules to act as relays to minimize the total service time, but

the switch algorithm between the bands is not investigated.

In this paper, differently from previous works, we aim

to solve the communication aware 3D trajectory problem of

UAV-UE proposing a learning strategy to both manage the

trajectory and the band switch policy. We firstly formulate a

trajectory problem in order to minimize the travelling time and

radio failures of the UAV. Then we propose a 3D DQN based

algorithm to dynamically solve it adjusting the position and

the operating frequency of the UAV-UE. Finally, we present
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also a blind switch strategy and introduce a baseline optimal

band switch policy. We compare the performance of these

three approaches in term of number of radio failures and

band switches in the result section. We observe that the smart

approach significantly improves the performance of the ground

BS link for stringent thresholds.

II. SYSTEM MODEL

A. Network Topology

Consider the downlink of a dual band wireless cellular

network, that operates in two frequency bands with frequency

fc and bandwidth Bc, c ∈ {1, 2}. A set of ground Distributed

Units (DUs) is deployed in an area X ∈ R
3, connected to

a single Centralized Unit (CU), and serve a set of N UAV-

UEs. Both DUs and UEs are equipped with interfaces which

allow them to transmit at both frequency bands. We assume the

transmission occurs in a single frequency at a time, generating

inter-cell interference to neighboring cells working at the same

frequency band. Each DU is assumed to have nb Resource

Blocks (RBs) and transmits with same power P c
DU . Without

loss of generality, we focus on a single link to a UAV-UE

(hereafter addressed as UAV).

B. Ground-to-Air Channel Model

In this section we present the path loss, antenna and fading

models, considering f1 a lower sub-6 GHz band and f2 the

mmWave band.

1) Path Loss and Antenna Model: The ground-to-air chan-

nel model is subject to LoS/Non-Line of Sight (NLoS) varia-

tions based on the building distribution in X and UAV height

that lead to blockages. For modeling the path loss L1(d) at

sub-6 GHz we consider the urban Macro (UMa) path loss

specified in 3rd Generation Partnership Project (3GPP) [14].

The path loss L2(d) at mmWave follows a path loss model

[9]:

L2(d) =

{

lL(d) = XLd
−αL ;

lNL(d) = XNLd
−αNL ;

(1)

where d is the ground BS-UAV distance, parameters αL, αNL

and XL, XNL represent, respectively, the path loss exponent

for LoS/NLoS and the path loss at 1 meter distance. Each DU

has three sectors separated by 120° as characterized by 3GPP

specification [14]. Each sector is equipped with a vertical N1-

element uniform linear array (ULA) at f1 and a Uniform

Planar Array (UPA) N2×N2 at f2 tilted with angle φ1 and φ2.

We denote the total ground DU directional radiation pattern

as G(Θ, φ), where Θ, φ are elevation and azimuth angles.

We assume the UAV is equipped with a conventional omni-

directional antenna of unitary gain in any direction to maintain

low complexity and cost at the UAV.

2) Fading Model: We model the small scale fading fading

power f2
0,i with i {LoS,NLoS} as a Nakagami-m fading

model, that covers a wide range of fading environments,

including both sub-6 GHz (m = 1) and mmWave (m = 3).

Accordingly, f2
0 follows a Gamma distribution with E[f2

0 ] = 1.

C. UAV Mobility Model

The UAV moves at constant speed V = Vmax along a 3D

trajectory of duration T that can be divided into K discrete

segments with interval δk = T/K , k = {1, ...,K}. δk is

chosen arbitrarily small so that within each step the large scale

signal power received by the UAV remains approximately

unchanged. Each segment is thus described by its discrete

coordinates qk = [xk, yk, hk]. The trajectory of the UAV starts

from a random position qI ∈ X in the given area of interest

X , delimited by borders [xmin, xmax] × [ymin, ymax] while

the altitude of the UAV must satisfy hk ∈ [hmin, hmax], where

hmin represents the lower bound of UAVs’ altitude to avoid

collisions and hmax represents the upper bound. The trajectory

ends when the UAV reaches a final destination qF.

D. Communication Model

The achievable rate Rc
A at qk in band c can be expressed

as: Rc
A(qk) = Bc E(log2(1 + SINRc(qk))), where Bc is

the bandwidth assigned to the link and SINRc the Signal-

to-Noise-plus-Interference Ratio (SINR). At each trajectory

step qk, the UAV associates with the m-th DU at position

bm = [xm, ym, hm] providing the highest average Reference

Signals Received Power (RSRP) at the current frequency.

Assuming that the associated cell remains unchanged within

each trajectory step, the SINR at the UAV can be denoted as:

SINRc(qk,m) =
γc
m(k)

σ2 +
∑

j 6=m γc
j (k)

, (2)

where γc
m(k) is the received power γc

m(k) =
PDUL

c(‖bm − qk‖2)f
2
0 (qk)G(Θ, φ) and terms in the

denominator are, respectively, the spectral noise and

the interference. Note that a subscript to emphasize the

{LoS,NLoS} dependence of L() and f has been omitted to

lighten the notation.

To maintain a reliable connection, DU-UAV link must

satisfy a rate threshold RTH . We define a radio failure on

the link if Rc
A(qk) < RTH occurs at step k. In addition, we

introduce a failure indicator as:

F (qk) =

{

1, if Rc
A(qk) < RTH

0, otherwise.
(3)

To avoid a radio failure, at each discrete step k the UAV

may require the CU a band switch to change the transmission

frequency. Prior to formulating the problem, in what follows

we introduce the band switch procedure and signalling.

E. Band switch procedure

The band switch policy industry standard for a conventional

ground UE is composed of several iterative steps which can be

summarized as follows : 1) if the serving rate Rc
A at current

frequency drops below threshold RTH , the UE initiates a band

switch procedure with the serving cell, 2) the UE utilizes a

time ∆t to measure if a cell at target frequency offers a higher

RSRP than the serving cell, 4) if yes, the UE triggers a band

switch procedure and reports the measurement back to the

DU, 5) the CU makes a decision on the suitable DU at target



frequency for band switch, based on the UE measurements.

Applying the above policy to UAV communications would

introduce several challenges. The mobility of the UAV might

cause deep RSRP fluctuations between two consequent trajec-

tory steps qk and qk+1. This might lead to subsequent band

switch procedures and potential ping-pong effect. Note that,

due to the measurement gap, in case of several band switches

the effective throughput at the UE suffers a significant reduc-

tion [12]. Thus, we modify the above band switch procedure to

adapt it for a UAV moving between cells belonging to different

DUs controlled by a central CU. Here, motivated by the above

mentioned challenges, we formulate a real-time trajectory and

band switch procedure exploiting the capabilities of a RL

based policy. In the next sections we formulate the problem

and propose two DQN algorithms for joint UAV-UE trajectory

and band switch.

F. Problem formulation

The goal of the UAV is to reach the destination in the

minimum amount of steps while minimizing the number of

radio failures. At the same time, to avoid a radio failure and

meet the quality of service requirement, at the beginning of

each discrete step k, the operating frequency can be switched

between f1 and f2. Denoting as K the trajectory steps, Ns

the number of band switches, the above problem can be

mathematically formulated as:

min
Ns,K,qk

κ1

K
∑

k=1

F (qk) + κ2K + κ3Ns (4a)

s.t. q0 = qI , (4b)

qK = qF , (4c)

where κ1, κ2, κ3 weight the summation of the arguments, (4b),

(4c) are the starting and final positions. Problem (4) cannot be

readily handled by conventional optimization methods due to

the non trivial design of Rc
A(qk), function for each position

of the fading, and the antenna model described in Section II.

To tackle this challenging problem, we propose a novel

approach by leveraging the DQN technique. DQN based

frameworks are able to solve the joint trajectory and band

switching problem by exploring different actions, and without

the need of prior knowledge or predefined dataset to train the

network.

III. BAND SWITCHING AS A DEEP REINFORCEMENT

LEARNING PROBLEM

In the standard RL setting an agent acts in an environment

over discrete time steps. Given that problem (4) has been

formulated in a discrete form, we can directly map it into

a Markov Decision Process (MDP) 5-tuple 〈S,A,P ,R, γ〉,
with space state S, action space A, state transition probability

P(s′|s, a), reward function R(s, a, s′), and discount factor

γ ∈ [0, 1). At each time step k, the agent receives an

observation ok and selects an action ak, receives reward rk+1

from the environment and goes from state sk to a new state

sk+1 where the cycle restart. We assume an episodic setup,

where an episode starts with time step 0 and concludes with

time step K . Here the states consist in the 3D location of

the UAV qk and band switch indicator wk ∈ {0, 1}, such

as sk = {qk, wk} ∈ S. Both the location and the band

switch indicator are the input of the neural network. The agent,

placed at the CU to overcome the limited onboard computing

capacity, selects an action in a set of N actions {a1, ...aN}
in the action space A. The action can be represented by

parameters ak = {ηk, wk} where ηk corresponds to the

movements of the UAV in altitude (up or down) or in the

horizontal direction (left-right-forward-back). In addition, if

wk is positive, the CU triggers a band switch in the network

operating frequency without a measurement gap. Based on

the selected action the UAV moves in the desired direction for

a distance δk at speed Vmax reaching the position qk+1. Our

goal is to predict the UAV direction along with the transmitting

frequency to avoid radio failures and reach the destination

using the current rate measurement. With this aim we define

as reward function as: rk = λ1F1 + λ2F2 + λ3F3. F1 is a

negative cost and forces the UAV to reach the destination in

the minimum amount of steps. F2 denotes the cost for entering

in low normalized rate regions (RTH/Rc
A(qk)), that lead to

radio failures. F3 accounts for the band switches occurred until

time step k. Note that F3 is a cost since a high number of

band switches is not desirable. Thus, λ1, λ2, λ3 balance the

impact of the three factors on the reward function and need

to be properly adjusted.

In order to achieve the desired goal, we need to find a policy

that maximizes the long-term average of both connectivity and

path guidance. We recall that a policy π(sk, ak) is defined

as the probability of taking action ak = a in state sk = s,

through interacting with the environment. Based on this, the

problem is equivalent to find a policy π(sk, ak) that maximizes

a cumulative discounted reward over the long run:

Gk =

K−1
∑

i=0

γirk+i+1. (5)

The discount factor γ in (5) regulates the relative importance

of future and immediate rewards.

After being formulated as an MDP, Problem (4) can now

be solved via different RL algorithms.

A. DDQN for UAV-UE Trajectory and Smart Band Switch

In the convention RL approach, for a given policy π, a state-

action function Q(s, a) is introduced to represent the expected

return after taking action ak in state sk. In order to deal

with large state/action space dimensions DQN was introduced

in [15] to approximate the optimal Q-function using a Deep

Neural Network (DNN) such that Q(s, a; θ) ≈ Q(s, a) where

θ are the network’ weights. The transitions (s, a, r, s′), with

s′ = sk+1 are stored into a memory of finite capacity size H
and randomly picked when performing a Q-value update. At

each iteration, DQN is trained to minimize the loss:

L(θ) = E[(yk −Q(sk, ak|θk)
2)] (6)



ALGORITHM 1: DDQN Algorithm for Band Switch

Trajectory

1 Initialize: maximum number of episodes, the replay memory H
with capacity N , mini batch size B ;

2 the DQN Q network with coefficients θ, the target network Q̃ with

coefficients θ− = θ;
3 Algorithm hyperparameters (ǫ, λ1,λ2,λ3,γ), Rate Threshold RTH ;
4 for episode = 1,...,Max episode do

5 Initialize q0 = {qI} ∈ S , w = 0, set step k ←− 0;
6 for each step of episode do

7 if rand() < ǫ then
8 select action ak randomly ;
9 else

10 choose action ak = argmaxQ(sk, ak , θ)
11 end

12 end

13 Agent execute action ak , observe {qk+1, wk};
14 if wk == 1 then
15 fc =!fc (Band Switch)
16 end

17 if Destination reached then
18 Terminate Episode ;
19 end

20 Store transition {sk , ak , rk , sk+1} in H;
21 Compute reward rk;
22 Randomly sample mini batch from replay memory H;
23 Perform a gradient descent using (6) and (7);

24 Update Q̃ = Q every C steps;
25 end
26 end

where yk is the target function given by yk = rk +
γmaxa Q(sk+1, a|θ

−), where θ− is introduced following the

target network mechanism. We denote the primary DNN

network weight matrix and target DNN weight matrix as θ
and θ−. We consider a fully connected DNN for both networks

and the DNN parameters θ− are updated with the parameters

θ every fixed number of steps C to improve the convergence

of the algorithm. Among the improvements and extensions

of the baseline DQN algorithm, we implement Double DQN

(DDQN) which reduces the overstimation bias of DQN with a

simple modification of the update rule. In particular, the target

function becomes:

yk = rk + γmax
a

Q(sk+1, argmaxQ(sk+1, ak+1, θk), θ
−
k ).

(7)

In Algorithm (1) we introduce the complete pseudocode.

1) Analysis of the Smart Switch Algorithm: The proposed

algorithm aims to solve the challenges of the state of the art

band switch policy presented in Section II-E. After the initial-

ization procedures, the agent performs an initial exploration

of the state space through an ǫ-greedy policy (lines (7 − 12)

in Algorithm (1)). The UAV moves in a custom environment

consisting of the area under consideration X covered by the

dual band network, the possible UAV locations and discrete

action space. At each episode, the environment resets the

source UAV location, computes new observations and rewards

based on the desired action until it reaches destination. Since

the band switch indicator is included as input state of the DNN,

goal of the agent is to learn by experience in which states

bandswitching is beneficial, without the need for measurement

Parameter Description Value

hmax/hmin UAV Max/Min Height 120/60 m
N1/N2×N2 Antenna Element f1/f2 8/64
φ1/ φ2 Antenna Tilt f1/f2 -10/10 deg
σ2 Noise Power f1/f2 -204/-120 db/Hz
δk time step length 0.5 s
ǫ ǫ-greedy variable 0.4
K UAV Max Moves 200
γ discount factor 1
H Replay Memory Size 100000
λ1, λ2, λ3 Rewards weights 0.1, 0.8, 0.1

TABLE (I) Simulation parameters

of gaps.

Next, we introduce a Blind DQN Algorithm for the joint

UAV-UE Trajectory and Band Switch and an Optimal Algo-

rithm.

B. DDQN for joint UAV-UE Trajectory and Blind Band Switch

To solve the optimization problem (4) we propose also a

Blind algorithm, that focuses on learning the best trajectory to

reach the destination and switches the transmitting frequency

any time a radio failure occurs. Differently from the Algorithm

presented in Section III-A, the states consist of the 3D location

of the UAV and the action in the direction only. In addition,

in the reward function, F3 = 0. The Algorithm pseudocode is

omitted here since it is similar to the one presented in Algo-

rithm 1. This band switch algorithm without information about

the instantaneous rate at both frequencies, cannot guarantee

that the throughput after the band switch will be higher than

the original one.

C. Optimal DDQN for UAV-UE Trajectory

Finally, as benchmark, we introduce an Optimal Algorithm.

At each trajectory step qk the agent knows the instantaneous

achievable rate of the two different bands. Therefore, the CU at

each step coordinates the DUs to transmit at the best frequency,

minimizing the radio failures due to a wrong choice about the

band.

IV. SIMULATION RESULTS

In this section we evaluate the performance of the proposed

DQN algorithms and we benchmark them with the Optimal

Policy. We consider a deployment of 5 dual band DUs in an

area of side 2 km where buildings are modeled as for the

ITU-R urban statistical model [16] with maximum height of

50m. The two frequency bands considered are f1 = 2 GHz

and B1 = 180 kHz, and f2 = 28 GHz and B2 = 1800 kHz.

We use one RB at sub-6 GHz while ten at mmWave [12]. We

choose to transmit at 0.1 W at mmWave and at 1 W at sub-

6 GHz. In the proposed DQN algorithms, the DNN consists

of input layer, four hidden layers, one output layer, all fully

connected feedforward, activated using Rectified Linear Units

(ReLU) and trained with Adam optimizer. Each training run

was conducted using a batch size of 32 for a minimum of

3500 iterations. Table I presents all simulation parameters.
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Fig. (1) Evolution of the UAV-UE rate at sub-6 GHz and

mmWave along one single trajectory episode (a). Samples are

collected at each step k, according to the framework described

in Section II-D. In (b) we show the Radio Failures for a 3D

trajectory at sub-6 GHz and mmWave
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(b) CDF of number of switches
for the Blind and Smart Algorithm
with thresholds 1 and 3

Fig. (2) Performance of the band switch algorithms

A. Simulation Environment

In Fig. 1a, we show the rate trend along with the same

trajectory episode at sub-6 GHz and mmWave. The rate has

sudden drops both at sub6GHz and mmWave, due to the

presence of fading and obstacles. In particular, at mmWave, the

rate can be very high or very low, due to the higher bandwidth

and, at the same time, high sensitivity to blockages. In Fig. 1b

we show the total percentage of detachments completing the

UAV missions at one frequency only, sub-6 GHz or mmWave

band, and without any band switch mechanism. Intuitively, the

number of failures increases as we increase the rate threshold.

Both the above results motivate the band switching approach

presented in this paper.

B. Band Switch Policies

The UAV-UE starts its trajectory at sub-6 GHz and can

switch to the 28 GHz band. We consider a low threshold of

150Kbps at sub-6 GHz and 3Mbps at mmWave (Treshold 1),

a threshold of 300Kbps at sub-6 GHz and 3Mbps at mmWave

(Treshold 2) and a high Threshold 3 of 400Kbps at sub-6 GHz

and 4Mbps at mmWave. In Fig. 2a we compare the blind, the

smart and optimal switch algorithms for increasing thresholds

in term of average percentage of radio failures. We observe

that at low thresholds, the smart approach performs similarly

to the blind approach. By increasing the threshold, and as

consequence, the probability of a radio failure, we observe a

higher increase in the number of radio failures for the blind

approach. While the blind approach switches the band anytime

a radio failure occurs, the smart one offers the agent a generic

framework that, interacting with the environment, learns to

minimize the number of radio failures switching the band

only when the target frequency provides higher throughput.

As confirmation of this, in Fig. 2b we plot the Cumulative

Distribution Function (CDF) of the number of band switches

of the blind and smart approach for Threshold 1 and 3. We

observe that in a high throughput regime, the smart approach

outperforms the blind approach and can significantly reduce

the number of switches.

V. CONCLUSION

In this paper, we propose a DQN based approach to solve a

communication aware trajectory problem for cellular UAV. In

order to minimize the number of radio failures while reaching

its target destination, we consider the UAV to exploit band

switch policies without prior knowledge of the environment.

We define and compare two joint trajectory and band switch

DQN algorithms, that differentiate based on how the agent

decide to switch the transmitting frequency. We show that

a smart switch approach, where the band switch indicator is

included as input state of the DNN, is able to outperform a

blind approach in a high threshold regime.
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