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Abstract—Identifying tire and vehicle parameters is an
essential step in designing control and planning algorithms
for autonomous vehicles. This paper proposes a new method:
Simulation-Based Inference (SBI), a modern interpretation
of Approximate Bayesian Computation methods (ABC) for
parameter identification. The simulation-based inference is an
emerging method in the machine learning literature and has
proven to yield accurate results for many parameter sets in
complex problems. We demonstrate in this paper that it can
handle the identification of highly nonlinear vehicle dynamics
parameters and gives accurate estimates of the parameters for
the governing equations.

I. INTRODUCTION

Autoware [1], [2], [3] is the world’s first open-source
autonomous driving software stack. One of it’s strengths is
that it is largely vehicle and sensor independent, however,
this means that control and calibration methods can be
limited as they must be capable of working with various
vehicle platforms and sensor configurations. Accurate system
identification techniques applied to specific vehicles can be
costly and time-consuming. We propose a method using
Sampling-Based Inference (SBI) to enable Autoware users to
easily estimate vehicle parameters, enabling more performant
control methods and accurate sensor-vehicle calibration. SBI
can estimate parameters such as vehicle Center-Of-Gravity
(COQG) and tire stiffness from user captured vehicle motion
data.

Vehicle COG is essential for both control and sensor-
to-vehicle calibration, and tires strongly define the motion
characteristics of wheeled vehicles as they interface the
vehicle to the ground (road surface) and produce all the
forces for the vehicle motion.

Researchers have been putting a great deal of dedication
to the theme of autonomous and robotic vehicles in the last
decade. Various types of system model approximations are
necessary to design planning and control algorithms. These
model approximations play a vital role in predicting the time
evolution of the motion, observing the time-varying param-
eters and estimating the states and outputs that can not be
measured directly. Estimating model parameters, especially
the parameters of tires, is of enormous importance for the
successful deployment of autonomous vehicles for various
driving conditions.

Vehicle models can be derived from the first-principle
design or approximated by system identification methods in
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state-space form. The models obtained by system identifica-
tion might not have a physical interpretation or connection
to the motion parameters. On the other hand, parameters that
have physical interpretation are used in models derived from
first principles. In this paper, we apply recent developments
in machine learning to the automotive applications of param-
eter identification and control.

Parameter identification is at the intersection of several
scientific disciplines. We look at the problem from the
autonomous driving perspective. The most common method
used in the automotive literature is Least Square (LS) esti-
mation and its variants. Other methods use filtering theory,
such as the Kalman and particle filters and related Sequential
Monte Carlo algorithms. Each of these methods has differing
advantages and disadvantages in terms of precision and
accuracy (bias-variance trade-off), algorithmic complexity
and the handling of high dimensional problems. As we
mainly deal with non-linearity in the state or measurements,
the nonlinear least square methods are the most common
choice in parameter identification.

However, nonlinear optimization always requires careful
application as the solution depends on the initial estimates
and the solver capabilities. Such approaches are also prone
to estimation bias ([4]). The filtering methods: EKF ([5]),
UKEF ([6], [7]) and particle filters ([8], [9], [10]) augment
the state space by endowing the parameters with random
walk dynamics. The parameters are estimated together with
the states. One recent method proposed for tire identification
is based on the marginalization of the parameter distributions
([10], [9]). The parameter distributions are derived from the
joint distribution of the states and parameters.

The proposed methods in the literature are based on a
simplification of either the models or noise densities.

In parallel to those listed, in this paper, we introduce the
use of a new technique for identifying vehicle parameters:
Simulation-Based Inference (SBI) for parameter identifica-
tion, bringing a current machine learning method for the
approximate Bayesian inference into the vehicle parameter
identification literature. The SBI method yields posteriors
of the parameters in the form of neural density estimators
([11]). The most notable contribution of the SBI method is its
potential to handle many parameters simultaneously without
compromising the nonlinear nature of the formulation and
the form of probability density.

This feature of SBI methods fills a gap in the literature
for offline parameter identification. Most of the existing
methods make assumptions to simplify the identification
problems, such as Gaussian density in the uncertainty, small-



angle assumption, or some form of linearization. In the
SBI approach, the model can assume an arbitrarily complex
probability density. We show that the tire cornering stiffness
parameters and the coordinates of the vehicle’s center of
gravity, which frequently appear in the vehicle dynamics
equations, can easily be obtained by a single shot observation
of the trajectory of vehicle motion. We use IMU measure-
ments and wheel rotational speeds as input measurements.
The tire parameter identification is a classical problem in the
automotive literature. In addition to the tire parameters, we
included the COG to increase the identification complexity
and show that the SBI method can handle more parameters
within a single parameter identification study. Although
the COG parameters might be available for an unmodified
vehicle, any modification in the mass distribution changes
these parameters and might be needed to be identified.
Another reason for choosing this particular set of parameters
is that the lateral and longitudinal vehicle dynamics equations
depend on only these parameters in the models.

This paper especially makes the following contributions;

« introducing the use of SBI methods in the parameter
identification literature in automotive research,

o describing the principled methodologies of the model,
and parameter preparation for the identification of im-
portant parameters for the use of SBI algorithms,

o providing the first experimental results of a highly
nonlinear vehicle model parameter identification,

« providing the full uncertainty characterization of the
model, possible extension and implication of these re-
sults.

This paper is organized in the following order. We start
with the details of the vehicle model in Section [l In Section
we describe the Approximate Bayesian Computation
(ABC) problem and introduce simulation-based inference
and its formulation. We connect the SBI with automotive
applications in Section specifically the estimation of
tire stiffness and COG parameters from one-shot vehicle
motion data. The results are given in Section [V] and paper is
concluded in the discussion Section [VI

II. VEHICLE AND TIRE MODELS

A. Vehicle Models

Vehicle models can have different levels of complexity and
degrees of freedom. Here, we refer to the vehicle motion
in the lateral and longitudinal direction (vehicle body pitch,
roll, and vertical motions are ignored in the fomrulation). A
full free-body diagram is given in Fig. |1} The subscripts {fl,
fr, rl, rr} are used to indicate {front-left, front-right, rear-
left, rear-right} wheel locations, and x and y represent the
longitudinal and lateral coordinate axes respectively. One can
use simplified equations by combining the front and rear
tires into a single tire representation ( [7], [6]). Omitting the
{right and left} subscripts by summing up the forces, we
can express the resultant nonlinear equations of the vehicle
motion as follows:
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Fig. 1. Vehicle Bicycle Model: The body x-axis points the forward motion
direction and y-axis left of the driver. The tire coordinate system is attached
to each tire rolling center.

m(Vy — VW) = Fypcos(8) — Fyrsin(8) + Fyy
m(Vy +V¥) = Fypsin(8) + Fyrcos(8) + Fyr (1)
LY =1y (Fyysin(8) + Fypcos(8)) — 1 Fy.

where F.r, and Fy.z, are the tire forces defined in their
coordinate systems and m represents the mass of the vehicle.
During the simulations, we set the distance of the Center of
Gravity (COG) from the rear axle center as a variable to be
identified. The location of COG affects the moment of inertia
I, around the z —axis which is approximated by the equation
I, = ml,ly. The lateral slip & is a function of tire side slip
angles. § in Fig. [I| represents the vehicle sideslip angle at
the COG and ¥ is the heading angle. The longitudinal slips
are not consistently defined in the literature ([12]), and we
use the slip angle definitions given in [13] as follows:
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where [3{ 7,y are the wheel sideslip angles and Vi, ,. ¢, are
the tire contact patch velocities in the vehicle coordinate
system. The longitudinal slips ki ,, are computed using
the rolling speeds defined by the effective rolling radius
R,y of the tires and the longitudinal velocities in the wheel
coordinate system. The steering angle is represented by §.
The tire contact patch velocities are defined following ([14]):
Vwr=V+1;¥Y 4 Vir=Vy=L¥Y. (5
The longitudinal velocities of all tires are the same as
the vehicle longitudinal velocity defined by the condition
Vi = Vi = Vy. The effective tire radius R.rr is computed
as a linear combination of free and loaded radii (Ry, R;) as
defined in [15]:
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In Eq. [6] the loaded radius R; can be measured or in
the simulations, vertical tire stiffness C,., can be used if
it is known. If the resistance forces are to be used in the
simulations, such as the rolling resistance of the tires and
the aerodynamic drag, the resistance forces are added to the
force balance equations ([16]).

B. Tire Model and Dynamics

There are various types of tire models that are used in
the literature depending on the purpose of the study. In this
paper, we are interested in the determination of longitudinal
and lateral tire stiffness values. The Dugoff tire model serves
this purpose, parameterizing the tire forces by longitudinal
and cornering stiffness ([7], [17]). The Dugoff tire model has
the following form:
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where Cy, o represent the longitudinal and cornering tire
stiffness coefficients. The tire loads change due to the
longitudinal acceleration and are expressed by the following
equation:

hcog

F{z;f,r} = F{z static; f,r} + Tax- (11)

where the second term in the equation is the dynamic load
transfer due to the acceleration and /¢, and L are the height
of the COG of the vehicle from the ground and the distance
between front and rear axle centers respectively.

In the tire and vehicle dynamics identification literature,
the tire rolling speeds are used as an input to the equations.
Here, we use tire dynamics equation and use the torque
values as the inputs in the tire equations. The tire dynamics
equations ([7], [17], [16]) are expressed as:

Wirrt = (Tirgry + Torpry = FrepnReprirn) M- (12)

where I, represents the tire rotational inertia. We represent
the traction and braking torques by 7;, and T, respectively.

The longitudinal force from the output of the Dugoff
model is used in this equation. The inputs are the traction T,
and braking torques T, for each of the individual tires. [, is
the tire rolling moment of inertia, including the equivalent
inertia of the vehicle combined with the tires ([14], [16]).
In the tire dynamics equations, delayed longitudinal forces

or the delayed slip angles are used. We employed the delay
dynamics on the tire slips given in the form of the equation
for a better representation of the tire dynamics ([18], [7],
(171, [13]):
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where we used the hat notation for the delayed dynamics.
The relaxation length o is a function of the cornering Cy, and
lateral tire stiffness K of the tires. It is defined in the form of
0; =Cy /K. The relaxation length along the longitudinal axis
can also be defined by analogy. However, we used the same
relaxation length in the longitudinal slip delay equations.

C. Observability Conditions

In this paper, we defined six parameters to be identified
appearing in the vehicle dynamical models. These parameters
are two coordinates for the COG (h¢,g and Ir) and four
stiffness parameters for rear and front axle tires (Cy 7 |, ./)-
It has been shown in the literature that separately defined
front and rear longitudinal stiffness values are poorly ob-
servable for the given vehicle model. As usually preferred
in the literature, these values are taken to be identical and
only one value for the longitudinal stiffness is identified. Our
experiments also confirm this observability condition.

In control and system identification theory, the observ-
ability concept is based on solvability conditions. These
conditions yield binary decision if the parameter or internal
states of the system can be solved from the given initial
conditions and a set of system differential equations.

An observability Grammian matrix is computed, and the
rank conditions are checked [19], [7]. These are the classical
definitions in control theory for deterministic cases. For a
system of complex nonlinear equations, when deriving the
observability matrices, even if using symbolic toolboxes, it
is not tractable to summarize the results [7]. In the literature,
some simplifications are made on the system of differential
equations. Whether the parameter or state of interest could
be observable from the given set of measurements can be
derived from the resulting Lie Algebraic Rank Condition
(LARC). In stochastic models, if the noise in the system
equations has a tractable analytical density function, the
observability can be checked via the Fisher information
matrix singularity condition [20].

In our solution, SBI returns a posterior density func-
tion of parameters in a neural network form. An an-
alytical expression is not available to compute the ex-
pected value of the Fisher matrix. We verified the ob-
servability by fixing the parameter set and computing the
Fisher information matrix from the expected covariance
E [Vlog P(x|6*)V1og P(x|6*)T] of the simulated score com-
putations [20], [21], [22]. In the computations, a fiducial pa-
rameter 6* set is defined, and the likelihood of the simulator
is approximated by the Gaussian density as it is an unknown
probability function.

In our application, we used longitudinal and lateral ac-
celerations (ay, ay) and yaw rate ¥ as well as the tire



rotational speeds @y, @, from the vehicle’s sensor outputs as
the system measurements. The sensor sampling frequency is
chosen as 200 Hertz in the simulations.

The parameter sets to be identified (given in the exper-
iments section) for such measurements are confirmed to
be observable in the statistical definition. The numerically
computed Fisher Information matrix is nonsingular.

III. SIMULATION-BASED INFERENCE
A. General Overview

Given a set of observations D = {xp,x1,...,xny}, and
a prior density function p(6) for the parameters 6, the
posterior density of the parameters P(6|D) can be updated
using Bayesian update equations if the likelihood density
P(D|0) exists.

In the burgeoning field of likelihood-free (a.k.a simulation-
based) inference methods, the problem is defined as finding
the posterior P(0]x = x¢). Suppose the likelihood function
P(x]0) is known. In that case, the posterior of the parameters
can be estimated by the well-known Markov Chain Monte
Carlo (MCMC) method, albeit with longer computation
times if the parameter space is high-dimensional. The ABC
methods deal with approximating the posterior P(6|x = xp)
when there is no likelihood function available. The likelihood
P(x]0) is approximated from the simulated data by comput-
ing the probability of the simulated outputs Pr(||x —xo|| <
€) around the vicinity of the observed data xg. Since the
chance of hitting in the probability ball defined in the high
dimensional probability function is low, the likelihood-free
methods usually give less accurate results when compared to
the MCMC methods where the likelihood can be evaluated
([11], [23]).

We consider a similar problem for vehicle parameter iden-
tification, and we aim to estimate the most likely region of
the parameter space (60) that produces the observed data (xg).
While doing this, we do not have an accessible likelihood
function P(x|0) except the simulator that generates observed
states given the sampled parameters.

Papamakarios et al. in [23] approached the ABC problem
by proposing a posterior neural density network in the form
of Mixture of Density Networks (MDN) ([24]). In their study,
they assume that the real posterior update is in the Bayesian
update equation form:

P

a5 012)= g PO}
Here, P(0) is a prior density whose form is known and P(6)
is the proposal density that samples the parameters for the
simulator. The parameter ¢ represents the neural network
parameters to be learnt. The authors choose analytically
tractable densities such as uniform and Gaussian to evaluate
the right-hand side of Eq. [[4] The posterior density must
be an MDN in this study for analytical manipulation. An
algorithm is used in successive rounds for which the posterior
of the previous round becomes a prior for the next round as
in the active learning scheme ([25]). The authors call their
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first simulation-based inference study SNPE_A (Sequential
Neural Posterior Estimation).

Neural Density Estimators were proposed after the advent
of the Variational Autoencoder (VAE) to model conditional
densities in the literature. In VAE applications, data is fed
to a neural network called an encoder. The output of the
encoder is interpreted as the latent variables by which the
new data points can be sampled [26].

In the density networks, the conditional densities are mod-
elled by applying a mask for each network layer, ensuring
the autoregressive property of the conditional densities [27].

Normalizing flows were introduced in [28] which allow
for the composition of nonlinear transformations in the neural
networks. In this scheme, any arbitrarily complex probability
density function can be approximated by neural networks.
These are the building blocks that enabled SBI using den-
sity estimators formulated by Masked Autoregressive Flows
(MAF) by [29] in which the authors introduce autoregressive
networks into a normalizing flow neural network structure.

The SNPE_A approach was followed by a series of pro-
posals from various authors. [30] proposed an algorithm
dubbed as SNPE_B, removing the limitation of using an
MDN structure. In their algorithm, weighted prior/proposals
are replaced by the weighted proportion. As a result, the pos-
terior density can be in any form of neural density estimators.
Additionally, [31] proposed SNPE_C, which uses Automatic
Posterior Transformations (APT) for posterior density esti-
mation. Their proposition is known as the SNPE_C in the
literature. The benchmarks for these algorithms can be found
in [32]. There have been other notable contributions in this
field within the last year, as summarized by [25], [21], [33],
[34].

B. Automatic Posterior Transformation and SBI Toolbox

In this study, we used SNPE_C which directly outputs
posterior density networks as it has the option of sampling
the posterior parameters without using a MCMC sampler.
The APT makes use of the following approximation to the
posterior in the active learning scheme on top of Eq.

P(6 1

o 0) g aro 010,

where the first g4(6|x) term in Eq. is replaced by

the proposal density term g, ¢(6). The right hand side of

the real posterior P(0|x) is replaced by its approximate

density gry(6|x) divided by the normalizing factor Z. The
normalization factor is defined by:
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The density 7o) Z
is a multinomial probability density function. During the
inference step, for every round of simulations and posterior
updates, the simulated data sets {6, x,} are stored. A num-
ber of K data pairs is chosen among them. These candidates

POIL on the right-hand side of Eq.



are referred to as K-atoms in the algorithm, and their density
is assumed to be multinomial [34].

In the active learning setting, the algorithm takes the
observation xg. This observation can be used to sample the
parameters from the proposal density gr¢(6|x = xo) for the
simulations along with the rounds. If the observation x
is not focused, a more general posterior is learnt, and the
parameters are sampled from grgy(6|x) .

[35] released a code repository (SBI in Python) that
automatizes the parameter inference of the SNPE series
and includes a neural likelihood ratio estimator, which uses
neural networks to model the likelihood ratios [33], [34]
used in MCMC problems. The code repository is still under
active development. We used v0.12.1 of the SBI Toolbox,
and SNPE_C is the default method in our experiments.

IV. PARAMETER IDENTIFICATION BY SBI METHODS

The SBI algorithm requires three inputs: a prior probability
of the parameter of interest, a simulator, and a density
network preference. The density networks are built by suc-
cessive transformations in the normalizing flow structure
described above. For the family of neural densities, the SBI
includes nflows-Bayesian Normalizing Flows library written
for the different implementations of neural networks by
[36]. One of the recent developments in the flow-based
conditional density estimator is the Neural Spline Flows
(NSF) introduced in [36]. We use this density network as
the default network.

The prior density is a multivariate uniform density for
the parameters. An upper and lower bound is defined per
parameter. The algorithm uses the samples drawn from this
prior distribution. We used the vehicle model detailed in
Section [[I} State and measurement trajectories for around 5
seconds with a frequency of 200 Hz are generated by this
simulator. We use sufficient statistics, which is a standard
method in the ABC setting, to reduce the trajectories of a
point representation. This is a common practice in likelihood
free inference. We used similar statistics to those the authors
used in [37] for a Lotka-Volterra population model of prey
and predator dynamics (i.e., log variance of each time series,
auto and cross correlations).

In our experiments, we have more than two time series
obtained from the measurements. In addition, the vehicle
models have control inputs and not autonomous differential
equations like the Lotka-Volterra model. The input is of great
importance for the identifiability of the system, and it must
be designed so that the system modes are sufficiently excited.
For this reason, we used a square wave with a period of five
seconds for the gas and brake input and a sinusoidal input
for the steering with a period of four seconds. This input
profile is also used in [10] for tire stiffness identification.

Alternatively, discriminating statistics can be learned by
another neural network during the inference [38] using
Information Maximizing Neural Networks (IMNN). The SBI
repository [35] comes with an option Embedding Network
(EN), which does a similar job to obtain discriminating
features from the data. In our experiments, we experimented

with both methods. The use of EN yields more accurate
results than the case when handcrafted sufficient statistics
are used. Therefore, due to the page limitation, we give the
results of the latter one in this section.

In the experiments, we parametrize the noise by the nom-
inal stiffness parameters (AC{,LK; f,r}) whereas the vehicle
parameters are sampled from their uniform distributions. A
nominal parameter set is assumed in a nominal model, which
constitutes the deterministic part of our simulator. The noise
or deviations from these nominal parameters (except COG
parameters such as /) are used to estimate the posterior den-
sity of the noise on the parameters. Randomization is used for
stochasticity. We randomize the initial longitudinal velocity
of the vehicle V,, which is uniformly sampled between 10-
11 [m/sec], considering the real-time implementation would
not exceed this range due to the safety of the experiments.
In addition, the larger this interval, the more training rounds
are needed with a greater number of simulations. Another
source of randomness is from the nominal parameters, which
model the process noise. We generate noise for the stiffness
parameters from a mixture of ten Gaussian densities with
a randomly generated mean (up to 5% of nominal values)
and standard deviations (up to 5% of nominal values). We
give a set of nominal values of these parameters in Table
[l In the experiments, at the beginning of the inference
procedures, these nominal values are sampled from their
prior density intervals, and are not known in advance, neither
to us nor the inference algorithms. This approach shows that
the whole procedure can be used for any vehicle parameter
identification.

TABLE I
NOMINAL PARAMETERS

Stats/Params ly heog  Cxy Cxr  Cay Car
Units m m N N N/rad  N/rad
Values 1.3 0.5 leS le5  6e4 6ed
Noise Mean-Std % | N/A  N/A 5 5 5 5

The inputs to the model also have similarly produced
input noise. We used tire rotational speeds, vehicle body
acceleration, and yaw rate in the measurements. The noise
added to the measurement has a mean value of zero. The
standard deviation is defined as 5% of the measured valued
for the rotational magnitudes and 10% for the acceleration
measurements.

In deep learning applications, parameter normalization is a
common practice. We use different sufficient statistics which
may have varying magnitudes. As recommended in [11]
we run 1000 simulations and save the mean and standard
deviations to normalize the simulator outputs for the SBI
inference modules.

V. EXPERIMENTS

We conducted experiments with the SBI algorithm for two
different studies. In the first one, using a full vehicle model
including roll, pitch, and yaw body motions, we identified
the lever arm for the IMU offset. In the second, we identified



the vehicle COG coordinates Iy, hcog and the tire longitudinal
of lateral stiffness for each axle tire set. For brevity, we
present here only the results of the latter experiment. We
simulate the system and generate the observations, which are
then to be used for inference. Every experiment uses 5000
simulations per round. We use a minimum of five rounds
and report the results of the posterior density yielded by the
SBI algorithm. For the posterior density estimate, we sample
1000 samples from the posterior density networks. The set of
measurements are the longitudinal and lateral accelerations,
yaw rate, and tire rotational speeds {ay, ay, ¥, 0, ®,}. We
show the algorithm flow diagram in Fig. [2]

SBI Bayesian Networks
Autoregressive Flows

0 ——>
Trajectories P(8, s(x))
Measurements >
U ~Parameters| s(x) P(8 | s(x))
Simulator ax, ay, w —
(5] —

Sufficient Statistics
Embedding Network

Fig. 2. Identification Pipeline: The prior distribution is defined by the user.
The SBI module generates parameters and call the simulator. The sufficient
statistics are computed and passed to the Bayesian Networks in the SBI to
approximate the joint distribution and likelihood densities for the parameters
of interest.

The posterior mean and standard deviation of the iden-
tified parameters, parameter deviations, and real values are
summarised in Table The last row of the table shows
the uniform distribution prior intervals. The corresponding
pair plots are shown in Fig |3} with the stiffness value scaled
by 1e5. The pair plots show an estimated density of the
parameters on the diagonal. The vertical line on each density
estimate indicates the real values of the parameters. The
Gaussian Kernel Density Estimates (KDE) for the pairs (joint
density) are shown next to the diagonals. The red dot on the
KDE graph marks the location of two parameter coordinates.

It can be seen from the Table [[l|and the Fig. [3|that, the SBI
algorithm yield accurate uncertainty estimates with a sharp
peak for the distance of COG to the front axle (/;) and the
stiffness parameters ACxr, ACqr, ACq,. The uncertainty of
the longitudinal stiffness of the rear tires is wider. This result
is compatible with the weak observability condition of the
rear longitudinal stiffness described in the previous sections
and our model assumptions. Our car in the simulations is
front-wheel driven, and the rear tire rolls freely, exhibiting
smaller traction slips than the front ones. The rear tires
are only proportionally excited when braking. The height
of COG parameter density has a wider distribution showing
that it has bigger variation in our all experiments showing.
However, even with the larger uncertainty, its mean estimate
is accurate in all inference experiments. When we look at
the KDE pair plots of the COG height with respect to other
parameters, the location of this coordinate is restricted to be
in a vertical band.

The identification of these parameters and their densities
has two important consequences. The first one is the nominal

TABLE I
PARAMETER PRIORS AND POSTERIORS

Val/Param ly Neog ACyy ACy, ACqy ACqr

Units m m N N N/rad  N/rad
Real Val. 1.5 0.415 0446 0407 0.12 0.051
Post. Mean | 1.46 0404 0386 0278 0.113  0.065
Post. Std 0.03 0.122 0.077 0.116  0.043  0.041
Prior Int. L,b15s 2,6 -2,5 -2,5 +£03 403

I — —
o m m l] n n
. —/ L . . .
0250025
ACos

—_ T
-0.2500.25
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Fig. 3. Distribution Estimations of the Parameters: On the diagonals, the
parameter posterior distributions are shown. The pair plots show the Kernel
Density Estimation of the joint distributions for each pairing of parameters.
The vertical red-lines mark the location of the true parameter.

parameter assumption before designing feedback controllers.
The second importance comes from the uncertainty quantifi-
cation with which robust controllers are designed. As seen
from the density plots Fig [3] the SBI gives a clear picture
of the density shapes and parameters. On the other hand, the
real values of the parameters are well approximated by the
mean values of the densities except the rear tire longitudinal
stiffness shown in Table [l However, the peak value of the
density of this parameter almost coincides with the real value
used in the simulations.

VI. CONCLUSIONS

We proposed the use of recently emerged simulation-based
inference scheme to identify vehicle and tire parameters and
investigated their capabilities on a highly nonlinear vehicle
simulator. The results are promising for the identification of
the arbitrary number of parameters. We choose noise levels
based on the parameters inspired by the literature. The mea-
surement noise is somewhat arbitrary. In real experiments,
the sensor noise model can be included in the simulator.

The SBI method can be extended to track the parameters
online, if one can use shorter time frames and different



initial conditions to cover a notable portion of the state
and parameter space. Density networks trained in this way
might be employed for the parameter tracking application if a
sufficient number of simulations are provided. This direction
requires more research.

There are well-defined methods to further increase un-
certainty estimates and decrease sufficient statistics in the
literature. Alsing et al. in [21] propose an ensemble of
density networks to prevent the overfitting problem. They
also use a score function to reduce the number of statistics
used as a feature for the trajectories. The Fisher information
matrix can be obtained from the variance of the score
in the simulation. It is also an important parameter for
consideration in SBI studies. It can be used for the initial
estimation of the parameters and the numerical evaluation of
the observability conditions. More detailed explanations for
the use of the Fisher information matrix in the likelihood
free parameter estimation can be found in [22], [39].

In the future, we propose to implement SBI based vehicle
parameter estimation in Autoware, capture motion data from
a range of vehicles, and evaluate how it improves control
performance and sensor calibration across vehicle platforms,
and to distribute the method in the Autoware open source
project.
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