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Abstract

This study investigates an application of a new probabilistic interpretation of a
softmax output to Open-Set Recognition (OSR).

Softmax is a mechanism wildly used in classification and object recognition.
However, a softmax mechanism forces a model to operate under a closed-set
paradigm, i.e., to predict an object class out of a set of pre-defined labels. This
characteristic contributes to efficacy in classification, but poses a risk of non-
sense prediction in object recognition. Object recognition is often operated
under a dynamic and diverse condition. A foreign object—an object of any
unprepared class—can be encountered at any time. OSR is intended to address
an issue of identifying a foreign object in object recognition.

Softmax inference has been re-interpreted with the emphasis of conditioning
on the context. This re-interpretation and Bayes theorem have led to an ap-
proach to OSR, called Latent Cognizance (LC). LC utilizes what a classifier has
learned and provides a simple and fast computation for foreign identification.

Our investigation on LC employs various scenarios, using Imagenet 2012
dataset as well as foreign and fooling images. Its potential application to
adversarial-image detection is also explored. Our findings support LC hypoth-
esis and show its effectiveness on OSR.

Keywords: artificial neural network, machine learning, pattern recognition,
softmax, open-set recognition, object recognition

1. Introduction

A well-adopted softmax function along with its accompanying cross-entropy
loss has been introduced by Bridle[1] in 1990. Since then, softmax has been
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proved effective and used extensively in classification. With a proper setting, a
softmax output converges to a class probability conditioned on the input.

Nevertheless, softmax limitations become more noticeable in object recogni-
tion [2, 3], where a chance to encounter an un-prepared class is common. Many
approaches address this issue through open-set recognition (OSR).

While there are various approaches to OSR, one potential is striking as it has
been derived directly from a probabilitistic re-interpretation of a softmax out-
put. It is Latent Cognizance (LC) proposed by Nakjai and Katanyukul[4]. LC
was not originally intended for OSR. It was to address the issue of un-prepared
classes in hand-sign recognition, but its underlying hypothesis is general. Its
mechanism can fit to various domains. The new interpretation underlying LC
has been verified using synthetically traceable examples [5]. LC applications
have been shown to be effective in hand-sign recognition[4] and facial expres-
sion recognition[6].

However, the recently introduced LC has not been adequately investigated
for other domains. An investigation of LC application to a more general domain,
such as OSR, will allow a better insight into LC potential and the hypothesis
behind it. Our study here is set out to investigate an application of LC to
OSR and its related issues, such as an OSR evaluation metric, a role of its base
classifier, and its potential for adversarial-image detection.

2. Background

Despite that a softmax output is conventionally viewed as class probability,
many literature[7, 8, 9] have commented on a softmax output that often found
uncorrelated to class probability, especially when an input is “foreign”. For
conciseness, a foreign1 image will be referred to an image of any class that has
not been included in model preparation.

Based on this observation, a new interpretation (§2.1) of a softmax output
is proposed [4]. The new interpretation reveals a relation between penultimate
values and posterior probabilities, which in turn has led to an invention of Latent
Cognizance (LC, §2.2). LC exploits what already learned in a deep network to
estimate a probability if an image is “domestic”—i.e., of any category used in
model preparation. This allows its application to open-set recognition (§2.3).

2.1. Probabilistic Interpretation of Softmax Output

A softmax function is commonly employed for multi-class classification. Soft-
max computation (1) is performed at the last calculation of a classifier. To clas-
sify an input x into 1 of K classes, it is to compute the predicted class output
y = arg maxk∈{1,...,K} yk. Denote a softmax output y = [y1, . . . , yK ]T , where

yk = softmaxk(a) =
exp(ak)∑K
i=1 exp(ai)

, for k = 1, . . . ,K. (1)

1Previous studies have referred to foreign as either “unknown” or “unseen”.
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A logit or penultimate vector a = [a1, . . . , aK ]T = f ′(x,w), when w repre-
sents network parameters and f ′ is a network computation prior to the softmax.
The realization of f ′ depends on a specific network configuration, while values
of w are obtained through a training process.

Softmax regulates yk ∈ [0, 1] and
∑K
k=1 yk = 1 for all k’s. Bridle[1] shows

that a well-trained classifier has its softmax output converged to the posterior
class probability: yk ≡ p(y = k|x). Softmax is effective in classification.

Extended beyond classification, softmax output is often found unrelated to
class probabilities when an input is foreign[7, 8, 9]. This observation contradicts
the carried-over perception: yk ≡ p(y = k|x). Thus, the softmax output is
reinterpreted as a class probability conditioned on a given domestic input [4]:

yk ≡ p(y = k|x, s), (2)

where s indicates the context that x is domestic or s ≡ (y = 1|y = 2|y =
3| . . . |y = K). This interpretation emphasizes the domestic condition s.

The realization of this conditioning is not unique to LC. Various literature[10,
11] have stated this conditioning. This interpretation has also been verified using
a set of traceable (but small) examples [5].

2.2. Latent Cognizance

Based on (2) and Bayes’ theorem, the softmax output can be written as:

yk ≡ p(y = k|x, s) =
p(y = k, s|x)∑K
i=1 p(y = i, s|x)

. (3)

Conferring (1) to (3), the relation (4) is found:

exp(ak)∑
i exp(ai)

=
p(y = k, s|x)∑
i p(y = i, s|x)

. (4)

Consider similar patterns on both sides of (4), a relation between penultimate
values and the probabilities is hypothesized: given a well-trained network, the
penultimate vector relates to posterior probability through function h̃k(a) =
p(y = k, s|x). To lessen a burden on enforcing probabilistic properties, it is
more convenient to work with a function whose value just correlates to the
probability rather than working directly with h̃k(a). Assume that there exists a
monotonic function g(·) such that g(ak) ∝ p(y = k, s|x). Thus, marginalization
reveals

K∑
k=1

g(ak) ∝ p(s|x). (5)

Function g(·) is called a cognizance function. A marginalized cognizance∑K
k=1 g(ak) quantifies the degree of x being domestic: the lower value is, the

more likely x is foreign.
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2.3. Open-Set Recognition
Open-Set Recognition (OSR) can be viewed as a mapping task, FOSR :

x → {0, 1, . . . ,K}, where an input image x is mapped to a label index. In-
dices 1, . . . ,K are associated to K pre-defined classes used in model prepara-
tion/training process. These prepared classes are called domestic. Label index 0
represents any class not used in the training process, collectively called a foreign
class. In practice, a foreign class can represent multiple classes.

OSR is different from object detection [12, 13, 10]. As Scheirer et al[2] have
pointed out, an object-detection model is usually trained on images containing
both positive and negative examples, while OSR is to identify if an image is
foreign or domestic without negative examples. If an image is domestic, OSR
also has to recognize its category.

With this outline, OSR can be viewed as a conventional object recognition
with additional novelty detection capability. Many novelty detection methods
[14] rely on some kinds of a distance-based scheme, using a distance between the
input and the training samples as a cue. This distance-based approach is often
characterized by a search over training examples (or their representatives). This
search is computationally expensive. In additions, designed solely for novelty
detection, these methods do not scale well to OSR. Neither does it exploit a
well-trained classifier, which is available in OSR settings.

To address the issue from OSR perspective, Scheirer et al[2] formalize OSR
definition and propose a concept of an open-space risk as well as a SVM-based
one-vs-set machine. Instead of using a single hyperplane as in one-class SVM
[15], the one-vs-set machine uses two hyperplanes to bound the domestic sam-
ples, in order to minimize the open-space risk. Later approaches[3, 16] rely more
on statistic models and are reported with better foreign identification.

OpenMax[3] employs statistic models to identify foreign samples: a sample
whose all penultimate values are too different from their corresponding statistics
is likely to be foreign. Specifically, OpenMax operates in two phases: (phase 1)
meta-recognition calibration is to learn domestic statistics and (phase 2) class
probability re-adjustment is to re-adjust softmax output and estimate a prob-
ability of being foreign, based on statistics learned in phase 1. In addition,
OpenMax employs thresholding to overrule domestic prediction if its probabil-
ity is below the threshold. Weibull distribution is used to model each intra-class
distance. Similar to OpenMax, Extreme Value Machine (EVM[16]) also uses
statistic models. But rather than relying on a base-classifier like what Open-
Max does, EVM proposes to use each class statistic model for both classification
and foreign identification. The result allows a training process to be done at
once—it learns both classification and foreign identification in one training pro-
cess. In addition, EVM can easily add a statistic model for each new class
found. However, this comes with a cost of using a less efficient classification
inference. EVM has to search over all non-redundant training examples to com-
plete the task. Note that both OpenMax and EVM implicitly imply a uni-modal
distribution of intra-class distances.

Resorting to a generative model, Neal et al[9] have used counterfactual im-
ages as foreign samples to train a new classifier accounting for K + 1 classes:
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K domestic classes and one additional class representing any foreign class. The
counterfactual images are supposed to look closest to the domestic images, but
not belong to any domestic class. With conjecture that counterfactual images
lie just outside the ideal decision boundaries, using them in training could help
tighten decision boundaries of the new classifier.

Pivotal to their approach, it is how to create counterfactual images. Neal et
al have prepared the encoder and the generator, then used them in the synthesis
of counterfactual images. The encoder and the generator are obtained through
a generative adversarial framework with reconstruction loss [17, 18, 19, 20].
That is, given a set of training images X, discriminator D and generator G
(along with encoder E) are trained in alternating steps with discriminator and
generator losses as LD =

∑
x∈XD(G(E(x)))−D(x) + λ(‖∇xD(x)‖2 − 1)2 and

LG =
∑

x∈X ‖x − G(E(x))‖1 −D(G(E(x))), respectively. Lagrange multiplier
λ is a user specific parameter. The encoder and generator are trained jointly.

The encoder E is to map an input image to its representation in a latent
space. The generator G is to reconstruct an image back from a latent representa-
tion. Then, to synthesize a counterfactual image x̂, a base image x is encoded to
a latent base z = E(x). A counterfactual representation z∗ is obtained through

optimization: minẑ ‖ẑ− z‖22 + log(1 +
∑K
i=1 expCK(G(ẑ))i), where CK(·)i gives

the ith output of a K-class classifier. At last, a counterfactual image x̂ is gen-
erated: x̂ = G(z∗). Thus a counterfactual x̂ is presumably foreign, but very
similar to its domestic base x.

The second term of the counterfactual objective is supposed to constrain a
latent ẑ to be foreign. Neal et al have formulated it based on the assumption that
a classifier CK gives low output values on a foreign sample. This assumption
glimpses that LC and counterfactual approaches could complement each other
and the issue is worth a dedicated study.

With a concern that some information might have been lost during super-
vised training, Yoshihashi et al[11] have proposed classification-reconstruction
learning, where a compact representation is learned simultaneously to the clas-
sification. The compact representation z is learned through reconstruction of
the input. Then, it is used as additional information (along with classifier’s
penultimate vector a) provided to a foreign detector—a binary classifier based
on distance between (z,a) and their average values. They believe that the com-
pact representation will compensate for the presumably lost information.

In spite of these approaches, OSR remains greatly challenging [21]. Most
OSR approaches require a considerable extra mechanism or a re-design of the
entire model. In the sense of a substantial effort crafted for the task, they are
more comparable to Kahneman[22]’s analytical system II decision. LC approach
requires much less effort and relies on quick deduction using only cues provided
by a base classifier. It is more analogous to Kahneman’s instinct system I
decision. As human survival relies on both decision systems, we believe that
a practical OSR system, or more generally a robust intelligent agent, may not
need to pick only one best approach. Both systems can co-exist and complement
each other, as this has shown to be a winning strategy in nature. A more
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comprehensive review on OSR is provided by Geng et al[23].

Concern over information loss. A concern over information loss[11] might be
associated to softmax bottleneck[24, 25]. Yang et al[24] have analysed a softmax-
based model for its capacity to represent a conditional probability for a language
model. Based on matrix factorization, they have concluded that a softmax-based
model does not have enough capacity to express the true language distribution.
This is referred to as “softmax bottleneck”.

Their rationale is drawn based on the diversity of a domain of natural lan-
guage and a standard practice of computing a softmax language model. A
softmax language model is computed using a logit, which is a dot product be-
tween a fixed-size context vector and a word-embedding vector. The chosen
fixed size is generally too small for diversity of a natural language context. How
this nature carries over to other domains and settings may be subject to ded-
icated studies. Nonetheless, our investigation on LC effectiveness may answer
this concern for OSR in some degree.

Related but with slightly different objectives, many studies[26, 7, 8] investi-
gate mechanisms to quantify uncertainty of a classification inference. Inference
uncertainty is a measure quantifying a degree of confidence or a level of exper-
tise in making a particular prediction. Gal and Ghahramani[7] have discussed
that inference uncertainty is different from a model confidence, which is con-
ventionally taken as a value of each softmax output. A value of the softmax
output can be shown to be very high (close to one) even when the input lies
far beyond vicinity of the training samples in the input space. In this respect,
quantifying inference uncertainty is similar to quantifying a degree of being
foreign (in our context). However, a striking distinction between identifying a
foreign and quantifying uncertainty is at the difficult classification or ambiguity
among domestic classes. Difficulty in distinguishing among domestic classes is
well encompassed by inference uncertainty, but this is not an issue of foreign
identification. However, as these are closely related, a potential application of
LC to inference uncertainty seems highly likely and our study here could lay a
ground for such an investigation.

Working on active learning criteria to select unlabeled samples from a data
pool to ask experts, Haines and Xiang[26] propose a soft selection strategy
along with approximation using Dirichlet process. The strategy is that sam-
ples with high approximate misclassification probabilities are more likely to
be selected. Haines and Xiang choose a misclassification probability over an
entropy—commonly used in active learning— for that an inclusion of a new
class poses a great challenge for an efficient application of an entropy. Given an
input x, approximate misclassification probability p(wrong|x) = 1 − Pn(k′|x),
where Pn(k′|x) ≡ p(y = k′|x); k′ = arg maxk∈C Pc(k|x) when C is a set of all
domestic classes and Pc(k|x) is a probability calculated by a classifier, i.e., a
softmax output. Based on Dirichlet process—specifically a chinese restaurant
process—, Pn(k|x) can be obtained through normalizing Haines and Xiang de-
duction: Pn(k|x) ∝ Mk

α+
∑

i∈C Mi
Pc(x|k) if k ∈ C and Pn(k|x) ∝ α

α+
∑

i∈C Mi
P (x)

if k is a new class, where Mk is a number of instances labelled with class k.
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Haines and Xiang obtain Pc(x|k) ≡ p(x|k) and P (x) ≡ p(x) through kernel
density estimation. Parameter α is a concentration coefficient of Dirichlet pro-
cess. It can be user-specific, but Haines and Xiang[26] use prior Γ(1, 1) and
Gibbs sampling to estimate its value. Haines and Xiang work on criteria to
select data from a data pool. Therefore, they have all data available for p(x|k)
and p(x). This is generally a different situation from OSR. In addition, resort-
ing to density estimation, a scalability aspect of this approach remains highly
challenging.

3. Open-Set Recognition via Latent Cognizance

Since marginalized cognizance is proportional to probability of being domes-
tic (5), Latent Cognizance (LC) can be straightforwardly applied to Open-Set
Recognition (OSR). For OSR with K domestic classes, our application is as
follows.

1. Choose a base classifier C : x 7→ κ where a predicted class κ = arg maxk∈{1,...,K} yk
and softmax output yk = softmaxk(a) when a = [a1, . . . , aK ]T is a penul-
timate vector computed from the input x.

2. Choose a cognizance function g(a).

3. Choose a threshold τ .

4. Compute a marginalized cognizance c =
∑K
k=1 g(ak).

5. If c ≥ τ , predict class κ; otherwise predict class 0 (foreign).

Choices of the cognizance function and threshold can be empirically ob-
tained. A well-adopted classifier can be exploited for the base classifier C. This
characteristic is beneficial as this foreign identification can be seamlessly added
to a well-established classification system.

However, a potential down side is that since LC logic heavily relies on a
penultimate vector computed by its base classifier, its performance may be
closely tied to the base classifier. How much effect the base classifier has on
LC had not previously explored. Thus, we have also investigated this issue in
our experiments.

In addition, to properly evaluate OSR, we propose metric counts (Table 2)
and a performance metric Q1 (based on F-score, §4). The metric counts have
accounted for every case in OSR evaluation.

4. Experiments

OpenMax and Latent Cognizance (LC) are investigated on Open-Set Recog-
nition (OSR). Fig. 1 illustrates structural differences between OpenMax and LC.
An internal structure of a conventional object recognition network resorts to a
softmax layer at the end. OpenMax replaces a softmax layer with OpenMax
computation. LC extends a conventional object recognition with cognizance
computation (5).
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Figure 1: Architectures of conventional object recognition, OpenMax, and Latent Cognizance.

Model Preparation. OpenMax and LCs use Alexnet [27] with pre-trained weights
as their base classifier. A base classifier provides a penultimate vector for Open-
Max and LC. The pre-trained weights were obtained from Caffe [28], which has
trained Alexnet on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2012 dataset. There is no additional fine-tuning on Alexnet weights.

OpenMax hyperparameters. In its meta-calibration phase (§2.3), OpenMax re-
quires domestic learning. Our experiment follows default meta-parameter values
of Bendale and Boult’s implementation2: Weibull tail size η = 20, a number of
top classes M = 10, and using Euclidean Cosine method. OpenMax domestic
learning is to find µk, τk, βk, and λk for all domestic classes k = 1, . . . ,K.
Noted that LCs do not require domestic learning.

LC hyperparameters. LC uses a cognizance function g(ak) ∼ p(y = k, s|x). The
previous work[4] has empirically explored various candidates for g(·) and found
cubic and exponential functions viable. Our experiment investigates both as
cognizance functions.

Data. Our experiment uses two datasets to evaluate the models. (1) A domestic
test dataset is taken from ILSVRC 2012 validation set, as summarized in Table
1. It has 50000 images belonging to 1000 classes. (2) An open dataset is a
combination of 108360 selected images from ILSVRC 2010 and 15000 fooling
images. All of the 108360 selected examples belong to 360 classes, which all
of them are not in ILSVRC 2012. All of 15000 fooling images are random
noise images with additional perturbations. The perturbations are based on an
adversarial image generation, loosely implemented the work of Szegedy et al[29].

2https://github.com/abhijitbendale/OSDN
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Szegedy et al’s formulation is that for a given target class k, perform minr

‖r‖2 s.t. f(x + r) = k; x + r ∈ [0, 255]D, where r is an input perturbation
and x is a base input of D dimensions. Function f(·) represents a classifier.
Our implementation relaxes Szegedy et al’s, i.e., find r : fk(x + r) > α s.t.
x + r ∈ [0, 255]D, where fk(·) is referred to the kth softmax output of the
classifier. Parameter α is user specific and set to 0.9 in our experiments. All
generated fooling images have been thoroughly inspected.

Table 1: Assosicated Datasets.
Dataset Source Size Remark
Classifier training set ILSVRC 2012 training set 1281167 Via pre-trained Alexnet
OpenMax domestic learning ILSVRC 2012 training set 1281167 OpenMax only
Test domestic data ILSVRC 2012 validation set3 50000
Test fooling images Newly generated 15000
Test foreign images ILSVRC 2010 training set 108360 Only classes not in 2012

Performance Index. Our experiment evaluates the models through performance
index Q1. The index is defined as: Q1 = Fd+Fo

2 , where Fd is a performance
measure of domestic samples and Fo is an F-score of foreign and fooling samples.

Specifically, Fd is an arithmetic mean of class F-scores, i.e., Fd = 1
K

∑K
i=1 Fi,

where Fi is an F-score of the ith class and {1, . . . ,K} is a set of domestic-class
indices. The class F-scores are defined as Fi = 2Pi·Ri

Pi+Ri+ε
for i ∈ {1, . . . ,K}

and Fo = 2Po·Ro

Po+Ro+ε
, where ε is a small number for computational stability and

set to 0.0001 in our experiment. Precisions and Recalls are defined as Pi =
TPi

TPi+FPi+ε
and Ri = TPi

TPi+FNi
for i ∈ {1, . . . ,K} and Po =

TPu+TPf

TPu+TPf+FPu+ε

and Ro =
TPu+TPf

TPu+TPf+FNu+FNf
. True positives TP ’s, false positives FP ’s, and

false negatives FN ’s are defined as shown in Table 2.

Table 2: Our OSR metric. Symbols i, i′, f , and u represent respectively a sample of domestic
class i, a sample of domestic class i′(6= i), a fooling sample, and a sample of any foreign class.
The evaluated systems do not have f output. Thus, predicting u on f is counted as TPf .

Ground Truth Prediction Metric Count
i i TPi
i i′ FNi and FPi′

i u FNi and FPu
u i FNu and FPi
u u TPu
f i FNf and FPi
f u TPf

3The ILSVRC 2012 validation set is chosen over the test set for its availability of its ground
truth.
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Comfort Ratio. A proportion of domestic data can be an indicator of how dif-
ficult the task is. A ratio of domestic samples to all samples will be called a
comfort ratio. Our investigation experiments 4 scenarios of different comfort
ratios, as shown in Table 3. A different number of images per foreign class is
chosen to set a scenario.

Subsections 4.1, 4.2 and 4.3 provide the main results, error analysis and
additional investigation on potential application to adversarial-image detection.

Table 3: Test scenarios.

Test Case I II III IV
Comfort ratio 0.625 0.500 0.333 0.288
#images/foreign class 42 97 236 300
Foreign data 15120 34920 84960 108000
Fooling data 15000 15000 15000 15000
Domestic data 50000 50000 50000 50000

4.1. Results

Figure 2: OSR Performance. Q1 of each method over different comfort ratios. OSR perfor-
mance of Alexnet is provided only for perspective.

Fig. 2 and Tables 4 show OSR performance over four scenarios. Table 5
reports all time durations spent in each operation. Total time spent in domestic
learning reports a total time spent to fine-tune the open-set capability. Average
time spent in foreign identification is an average time per image that a method
spent to identify whether an image is domestic or foreign.

A number in parentheses represents a normalized time. It is normalized by
classification time per image. Classification time per image is an average time
Alexnet spent to classify an image. It is measured to be 7.52×10−2 s. All three
methods use Alexnet and are subject to the same classification time per image.
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Table 4: Performing results

Comfort
Ratio (%)

OpenMax
Exponential LC
g(a) = exp(a)

Cubic LC
g(a) = a3

Alexnet

Q1

62.5 0.553 0.578 0.566 0.253
50.0 0.579 0.575 0.535 0.231
33.3 0.602 0.591 0.539 0.197
28.8 0.606 0.595 0.542 0.186

Table 5: Time spent. All time durations are reported in seconds. Normalized time durations
are shown in parentheses.

Total time spent Average time spent
in domestic learning in foreign identification

OpenMax 4.1× 104 (5.5× 105) 1.03 (13.7)
Exponential LC 0 7.2× 10−5 (9.6× 10−4)
Cubic LC 0 9.3× 10−5 (1.2× 10−3)

Exponential LC seems to provide slightly better performance than its cubic
counterpart. The performances of all three methods are comparable, but LC
methods spent considerably less time than OpenMax did. In addition, OpenMax
requires significant domestic learning time, while both cubic and exponential
LCs can work right off the shelf. All three methods seem to be robust against
various comfort ratios.

4.2. Error Analysis

Tables 6 and 7 show confusion matrices of OpenMax and exponential LC
with thresholds at maximal Q1’s. The test data is composed of three dis-
tinct groups, while prediction is only limited to either domestic or foreign.
The tables differentiate predicting domestic on domestic samples with cor-
rect classification (CR) and incorrect classification (IC). Table entries are ob-

tained from: CR =
∑K
i=1 TPi (predicting a correct class on domestic samples),

IC =
∑K
i=1 FPi − FNu − FNf (predicting an incorrect class on domestic sam-

ples) and other metrics are obtained as specified in Table 2.
Since OSR performance incorporates both classification and foreign identifi-

cation aspects, Table 8 shows separated accuracies by sub-function: accuracies
of foreign identification (denoted “F ACC”) and accuracies of classification (de-
noted “C ACC”).

Breaking down performance into foreign identification and classification re-
veals that exponential LC performs pretty well on foreign identification (F ACCs
are 0.612 to 0.712 across scenarios). When considering foreign identification
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Table 6: OpenMax confusion matrices.

Comfort
Ratio (%)

Prediction
Data

Domestic Fooling Foreign

62.5%
Domestic

CR: 19981
IC: 4526

1315 3957

Foreign 25493 13685 11163

50.0%
Domestic

CR: 19755
IC: 4322

1090 8862

Foreign 25923 13910 26058

33.3%
Domestic

CR: 18043
IC: 3164

297 16987

Foreign 28793 14703 67973

28.8%
Domestic

CR: 17778
IC: 3010

224 20941

Foreign 29212 14776 87059

alone, both LCs are on par with OpenMax. The classification aspect is mostly
attributed to the base classifier.

Although all methods employ the same Alexnet as their base classifier, clas-
sification accuracies are shown to be varied greatly. The explanation may be
that foreign identification changes a number of domestic samples to be evaluated
for classification performance. For example, when difficult domestic samples get
incorrectly identified as foreign, this hurts F ACC, but it helps C ACC: a num-
ber of incorrectly-classified samples is decreased. In addition to tail statistics
and compact abating probability, OpenMax does thresholding on the maximal
class probability. This mechanism filters out too low class probability and may
lead to OpenMax tendency toward predicting foreign. OpenMax thresholding
mechanism may have provided a boost on OpenMax classification accuracies, as
it could bring C ACC to reach 81.5%, conferring to its base classifier Alexnet’s
reported top-1 accuracy of 57.1%.

Exponential LC. Fig. 3 shows boxplots of marginalized exponential cognizance
of different data groups at comfort 28.8%. On the left, marginalized cognizance
values of domestic samples (including both correctly-classified and incorrectly-
classified domestic samples, denoted “Domestic”), foreign samples (denoted
“Foreign”), and fooling samples (denoted “Fooling”) are shown. On the right,
marginalized cognizance values of correctly-classified domestic samples (denoted
“Correct”) and ones of incorrectly-classified domestic samples (denoted “Incor-
rect”) are shown separately.

Fig. 3 exposes an important aspect for evaluating OSR. While it is difficult
to threshold for separation between domestic and foreign (as shown in the left
plot), the use of marginalized cognizance can well distinguish the correctly-
classified domestic samples from foreign samples (as shown in the right plot).
A true challenge of OSR may actually lie in differentiation between difficult
classifying and foreign samples, as a previous work[30] has also pointed out.
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Table 7: Exponential LC confusion matrices.

Comfort

Ratio (%)
Prediction

Data

Domestic Fooling Foreign

62.5%
Domestic

CR: 24527

IC: 11572
646 8518

Foreign 13901 14354 6602

50.0%
Domestic

CR: 20936

IC: 7561
4 12226

Foreign 21503 14996 22694

33.3%
Domestic

CR: 18365

IC: 5576
0 20251

Foreign 26060 15000 64709

28.8%
Domestic

CR: 17320

IC: 4931
0 22132

Foreign 27749 15000 85868

Table 8: Accuracies of foreign identification (F ACC) and accuracies of classification (C ACC).

Comfort
Ratio (%)

OpenMax
Exponential

LC
Cubic

LC

F ACC

62.5 0.616 0.712 0.730
50.0 0.641 0.662 0.639
33.3 0.693 0.612 0.643
28.8 0.709 0.712 0.670

C ACC

62.5 0.815 0.679 0.629
50 0.820 0.735 0.658

33.3 0.851 0.767 0.696
28.8 0.855 0.778 0.708

Evaluating OSR without the Base-Classifier Misclassified. To quantify the effect
of classifier misclassification, we examine OSR performance without incorrectly-
classified samples. Table 9 and Fig. 4 show OSR performances of the three
methods after removing the base-classifier misclassified samples. That is, the
evaluation was conducted in a similar manner as described earlier, but all do-
mestic test samples that Alexnet misclassified were discarded. All results seem
much more promising: all Q1 measures are over 0.6. With improvement over
19%, the significance of a base classifier is apparent.

A large number of incorrectly-classified samples may reflect ambiguity in
domestic classes or immaturity of a classifier. Attention to this aspect may
allow an understanding in the underlying factors and a further improvement.

13



(a) (b)

Figure 3: Boxplots of marginalized exponential cognizance values of different groups at 28.8%
comfort. (a) Boxplots are shown for Domestic, Foreign and Fooling groups. (b) A domestic
group is broken down to correct and incorrect classifications.

Table 9: Q1 after removing base-classifier misclassified samples. Percentage improvement
(conferred to Table 4) is shown in parentheses.

Comfort
Ratio (%)

OpenMax
Exponential LC
g(a) = exp(a)

Cubic LC
g(a) = a3

Alexnet

62.5 0.758 (37.1%) 0.783 (35.5%) 0.757 (33.7%) 0.415 (64.0%)
50.0 0.750 (29.5%) 0.744 (29.4%) 0.690 (29.0%) 0.360 (55.8%)
33.3 0.733 (21.8%) 0.720 (21.8%) 0.651 (20.8%) 0.288 (46.2%)
28.8 0.726 (19.8%) 0.714 (20.0%) 0.645 (19.0%) 0.267 (43.5%)

4.3. Examining Potential Application to Detection of Adversarial Images

As exponential LC is shown to accurately identify fooling images in Tables 7,
it may appear as if LC may be able to address the issue of adversarial-image
detection.

However, fooling images are quite different from the actual adversarial im-
ages. The fooling images were generated using random noise as base images
and this may give away too much clue than actual adversarial images do. To
properly examine the issue, 15000 adversarial images were generated and tested
against the 50000 domestic images. The adversarial images were generated in
the same process generating fooling images described earlier, but—instead of
random noise—the base images were randomly chosen from images of other
999 classes (excluding the target class). The resulting images were visually
inspected.

14



Figure 4: OSR performance over different comfort ratios after removing base-classifier weak-
ness.

Fig. 5 shows boxplots of marginalized exponential cognizance of various im-
age types, including adversarial images. Fig. 6 shows Precision-Recall (P-R)
plots of adversarial-image detection: binary classification whose positive refers
to an adversarial sample and negative refers to a regular example (without
adversarial manipulation). Table 10 shows Area Under Curves (AUCs) of P-
R plots of each method. For perspective, a random classifier was tested on
adversarial-image detection and achieved AUC 0.317 on average (10 repeats).

Small AUCs (top row, Table 10) rule out a side benefit of any of these
OSR methods as an effective adversarial-image detector. However, better AUCs
(bottom row) are achieved when tested against only correctly-classified samples.
This may disclose some potential of these approaches, but an improvement or
further investigation may require a dedicated study.

Table 10: AUC of P-R plot: Detecting Adversarial Images.

OpenMax Exponential LC Cubic LC
Adversarial and domestic data 0.379 0.423 0.458
Adversarial and correctly classified data 0.635 0.741 0.719

4.4. Complementary Comparison

In order to put OSR into perspective, OpenMax and LCs are compared
against an off-the-shelf object detection. An object detection can simply be seen
as F : x 7→ {b1, . . . ,bM}, where x is an input image; bi is the ith detection; and
M is a number of all possible detections. Each detection bi usually composes of
bounding box coordinates c, detection score p, and object class k. A well-trained

15



(a) (b)

Figure 5: Boxplots of marginalized cognizance. (a) Boxplots are shown in Domestic, Adv
(adversarial), and Fooling groups. (b) The Domestic group is broken down to Correct and
Incorrect groups.

(a) Domestic (b) Correct

Figure 6: Precision-Recall plots of adversarial-image detection. (a) P-R curves of distinguish-
ing adversarial images from domestic images. (b) P-R curves of distinguishing adversarial
images from correctly-classified domestic images.

Faster R-CNN ResNet101 V1 640x640 model4is chosen for this comparison.

4https://tfhub.dev/tensorflow/faster_rcnn/ResNet101_v1_640x640/1, obtained on
Oct 7th, 2021.
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To set up a comparable setting, the test dataset composes of 7020 images.
The 1000 of these images from ILSVRC 2012 validation set belong to 20 classes
verified to be domestic for both Alexnet and the object detection. The 6020 of
these images from ILSVRC 2010 belong to 20 classes verified to be foreign for
both Alexnet and the object detection. To adapt object detection for OSR, the
detection score p is treated as a predicted degree of being domestic.

The comparison results are provided in Table 11. The P-R plot is shown
in Figure 7. The details of this comparison and how the object detection is
adapted for OSR are provided in the supplementary materials. Noted that
this comparison is only meant to provide a preliminary perspective. There are
factors—such as the underlying models, how the models are prepared, original
numbers of classes used in training, and how the outputs are interpreted under
OSR context—that may deserve more attention. A full potential OSR capability
of object detection may be worth a dedicated study.

Table 11: Complementary comparison: dedicated OSR methods and off-the-shelf object de-
tection on OSR (OD-OSR)

Metric OpenMax Exponential LC Cubic LC OD-OSR∑
i exp(ai)

∑
i a

3
i p

Q1 0.6127 0.6300 0.5767 0.6046
AUC of P-R 0.8713 0.8790 0.8663 0.7532

Figure 7: Precision-Recall plots of foreign detection in the complementary study.
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5. Conclusion and Discussion

Our investigation has revealed viability of Latent Cognizance (LC) in Open-
Set Recognition (OSR) and re-affirmed the LC underlying hypothesis. In addi-
tions, our study introduces performance metric Q1, discloses some potential on
detecting adversarial images, and shows that a base classifier can affect 19% or
more on the final OSR performance.

OpenMax and LC. Both LC and OpenMax rely on penultimate values, but
they use penultimate values differently. OpenMax uses statistics of penultimate
values to estimate how far off the ones corresponding to the input are from
their statistics. LC uses only a penultimate vector corresponding to the input
to compute a marginalized cognizance. LC is simpler to implement, faster to
compute, and yet able to deliver a similar level of effectiveness.

Both LC and OpenMax are quite effective for OSR over a wide range of com-
fort ratios, but there are rooms for improvement. Besides having a better base
classifier for both appproaches—as our study has shown its great influence on
the final performance—, OpenMax is implicitly based on a uni-modal assump-
tion. Relaxation on this assumption might be a direction to further investigate
an OpenMax approach.

For LC, we see it analogous to Kahneman[22]’s System I decision. Toward
OSR, LC could provide a quick judgement on validity of the input at hand. As
human learns to balance decision from both quick/instinctive and slow/analytic
systems, we vision LC or its derivative to work along with a more elaborated
approach to provide OSR capability for various scenarios. It is always better
to be prepared for what we might encounter, but it is nice to have a backup
system—the instinctive system—that can work in some degree even for the
scenario we might not anticipate. That is the position at we see LC in the big
picture.

Practical issue of LC formulation. Regarding practical deployment and poten-
tial numerical issues, cubic cognizance may have an issue with negative logit
values in the penultimate vector. Although this was not the case in our experi-
ment, but this issue may arise in practice.

Exponential cognizance does not have an issue with negative logits, but a
large logit value may unstabilize the computation (as exponential cognizance
could reach numerical infinity for a large logit). This could be mitigated by a
numerically safer application of LC. For example, log(

∑
k exp(ak)) = amax +

log(
∑
k exp(ak − amax)) may be a safer version than

∑
k exp(ak) used in our

experiment.
Note that this log formulation may help explain Nakjai and Katanyukul[4]’s

experiment that thresholding on amax gives similar results to thresholding on
marginalized exponential cognizance. That is because logarithm is an increas-
ing monotonic function—making thresholding on marginalized exponential cog-
nizance similar to doing on log marginalized exponential cognizance—and the
term log(

∑
k exp(ak − amax)) is likely to be small.
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On the concern over information loss. Effectiveness of LC on OSR may have
somewhat assuaged the concern over information loss discussed in Yoshihashi et
al[11]. In addition, marginalized exponential cognizance has been satisfactorily
used to quantify a degree of being foreign in a counterfactual approach[9], as
Neal et al use logit values for their classifier output (see §2). Our results along
with effectiveness shown in previous works[9, 4, 6] have supported the hypothesis
underlying LC.

OSR metric. Q1 is based on averaging over performances of classification and
foreign detection. It accounts for all cases (Table 2). The rationales are justified
(from our current point of view), but an assessment on this and other OSR
metrics should be properly studied in their own right.

Additionally, metric Q1 measures the overall OSR performance, but we
found that it is more beneficial to examine the break-down performances: classi-
fication and foreign identification. A unified metric that provides a more conve-
nient way to examine overall OSR performance as well as its underlying factors
could be greatly useful.

Adversarial Detection and Inference Uncertainty. Although there might be some
potential for adversarial detection, at this point we do not see adversarial de-
tection as a promising side benefit of these OSR approaches.

However, when domestic examples are broken down into correctly and in-
correctly classified examples (Fig. 4b and 5b), the results seem more favourable
from a perspective of inference uncertainty. These may suggest that while we
are testing LC for foreign and adversarial detection, it may naturally be more
suitable for providing inference uncertainty. In that case, the outcomes look
much more decisively positive. Re-purposing LC for inference uncertainty does
not lose its value as a mechanism for machine awareness. A lower value of
marginalized cognizance indicates that the classification prediction is likely to
be incorrect for either a wrong class, a foreign, or even an adversarial input. It
still provides an awareness of the input being beyond a machine capability.

OSR and Object Detection. Comparing intrinsic OSR methods to object detec-
tion modified for OSR reveals a marginal benefit of dedicated OSR approaches
over a simply modified object detection. Although the comparison is in a prelim-
inary stage, this shows strong potential of extending object detection capability
to address OSR. Since the mechanism behind many object detection systems
also employs softmax, it is possible to enhance this capacity through LC. A
further study on enhancing OSR capacity of object detection could benefit both
domains.

However, object detection has been trained on a different setting. Objects of
a “foreign” class might accidentally be in some of the training images, but their
class is not one of the target classes. (This situation makes it difficult to justify
a class as foreign without inspecting all the images.) Therefore, the model might
have learned the presumed foreign objects. Consequently, the class is not truely
foreign for the model. Thus, the experiments and evaluation should carefully
be conducted.
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Big Picture. Regardless of how OSR is carried out, it is a crucial step in machine
intelligence. Enhancing classification with foreign identification is, to a large
extent, analogous to enriching machine intelligence with an awareness of its
own limitation. It is the awareness that the question is beyond what a system
could answer. This awareness when fully developed could allow a safer measure
against a dynamic and diverse setting on which an intelligent system will be
deployed. Therefore, OSR and similar concepts in other domains should be
sufficiently addressed for the development of a robust intelligent agent.
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