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ABSTRACT

Key challenges that complicate control of non-condensing non-ideal-gas power cycles include (1)
their output power dynamics depend on interactions between turbomachinery and heat transfer pro-
cesses, (2) turbomachinery behaviour cannot be captured by simple analytical relations, and (3)
state constraints must be respected. This article presents a control methodology for these systems,
comprising a control modelling approach and model predictive control (MPC) strategy. We demon-
strate this methodology on the high-pressure side of a simple supercritical CO2 cycle power block,
composed of a variable-speed compressor, heat exchanger, and fixed-speed turbine. We develop
a control model by using timescale-separation arguments and locally linearizing non-ideal-gas tur-
bomachinery performance maps. We implement MPC by linearizing this control model online at
each sampling instant. Closed-loop simulations with a full-order gas-dynamics truth model demon-
strate the the effectiveness of the proposed control methodology. In response to load changes, the
controller maintains high turbine inlet temperatures while achieving net power output ramp rates
in excess of 100% of nameplate output per minute. The controller often acts at the intersection of
motor torque, compressor surge, and turbine inlet temperature constraints, and performs well from
35 to 105% of nameplate capacity with no parameter scheduling. The controller achieves good
performance and fast update rates when using online linearization. The results demonstrate the suit-
ability of MPC for the supercritical CO2 cycle, and the proposed methodology is extensible to more
complex cycle variants such as the recuperated and recompression cycle.

1 Introduction

A critical attribute of thermal power plants is their ‘flexibility’, which is their ability to operate over a wide range
of power outputs and quickly change from one operating state to another, either by ramping or switching on or off.
Flexibility has four main components: operating range, part-load efficiency, response times to load changes (i. e. ramp
rate), and startup and shutdown times and costs [Feldmüller, 2018, ire, 2019]. Flexible power plants play a crucial roll
in maintaining grid reliability under demand- and supply-side variability [Kassakian et al., 2011], and they will become
even more important as increasing renewable penetration further increases supply-side variability and uncertainty [ire,
2019, Duggal et al., 2017, , IEA]. Measures of flexibility like minimum load or maximum ramp rate are considered
core performance metrics for modern power plants [VGB PowerTech e.V., 2017, Energiewende, 2017].
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An impactful way to improve thermal power plant flexibility is to upgrade plant-level control systems [Duggal et al.,
2017, VGB PowerTech e.V., 2017, Energiewende, 2017]. Advanced control systems can better coordinate plant sub-
systems during transients and facilitate operation closer to component design limits. These benefits enable operation
at higher turn-downs, faster ramping, shorter and more reproducible start-ups and shut-downs, and decreased mainte-
nance [ire, 2019, Duggal et al., 2017, Energiewende, 2017]. Some examples highlighting the importance of control are
as follows: (1) installation of a new digital control system reduced the minimum load of a 600 MW lignite-fired plant
by 27% [Energiewende, 2017]; (2) for steam plants, control schemes with dynamic wall models have permitted safe
operation closer to thermal stress limits, thus increasing flexibility without increasing maintenance [VGB PowerTech
e.V., 2017]; and (3) commissioning control loops over a wide operating range, rather than only at nominal load, has
significantly improved part-load performance and ramp rates of coal-fired plants [VGB PowerTech e.V., 2017].

Control of thermal power plants, especially in dynamic load-following scenarios, is challenging for two key reasons:
(1) power plants are multivariable nonlinear systems [Prasad et al., 1998, 2000, Kim et al., 2013, D’Amato et al.,
2012, Yebi et al., 2017, Liu et al., 2017]; (2) power plants are subject to many constraints such as thermal stress
limits [VGB PowerTech e.V., 2017], compressor surge [Gravdahl and Egeland, 2012], and turbomachinery blade
loading limits [Kumar et al., 2012]. Given these challenges, a suitable control paradigm for this application is model
predictive control (MPC), which performs well for multivariable systems, systematically handles constraints and plant
nonlinearity, and provides a unified approach to control of complex systems [Maciejowski, 2002].

MPC involves periodically solving forward-looking constrained optimization problems to compute the control inputs
that make a model of the plant best satisfy the control objectives while respecting all constraints [Maciejowski, 2002].
Only the first set of inputs is applied, then at the next sampling instant, the optimization problem is solved again to
compute the subsequent set of inputs, and so on. The performance of MPC depends strongly on the accuracy and
complexity of the model used by the controller, with more accurate models giving better calibrated control actions,
and simpler models permitting faster updates or longer prediction horizons.

Existing literature confirms the value of MPC for established types of thermal power plants, such as steam Rankine
cycle plants [Prasad et al., 1998, 2000], open- and closed-cycle gas turbines [Kim et al., 2013, Aurora et al., 2005,
D’Amato, 2006, D’Amato et al., 2012], and organic Rankine cycle waste heat recovery units [Yebi et al., 2017, Liu
et al., 2017, Rathod et al., 2019]. However, MPC has not yet been investigated for a key next-generation power
cycle: the supercritical carbon dioxide (CO2) Brayton cycle (the ‘sCO2 cycle’). This power cycle exploits CO2’s non-
ideal-gas behavior to obtain higher thermal efficiencies than competing power cycles at readily-achieved turbine inlet
temperatures (600–700 °C) [Musgrove and Wright, 2017]. The sCO2 cycle is compact and scalable, being suitable for
10 MW rural plants up to multi-100 MW utility plants [Musgrove and Wright, 2017]. Additionally, due to the single-
phase flow in the heater, the cycle can be well matched to many heat sources, and CO2’s moderate critical temperature
makes the cycle compatible with non-polluting dry cooling systems [Turchi et al., 2013].

However, CO2’s non-ideal-gas behavior gives rise to complex cycle dynamics [Carstens, 2007, Moisseytsev and
Sienicki, 2007], making the application of MPC to sCO2 cycles particularly challenging. Critically, CO2’s strong prop-
erty variations over the cycle’s operating range complicate modelling of heat exchangers and turbomachinery [Dostal,
2004, Carstens, 2007, Moisseytsev and Sienicki, 2007]. Additionally, most proposed sCO2 cycles use non-condensing
designs [Turchi et al., 2013, Rochau, 2011], so their mass flow and pressure dynamics (which strongly influence power
output) arise from complex system interactions. Simulation models capture these dynamics implicitly using quasi-1D
compressible flow solvers [Moisseytsev and Sienicki, 2007], but these models run slower than real time and are thus
unsuitable for MPC. Existing control models for similar systems (such as air Brayton cycles) employ ideal-gas as-
sumptions [Kim et al., 2013] and thus cannot be used for the sCO2 cycle. It is currently unclear how to develop an
explicit low-order model of sCO2 cycle dynamics that is suitable for MPC.

This article proposes a control model that can be used to implement MPC for the high-pressure side of the sCO2

cycle. The heat exchangers (and other fluid volumes) are modeled using a reduced-order gas-dynamics model [Bone
et al., 2019], and the turbomachinery are modeled using performance maps with analytical off-design scaling [Jahn
and Keep, 2017]. By considering the slow-timescale behavior of the system and linearizing the turbomachinery maps
online, we derive an explicit low-order model for the slow-timescale evolution of mass flow, pressure, and net output
power. This model can be fitted to individual plants by using modest experimental datasets to construct turbomachinery
performance maps [Glassman, 1972] and tune heat exchanger models [Bone et al., 2018]. As the model is based
primarily on first principles, it is somewhat robust to large extrapolation or overfitting errors, which may give rise to
dangerous closed-loop behavior. This model is extensible to commercially-feasible sCO2 cycle configurations such as
the recuperated cycle and recompression cycle.

By linearizing the control model online, we implement MPC for the high-pressure side of a laboratory-scale open
sCO2 cycle, comprising a variable-speed compressor, printed circuit heat exchanger, fixed-speed turbine, and thermal
oil heat input loop. The controller’s objective is to track net output power setpoints by manipulating compressor torque
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and thermal oil flow rate, while also maximizing turbine inlet temperature and thus cycle thermodynamic efficiency.
The controller must respect the compressor surge constraint and maximum wall temperature limits. To assess the
performance of the proposed control scheme, we perform closed-loop simulations with a high-fidelity truth model
that is calibrated to experimental heat exchanger, compressor, and turbine datasets. This truth model solves the full
compressible flow equations and is essentially a quasi-1D computational fluid dynamics model. These simulations
show the effectiveness of the proposed controller for the test system, suggesting that the proposed modelling and
control strategies are valid. The results demonstrate MPC’s core strengths, namely constraint management, good
dynamic performance for complex multivariable systems, and performance over a wide nonlinear operating range.

This article is organized as follows: Sec. 2 defines the control problem considered in this article; Sec. 3 presents the
simulation model, including the fluid stream model, heat exchanger model, and the turbomachinery models; Sec. 3
discusses the derivation of a reduced-order control model from the simulation model and details how the constraints
are modeled; Sec. 5 discusses the proposed control strategy; Sec. 6 presents the results of closed-loop simulations;
and Sec. 7 concludes the article.

2 Control problem

This article presents an MPC scheme for the laboratory-scale open sCO2 cycle shown in Fig. 1. This system com-
prises a centrifugal compressor, printed circuit heat exchanger (PCHE), radial inflow turbine, pump, and connecting
pipework. The process stream working fluid is supercritical CO2, and the heat transfer fluid is Paratherm™ HE [par].
The compressor and turbine are on separate shafts. The compressor is asynchronous and is driven by an electric motor
with controllable torque Tm, and the turbine is connected to the grid via a gear box operating at a synchronous speed of
1200 RPM. A pump drives mass flow in the thermal oil stream. We assume that a local proportional-integral-derivative
(PID) controller manipulates pump speed to track the thermal oil mass flow rate setpoint ṁoil, ref (the dynamics of
this local closed-loop system are given in Sec. 3.5). The MPC updates the setpoint of this local PID controller at each
sampling instant.

Comp Turb

HX

Pump

Motor Generator

Figure 1: Open-cycle system showing inputs u and tracked outputs z

The system parameter values are given in Tab. 1. These parameter values give a nominal power output of 65 kW,
which is representative of a laboratory-scale sCO2 cycle, rather than an efficient commercial facility. All pipes are
assumed to be the same length. The cell counts Ncells refer to the discretization level of the components in the finite-
volume flow solver (see Sec. 3). The compressor rotational inertia represents the compressor rotor plus the gearbox
and motor. A sample set of steady-state operating conditions, corresponding to a power output of 55 kW and heat
input of approximately 3100 kW, are shown in Fig. 2.

The objective of the control scheme presented in this article is regulate the turbine’s power output Ẇt to some setpoint
Ẇt, ref while also driving the turbine inlet temperature to the target value Tin, t,ref . To maximize the system’s ther-
modynamic cycle efficiency, Tin, t,ref is set as the maximum feasible turbine inlet temperature that can be achieved
for Ẇt, ref . The control inputs are ṁoil,ref and Tm.
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Figure 2: Steady-state temperature and pressure profiles — used as initial conditions for transient simulations — showing pipework
(I, III, IV, VI), heat exchanger (IV), compressor (II), and turbine (V). ṁCO2 = 10kg/s, ṁoil = 10kg/s.

Table 1: System parameters
Heat exchanger Pipes
Length L: 1 m Length L: 0.2 m
Channel diameter d: 1.0 mm Diameter d: 0.08 m
Wall thickness tw: 1.3 mm Ncells (simulation model): 20
Number of channels Nchans: 4000
Ncells (simulation model): 100

Compressor Turbine
Model: See Clementoni et al. [2015] Model: Ricardo & Co A70
Maximum efficiency: 0.67 Maximum efficiency: 0.89
Design enthalpy rise: 25.41 kJ/kgK Design pressure ratio: 1.5
Design mass flow rate: 10 kg/s Design mass flow parameter: 3.2
Rotational inertia: 0.7 kgm2 Design inlet temperature: 600 K

SIMULATION
MODEL

OBSERVER CONTROLLER

Figure 3: Simulation and control approach (detailed in Sec. 5)
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We analyze the performance of the proposed MPC scheme using the closed-loop simulation setup shown in Fig. 3.
This setup uses a high-fidelity simulation model (see Sec. 3) with states x and measured outputs y as a substitute for
the real plant. At each sampling instant, the control update procedure is as follows: First, the observer, based on the
reduced-order control model (see Sec. 4), generates state estimates x̂ and disturbance estimates d̂ from measurements
y. The controller linearizes the control model about the current operating point (x̂0, u0), then uses this linear model
to compute the optimal inputs U∗ that drive the tracked outputs z to their target values. Finally, the first set of optimal
inputs u∗ are applied to the simulation model.

3 Simulation model

sCO2 cycles are an early-stage technology and expensive to construct, so development of new control strategies on real
plants is impractical. Accordingly, we develop and test our control strategy using a high-fidelity simulation model that
incorporates experimental heat exchanger, compressor, and turbomachinery datasets. Our simulation model is devel-
oped using a similar approach as the Argonne National Laboratory Plant Dynamics Code [Moisseytsev and Sienicki,
2007], which is a thoroughly validated [Moisseytsev and Sienicki, 2011, 2012, 2016] dynamic model for sCO2 cycles
(and is not publicly available). This section presents the simulation model, which is developed by combining submod-
els of five component types — pipes, heat exchangers, turbomachinery, pumps, and boundaries — in the configuration
shown in Fig. 1.

3.1 Quasi-1D streams

Submodels for pipes, heat exchangers, and turbomachinery are developed using the quasi-1D stream as a fundamental
building block. Being quasi-1D, these streams account for the effects of cross-sectional geometry on flow velocity,
heat transfer, and pressure drop, and so can be used model components with 3D axially-dominated flow [Carstens,
2007, Moisseytsev and Sienicki, 2007].

We neglect axial conduction within quasi-1D streams as it is negligible for the component types of interest. In printed
heat heat exchangers, transverse thermal gradients are much greater than axial ones, so axial conduction in the fluid can
safely be neglected (as shown experimentally in [Bone et al., 2018]). And in turbomachinery, the high axial velocities
of the fluid mean that axial conduction is negligible. Under this assumption, the governing equations for quasi-1D
flow with heat transfer and frictional pressure drop are

A
∂ρ

∂t
= −∂(ρvA)

∂x
(3.1a)

A
∂(ρv)

∂t
= −∂ (ρv |v|A+ pA)

∂x
− p∂A

∂x
− fr

ρv |v|A
2DH

(3.1b)

A
∂(ρE)

∂t
= −∂(ρHvA)

∂x
− fr

ρv3A

2DH
− q′′. (3.1c)

where t is time, x is the spatial coordinate, v is velocity, p is pressure, ρ is density, e is specific internal energy,
specific enthalpy is h = e + p/ρ, specific total energy is E = e + 1

2v
2, specific total enthalpy is H = h + 1

2v
2, DH

is the hydraulic diameter, fr is the Darcy friction factor, A is the total flow area, and q′′ is the heat flux through the
wall. These equations are closed using an equation of state for the relevant fluid (see Sec. 3.6). To solve, we integrate
Eqs. 3.1 over Ncells finite volumes spanning the computational domain, yielding a system of temporal ODEs for the
evolution of density, velocity, and total energy in each volume.

For incompressible working fluids, density and pressure are independent, so the discretized continuity equation
(Eq. 3.1a) becomes a constraint on the velocity field, rather than a transport equation for density [Versteeg and
Malalasekera, 2007]. In this case, at each timestep, we use the unsteady PISO algorithm [Issa, 1986] with implicit
Euler time integration to compute the pressure and velocity fields, and the unsteady energy equation with central dif-
ferencing to compute the temperature field (consult [Issa, 1986] or [Versteeg and Malalasekera, 2007] for details). The
remaining fluid properties are computed from temperature and pressure using the equation of state. We assume that
fluid properties are fixed at the inflow boundary and that the flow is fully-developed at the outflow boundary.

For compressible working fluids, we directly solve the governing temporal ODEs using the AUSMDV flux splitting
scheme [Wada and Liou, 1997] with 4th-order Runge-Kutta Cash-Karp time integration [Cash and Karp, 1990] (refer
to the sources for details). To accurately model pressure and mass flow dynamics in fluid streams that are driven
by turbomachinery, compressible boundaries must be modeled properly. To replicate the physics of a real system,
we model these boundaries by assuming that the fluid flows from some infinitely-large inlet reservoir, through the
computational domain, then into an infinitely-large outlet reservoir (see Sec. 3.1.1).
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3.1.1 Compressible-flow boundary conditions

For compressible fluids, inflow boundaries are modeled by assuming that the fluid isentropically accelerates from
a reservoir at some fixed stagnation conditions (pstag, in, Tstag, in) into the computational domain (similar to the
subsonic boundary model in [Jacobs and Gollan, 2018]). Fig. 4 shows a schematic of the inflow boundary model.

BOUNDARY
MODEL

MAIN
DOMAIN

Figure 4: Inflow boundary model

At beginning of each timestep, the boundary model sets the property values in C−1, allowing C0 may be treated
normally by the compressible flow solver. C−1 is updated as follows. We assume zero velocity gradient over the
inflow boundary, and so set

v−1 = v0 (3.2)
where v−1 and v0 are the velocities in cells C−1 and C0 (and v0 was computed during the previous timestep). Assum-
ing that the fluid accelerates isentropically from the reservoir into C−1, the enthalpy h−1 is

h−1 = hstag, in −
v2
−1

2
(3.3)

where hstag, in = EOS(pstag, in, Tstag, in), and the notation w = EOS(α, β) means to compute the property w from
properties α and β using an appropriate equation of state (see Sec. 3.6). From the stagnation entropy, sstag, in =
EOS(pstag, in, Tstag, in), all other properties in C−1 are computed using the equation of state.

For outflow boundaries, we assume that the fluid decelerates from the final cell into the reservoir via a completely
irreversible process where all kinetic energy is dissipated. This assumption means that the pressure in the final cell is
fixed to the reservoir pressure pstag, out and the temperature is set by the outgoing fluid temperature. As for the inflow,
we compute the outflow velocity using a zero-gradient approximation.

3.2 Pipework

Pipes are modeled as quasi-1D streams (Eqs. 3.1) without heat transfer. The well-established Darcy and Colebrook-
White [White, 2011] formulae are used to compute the friction factor for laminar and turbulent flow respectively.

3.3 Heat exchangers

This article focuses on PCHEs as they are most suitable for the heat addition and recuperation processes in sCO2 cy-
cles [Musgrove et al., 2017]. PCHEs consist of several layers of metal plates into which zigzag-shaped microchannels
have been chemically etched. Alternating hot-stream and cold-stream plates are arranged on top of one another in a
counter-flow configuration, then diffusion bonded together to create a solid block [Musgrove et al., 2017].

We develop a plant-level simulation model of a PCHE by following the approach of Carstens [2007] and Moisseytsev
and Sienicki [2007]. We assume that 1) mass flow is distributed evenly between all channels, 2) fluid properties in all
channels are the same at a given axial distance into the heat exchanger, and 3) all channels have the same geometry.
Under these assumptions, PCHEs may be modeled as two representative 1D fluid channels separated by a conductive
wall, as illustrated in Fig. 5. Each representative channel is modeled using the quasi-1D flow equations (Eqs. 3.1),
where the flow area and heat transfer area Aw are scaled by the number of channels Nchans. We use the Colebrook-
White [White, 2011] formula to compute the friction factor for turbulent flow.

Because (1) axial conduction in PCHE walls is minimal and (2) the thermal resistance for cross-wall conduction is
small compared to that for forced convection [Bone et al., 2018], we assume that heat flows through the heat exchanger
walls strictly in the transverse direction (see Fig. 5). Under these assumptions, wall temperature dynamics are given
by

Aw ρw Cp, w
dTw
dt

= q′′h + q′′c , (3.4)
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Figure 5: PCHE modelling approach

where ρw, Cp, w, and Tw are the density, heat capacity, and mean wall temperature in the transverse direction respec-
tively. q′′h is the heat flux to the hot stream, given by

q′′h = NchansUhPh(Th − Tw) (3.5)

where for the hot channel, Th is the fluid temperature, Ph is the wetted perimeter and Uh is the local heat transfer
coefficient (the cold stream heat flux q′′c is treated analogously). The heat transfer coefficient is computed using the
Nusselt number Nu, the channel’s characteristic length LC , and the fluid’s thermal conductivity k as, for the hot
stream,

Uh = Nuh kh/LC, h. (3.6)
To accurately model heat exchanger behavior, it is crucial to select valid heat transfer correlations that properly account
for the effects of channel geometry and multi-dimensional fluid flow [Bone et al., 2018].

3.3.1 Heat transfer correlations

Due to its property variations, supercritical CO2 exhibits complex heat transfer behavior, especially near its criti-
cal point. Accurately modelling supercritical CO2 heat transfer over a wide operating range likely requires several
switched heat transfer correlations. However, as this work focuses on control design, we select a heat transfer correla-
tion that gives representative heat transfer behavior of a supercritical CO2 PCHE near its design point. (Our approach is
trivially extensible to cases with switched heat transfer correlations.) Moreover, by fitting the heat exchanger model to
small experimental datasets collected from real heat exchangers, heat transfer behavior can be modeled very accurately
with only approximate knowledge of internal geometry or heat transfer correlations [Bone et al., 2018].

Flow in the PCHEs in the sCO2 cycle is typically turbulent, so we use the Ngo-Ishizuka correlation [Ngo et al., 2007]
to model supercritical CO2 heat transfer. This correlation was developed for turbulent flow in channels of hydraulic
diameter 1.09 mm and zigzag angle 52° using experimental data, and gives Nusselt number as

Nu = 0.1696 Re0.629 Pr0.317, (3.7)

where Re is the Reynolds number and Pr is the Prandtl number.

The thermal oil flow is laminar with Re typically less than 200. Accordingly, its heat transfer is unlikely to be affected
by the zigzag channel geometry, so we model its heat transfer using the analytical correlation for fully-developed
laminar flow in a straight semi-circular duct with constant heat flux and transversely invariant properties [Faghri et al.,
2010]:

Nu = 4.089 (3.8)

3.4 Turbomachinery

Turbomachinery exhibit complex thermo-fluid behavior that cannot be modeled in detail in a plant-level simulation
model. Here, we develop a suitable turbomachinery model following a similar approach to Moisseytsev and Sienicki
[2007]. This approach assumes that the thermodynamic response of turbomachines is instantaneous, so their outlet
thermodynamic state (pout, Tout) is a function ftb of only their inlet fluid state (pin, Tin), mass flow rate ṁtb, and
shaft speed Ns:

pout, Tout = ftb(pin, Tin, ṁtb, Ns). (3.9)
Under this assumption, turbomachines may be modeled using either simplified meanline models or performance maps
(which may be generated from experiments or CFD [Jahn and Keep, 2017]). This work uses 2D performance maps
with analytical off-design scaling (detailed in Appendix A). However, the control strategy proposed in this article
works with any turbomachinery model that fits the form of Eq. 3.9. When modelling an operational plant, highly-
accurate 4D performance maps would likely be used since detailed operating data would be available.
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3.4.1 Integration of turbomachinery models into the flow solver

Using performance maps, turbomachines can be modeled as two adjacent compressible flow cells (CL0 and CR0) with
momentum and energy discontinuities ∆mom and ∆E over the interface IC that separates them (see Fig. 6). With
these discontinuities, the flux vectors on the left and right of IC (FL and FR respectively) are[

Fm,R
Fmom,R
FE,R

]
=

[
Fm,L

Fmom,L + ∆mom

FE,L + ∆E

]
(3.10)

where the subscripts m, mom, and E refer to mass, momentum, and energy. During gas dynamic updates, cell CL0

is integrated using FL and the flux vector at IL0, similarly CR0 is integrated using FR the flux vector at IR0. The
discontinuities ∆mom and ∆E are not directly computed; they emerge from the process used to compute FL and FR
from the turbomachinery maps.

Figure 6: Turbomachinery modelling concept

Because (1) mass flow rate through a turbomachine is primarily governed by pressure ratio and (2) off-design scaling is
performed based on the inlet fluid state, we reformulate the performance maps as a function of pressure ratio [Moisseyt-
sev and Sienicki, 2007]:

Tout, ṁtb = f ′tb(pin, pout, Tin, Ns). (3.11)

Using these reformulated performance maps, FL and FR are calculated as follows. First, the shaft speed is updated
from rotordynamics (see Appendix Sec. 3.4.2). Next, from the current fluid states in CL0 and CR0 we set

Tin = TL0, pin = pL0, pout = pR0. (3.12)

Then, we compute Tout and ṁtb from the performance maps (see Appendix A), then compute the inlet and outlet
velocities vin and vout and shaft work Ẇ as

vin = ṁtb / (Atb, in ρin) , (3.13)
vout = ṁtb / (Atb, out ρout) , (3.14)

Ẇ = ṁtb

(
hout − hin + 1/2

(
v2
out − v2

in

))
, (3.15)

where Atb, in and Atb, out are the inlet and outlet flow areas of the turbomachine. This solution approach implicitly
captures efficiency from the turbomachinery maps. Finally, the flux vectors are formed as

FL =

[
ṁtb/Atb, in

(ṁtb vin/Atb, in) + pin
(ṁtbEin/Atb, in)

]
(3.16)

and

FR =

 ṁtb/Atb, out
(ṁtb vout/Atb, out) + pout
(ṁtbEin/Atb, in)− Ẇs

 . (3.17)

When evaluating interfaces fluxes for IL0 and IR0, ghost cells populated with first-order extrapolation are used to
prevent the compressible flux calculator from ‘looking over’ the momentum and energy discontinuity at IC .

8



Towards MPC of sCO2 cycles A PREPRINT

3.4.2 Turbomachinery rotor dynamics

Turbomachines may be either synchronous (grid-connected at some constant speed Ns0) or asynchronous (variable-
speed). The rotational dynamics of asynchronous turbomachines depend on the load and external torques (Tload and
Texternal). For compressors, Texternal is the applied motor torque, and for turbines, Texternal is the supplied generator
torque. The load torque is

Tload = Ẇs/Ns, (3.18)

where Ẇs is computed using performance maps (see Appendix A) and Eq. 3.15. (see Appendix A), Using these
torques, turbomachinery rotational dynamics are given by

J
dNs
dt

= Texternal − Tload. (3.19)

where J is the moment of inertia of the turbomachine’s rotor plus connected rotating masses (such as gearbox compo-
nents).

3.5 Thermal oil pump

The mass flow rate in the thermal oil stream ṁoil is set by a pump. We assume that the fluid exits the pump at
Toil, in = 300 °C and poil, in = 4 MPa, and we assume that a PID controller modulates pump speed such that ṁoil

is driven towards the setpoint ṁoil, ref . We assume that the local closed-loop dynamics of the pump and controller
subsystem are

Jp
d2ṁoil

dt2
= kp (ṁoil, ref − ṁoil)− cp

dṁ

dt
, (3.20)

where Jp, cp, and kp are the effective inertia, damping coefficient, and stiffness respectively. We assume that the PID
gains are set such that the pump and controller subsystem has a natural frequency of 2 Hz and slightly overdamped
response, with damping ratio 1.3.

3.6 Fluid property calculations

We form fluid property lookup tables using the open-source fluid property database CoolProp [Bell et al., 2014].
CoolProp computes CO2’s thermodynamic state by iteratively solving the Span and Wagner equation of state [Span
and Wagner, 1996], and computes its thermal conductivity and viscosity using the Scalabrin et. al. [Scalabrin et al.,
2006] and Fenghour et. al. [Fenghour et al., 1998] correlations respectively. CoolProp models Paratherm™HE using
an incompressible equation of state based on manufacturer data [par].

For computational efficiency, we compute fluid properties from the lookup tables using bicubic interpolation. Discon-
tinuous approximation methods (such as tabular Taylor series extrapolation) make the compressor performance map
model used in this article ill-conditioned and thus cannot be used.

4 Control model

The simulation model presented in Sec. 3 is ill-suited for control applications due to its high state dimension and
stringent explicit timestep restrictions, imposed by the Courant-Friedrichs-Lewy condition [Courant et al., 1967]. This
section discusses the formulation of a simpler control model of the open sCO2 cycle (detailed in Sec. 2). This control
model (denoted by fc and gc in Fig. 3), is linearized online to implement MPC and is also used to estimate unmeasured
states. The control model is primarily composed of two submodels: one for the thermal and bulk-flow dynamics in
non-ideal fluid streams (used for both the CO2 and thermal oil streams), and one for the slow-timescale pressure and
mass flow dynamics in the CO2 stream.

Previous work [Bone et al., 2019] shows that by assuming the momentum dynamics in compressible fluid streams are
infinitely-fast (the ‘quasi-steady-momentum’ assumption), these streams can be modeled using quasi-incompressible
flow equations, which capture only the slow-timescale energy and bulk-flow dynamics. This work shows that the quasi-
steady-momentum assumption can also be used to derive a control model for the pressure and mass flow dynamics in
compressible flow systems that are driven by turbomachinery behavior and heat transfer dynamics.

4.1 Turbomachinery rotor dynamics

In the control model, the rotordynamics of asynchronous turbomachines are modeled by linearizing Eq. 3.19 about the
current operating point. The load torque is computed using the performance map model, and so can be considered as

9
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a function Tload(pin, pout, Tin, Ns). For the compressor, with Texternal as the motor torque Tm, the linearization of
Eq. 3.19 is

Jc
dNc
dt

= Tm, 0 + Tm − Tload, 0 −
∂Tload
∂Nc

N c

− ∂Tload
∂ṁc

ṁc −
∂Tload
∂Tc, in

T c, in −
∂Tload
∂pc, in

pc, in.

(4.1)

where the ‘overbar’ variables represent deviation from the linearization point and ‘subscript 0’ variables denote val-
ues at the linearization point (see Sec. 5.2). As discussed in in Sec. 4.4, in the control model, the compressor inlet
temperature and pressure are considered fixed, so Eq. 4.1 can be simplified to

Jc
dNc
dt

= Tm, 0 + Tm − Tload, 0 −
∂Tload
∂Nc

N c −
∂Tload
∂ṁc

ṁc. (4.2)

4.2 Heat exchanger walls

The simulation model for the heat exchanger walls is appropriate for control without further simplification. Integrating
Eq. 3.4 over Ncells volumes yields the following temporal ODE for temperature in wall cell i:

Aw ρw Cp, w
dTw, i
dt

= Nchans (Uh PC, h(Th, i − Tw, i)

+ Uc PC, c(Tc, i − Tw, i))
(4.3)

where Th, i, Tc, i are the neighboring hot-stream and cold-stream fluid cells, and the heat transfer coefficients Uc and
Uh are given by Eq. 3.6. Eq. 4.3 is linearized online to implement MPC (see Sec. 5.2). Best closed-loop performance
was obtained by retaining only the ‘primary’ partial derivatives in the linearization, giving

dTw, i
dt

≈ Nchans
Aw ρw Cp, w

(
dTw, i, 0
dt

− (Uh PC, h + Uc PC, c)Tw, i

+Uh PC, h Th, i + Uc PC, c T c, i

)
,

(4.4)

where dTw, i, 0
dt is the derivative of wall temperature at the linearization point.

4.3 Fluid streams

For control, we model only the slow-timescale dynamics (the thermal and bulk-flow dynamics) of quasi-1D
streams [Bone et al., 2019] by applying the quasi-steady momentum assumption,

∂(ρv)

∂t
≈ 0, (4.5)

to the quasi-1D flow equations (Eqs. 3.1). This assumption effectively states that the momentum dynamics (i. e.
pressure waves) stabilize infinitely quickly compared to the other dynamics. For the operating conditions considered
in this article, this assumption is justified as Mach numbers in the CO2 stream are always less than 0.01, so the pressure
wave characteristics are much faster than the bulk-flow characteristic [Bone et al., 2019]. Similarly low Mach number
ranges have been observed in experimental tests of supercritical CO2 heat exchangers [Bone et al., 2018].

Additionally, we make two more assumptions: (1) that the pressure changes throughout the fluid streams are negligible
except over the turbomachinery (see Sec. 4.4), and (2) that H ≈ h and E ≈ e (as flow velocities are typically small
in the heat exchanger channels used for sCO2 cycles [Bone et al., 2018]). By applying these assumptions to Eqs. 3.1
then combining Eqs. 3.1a and 3.1c, the energy dynamics of a fluid streams are given by Bone et al. [2019]

ρ
∂e

∂t
= −∂(ρhv)

∂x
− q′′

A
, (4.6)

where the pressure and mass flow rate are set by the stream inlet conditions: p = pin and ṁ = ṁin. To obtain a
temporal ODE for stream internal energy in cell i, we integrate Eq. 4.6 over Ncells finite volumes, then apply upwind
differencing, giving

ρi
dei
dt

=
ṁin (hi−1 − hi)

A∆x
− Nchans πNu ki

A
(Ti − Tw, i) . (4.7)

10
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(See Sec. 3.3.1 for Nusselt number correlations.) For the thermal oil stream, pin and ṁin are set by the pump, and for
the CO2 stream, pin and ṁin are given by the compressor outflow conditions, which in the control model are captured
by the equations presented in Sec. 4.4. As for the walls, best closed-loop performance was obtained when retaining
only the primary partial derivatives in the linearization of Eq. 4.7:

ρi, 0
dei
dt
≈ (hi−1, 0 − hi, 0 )

A∆x
ṁin

+
ṁin, 0

A∆x

(
∂h

∂ei−1, 0
ei−1 −

∂h

∂ei, 0
ei

)
− ṁin, 0 (hi−1, 0 − hi, 0 )

ρi, 0A∆x

∂ρ

∂ei, 0
ei

− Nchans πNu ki, 0
ρi, 0A

(
∂T

∂ei, 0
ei − Tw, i

)
.

(4.8)

4.4 Mass flow rate and pressure modelling

MPC requires a low-order model for the slow-timescale evolution of mass flow rate and high-side pressure in the
system. This section derives such a model by applying the quasi-steady momentum assumption, performing system-
level mass and momentum balances, and approximating turbomachinery performance with Taylor series expansions.

First, we perform a system-level momentum balance to relate the turbomachinery mass flow rates to compressor speed.
For the CO2 stream, the pressure difference between the reservoirs is equal to the total pressure change over the system:

pstag, in − pstag, out = ∆ppipes + ∆pHX,CO2
+ ∆pc + ∆pt (4.9)

where the pressure changes over the turbomachinery are

∆pc = pout, c − pin, c and ∆pt = pout, t − pin, t. (4.10)

Assuming the pressure drops over the pipes and heat exchanger (∆ppipes and ∆pHX,CO2
) are negligible, the low-side

pressures are fixed to the reservoir pressures (pc, in = pstag, in, pt, out = pstag, out), so

pstag, in − pstag, out = ∆pc + ∆pt (4.11)

and
phigh ≡ pc, out ≡ pt, in. (4.12)

As the low-side pressures are fixed, we reformulate the turbine performance map model (Eq. 3.9) with pt, out as an
input and pt, in as an output, giving

∆pc, Tout, c = gcomp(pin, c, Tin, c, ṁc, Nc) (4.13)
∆pt, Tout, t = gturb(pout, t, Tin, t, ṁt, Nt).

Noting that (1) pin, c and Tin, c are fixed to the inlet reservoir conditions, (2) pout, t is fixed to the outlet reservoir
temperature, and (3) Nt is fixed to the synchronous speed, a first-order Taylor series expansion of gcomp and gturb
about the current operating point yields

∆pc ≈ ∆pc, 0 +
∂∆pc
∂ṁc

ṁc +
∂∆pc
∂Nc

N c (4.14)

∆pt ≈ ∆pt, 0 +
∂∆pt
∂Tin, t

T in, t +
∂∆pt
∂ṁt

ṁt, (4.15)

where ∂∆pc
∂pin, c

refers to the partial derivative of gcomp with respect to pin, c considering the output variable ∆pc (and
similar for the other partial derivatives).

Substituting Eqs. 4.14 and 4.15 into Eq. 4.11 yields

pstag, in − pstag, out = ∆pc, 0 +
∂∆pc
∂ṁc

ṁc +
∂∆pc
∂Nc

N c

+ ∆pt, 0 +
∂∆pt
∂Tin, t

T in, t +
∂∆pt
∂ṁt

ṁt.

(4.16)

11



Towards MPC of sCO2 cycles A PREPRINT

As the pressure change between the reservoirs must be equal to the pressure change over the turbomachinery at the
linearization point (i.e. pstag, in − pstag, out = ∆pc, 0 + ∆pt, 0), Eq. 4.16 can be simplified to

0 =
∂∆pc
∂ṁc

ṁc +
∂∆pc
∂Nc

N c +
∂∆pt
∂Tin, t

T in, t +
∂∆pt
∂ṁt

ṁt. (4.17)

Turbine inlet temperature has only a small effect on high-side pressure, with the product ∂∆pt
∂Tin, t

T in, t typically being
around three orders of magnitude less than the other terms. Neglecting this term and differentiating Eq. 4.17 with
respect to time gives the compressor mass flow dynamics as

dṁc

dt
= − ∂ṁc

∂∆pc

(
∂∆pc
∂Nc

dNc
dt

+
∂∆pt
∂ṁt

dṁt

dt

)
, (4.18)

where by definition dNc
dt = dNc

dt and the same for all other perturbed variables. Eq. 4.18 is used to model compressor
mass flow dynamics by substituting the equations for compressor shaft speed dynamics (Eq. 4.2) and turbine mass
flow dynamics (Eq. 4.28).

Next, we develop an equation for turbine mass flow rate by applying the conservation of mass to the high-pressure
side of the system. The fluid mass in the high-pressure side is

mhigh =

Ncells, high∑
i=1

ρi Vi, (4.19)

where Ncells, high is the number of cells in the high-pressure side. Additionally, the rate that fluid mass accumulates
in the high-pressure side of the system is the difference between the compressor and turbine mass flow rates:

dmhigh

dt
= ṁc − ṁt. (4.20)

As cell volume is constant, differentiating Eq. 4.19 with respect to time yields

dmhigh

dt
=

Ncells, high∑
i=1

dρi
dt

Vi. (4.21)

Choosing thermodynamic state variables of ρ and e, Eq. 4.21 can be expanded as

dmhigh

dt
=

Ncells, high∑
i=1

Vi

(
∂ρ

∂e

∣∣∣∣ p=pi
e=ei

dei
dt

+
∂ρ

∂p

∣∣∣∣ p=pi
e=ei

dpi
dt

)
, (4.22)

where pi, 0 and ei, 0 are the pressures and internal energies in cell i at the current operating point. Because we assume
the high-side pressure to be uniform, Eq. 4.22 can be simplified as

dmhigh

dt
=

Ncells, high∑
i=1

Vi
∂ρ

∂e

∣∣∣∣ p=phigh
e=ei

dei
dt


+

Ncells, high∑
i=1

Vi
∂ρ

∂p

∣∣∣∣ p=phigh
e=ei

 dphigh
dt

.

(4.23)

From Eqs. 4.10 and 4.12, the time derivatives of ∆pt and phigh are related as follows:

d

dt
∆pt =

d

dt
(pout, t − pin, t), (4.24)

so
dphigh
dt

= −d∆pt
dt

. (4.25)

Deriving the Taylor series approximation for ∆pt (Eq. 4.15) with respect to time and substituting into Eq. 4.25, gives

dphigh
dt

= − ∂∆pt
∂Tin, t

dTin, t
dt

− ∂∆pt
∂ṁt

dṁt

dt
. (4.26)
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As discussed, turbine pressure ratio is not strongly influenced by inlet pressure, so we assume

dphigh
dt

= −∂∆pt
∂ṁt

dṁt

dt
. (4.27)

Combining Eqs. 4.23 and 4.27, substituting into Eq. 4.20, then rearranging gives the turbine mass flow dynamics as

dṁt

dt
=

∂∆pt
∂ṁt

Ncells, high∑
i=1

Vi
∂ρ

∂p

∣∣∣∣ p=phigh
e=ei

−1

×

ṁt − ṁc +

Ncells, high∑
i=1

Vi
∂ρ

∂e

∣∣∣∣ p=phigh
e=ei

dei
dt

 .

(4.28)

Due to the damping effect of component wall thermal inertia, the dynamics of internal energy are slower than those
for mass flow rate and pressure. Accordingly, we model turbine mass flow dynamics by substituting the current values
of internal energy time derivatives dei

dt 0
into Eq. 4.28.

This concludes development of the control dynamics model. This model comprises equations for the dynamics of
wall temperature (Eq. 4.3), fluid stream internal energy (Eq. 4.7), mass flow rates and pressure in the CO2 stream
(Eqs. 4.18, 4.28, 4.27), compressor shaft speed (Eq. 4.1), and thermal oil pump system (Eq. 3.20).

4.5 Output model — net power and turbine inlet temperature

For the control problem defined in Sec. 2, the tracked-outputs are net power output and turbine inlet temperature.
Choosing thermodynamic state variables of p and e, turbine inlet temperature can be approximated from phigh and the
final-cell high-side internal energy eNcells,high as

T in, t = Tin, t, 0 +
∂T

∂e

∣∣∣∣ p=phigh
e=ein, t

ein, t +
∂T

∂p

∣∣∣∣ p=phigh
e=ein, t

phigh, (4.29)

where Tin, t, 0 is the most recent measurement of turbine inlet temperature. For the open sCO2 cycle, the net power
output is

Ẇnet = Ẇt − Ẇc. (4.30)
Linearizing the performance maps and discarding negligible terms (as for ∆pc and ∆pt) yields

Ẇnet = Ẇt, 0 − Ẇc, 0 +
∂Ẇt

∂Tin, t
T in, t +

∂Ẇt

∂ṁt
ṁt

− ∂Ẇc

∂ṁc
ṁc −

∂Ẇc

∂Nc
N c.

(4.31)

Turbine inlet temperature has a significant effect on shaft power and so must be retained in Eq. 4.31.

4.6 Compressor speed constraints

The compressor is subject to minimum and maximum speed constraints. The maximum speed Nc,max is dictated by
the shaft bearings and is taken as 126% of the nominal compressor speed based on manufacturer data. Applying some
constraint margin kN,max, the maximum compressor speed is

Nc ≤ (1− kN,max)Nc,max. (4.32)

Minimum compressor speed is dictated by surge: a damaging physical phenomenon, characterized by oscillatory or
reversed flow, which occurs when the compressor cannot achieve the required pressure ratio. This section shows how
to compute the surge conditions for a given pair of turbomachines. We consider only the case where the turbine
operates at a fixed synchronous speed Nt0.

In the control model, the compressor and turbine both have the same high-side pressure phigh ≡ pout, c ≡ pin, t, and
at steady-state, they both have the same mass flow rate ṁsys ≡ ṁc ≡ ṁt. The low-side pressures are fixed, so for
given shaft speeds and inlet temperatures, the feasible system mass flow rates are given by the intersections of the ṁ
versus phigh curves for the two turbomachines. Fig. 7 shows some sample ṁ versus phigh curves, with the feasible
mass flow rates ṁ1 and ṁ2 marked. As we employ surge control with a margin, the system is forced to operate at ṁ2.
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Figure 7: High-side pressure versus mass flow curves for both turbomachines.

Surge conditions can be computed by considering the effect of varying compressor speed. As compressor speed
decreases, the maximum achievable high-side pressure p∗high drops. Surge occurs at the minimum feasible compressor
speed Nc,min, where the compressor and turbine phigh versus ṁ curves intersect only at p∗high (as illustrated on the
right side of Fig. 7). Below this speed, the compressor cannot supply the high-side pressure required by the turbine at
any mass flow rate, causing surge.

Nc,min is operating-point dependent and can be computed online using the following procedure. For the chosen
compressor maps (see A.1), we store the combinations of mass flow rate and corrected speed that maximize the
compressor outlet pressure, then store these values in lookup tables p∗high = fc1(Ncor) and ṁ∗c = fc2(Ncor). For the
chosen turbine map model, the high-side pressure phigh = pin, t can be computed from Eq. A.3 as

phigh = pout, t Mt1

(
ṁt

√
Tin, t/pin, t

)
. (4.33)

Assuming that the current difference between the turbine and compressor mass flow rates ∆ṁ persists, the mass
flow rate at the turbine when the compressor achieves p∗high is ṁ∗t = ṁ∗c + ∆ṁ. Surge occurs when the maximum
compressor outlet pressure equals the turbine inlet pressure (p∗high = phigh):

fc1(Ncor) = pout, t Mt1

(
ṁ∗t
√
Tin, t/pin, t

)
(4.34)

To solve for Nc,min, we note that pin, t = p∗high, substitute Eq. A.17 into Eq. 4.34, then reformulate to give

0 = fc1(Ncor)− pout, t Mt1

( √
Tin, t

fc1(Ncor)
(fc2(Ncor) + ∆ṁ)

)
. (4.35)

We compute Ncor,min for the current values of pout, t, ∆ṁ, and Tin, t by solving the root-finding problem defined by
Eq. 4.35, then compute the actual minimum speed Nc,min using Eq. A.9.

To prevent surge, we impose the minimum speed constraint

Nc ≥ (1 + kN,min)Nc,min, 0 (4.36)

where Nc,min, 0 is the minimum speed for the current operating point, kN,min is the constraint margin, and the partial
derivatives are computed using finite differences from Eq. 4.35. Again, turbine inlet temperature is approximated
using Eq. 4.29. We set kN,min = 5% and kN,max = 5%.

5 Controller design

This section presents an MPC scheme that regulates the net power output Ẇnet of the open sCO2 cycle (see Sec. 2)
to Ẇnet, ref , while driving the turbine inlet temperature to the target point Tin, t, ref . To maximize the system’s ther-
modynamic efficiency, Tin, t, ref is set as the maximum feasible turbine inlet temperature for the net power Ẇnet, ref .
The control inputs are the reference flow rate of the thermal oil pump ṁoil, ref and the compressor motor torque Tm,
which are parametrized using zeroth-order and first-order holds respectively.

5.1 State-space form

To implement MPC, we cast the control model in explicit state-space form:
dx

dt
= fc(x, u) (5.1)

z = gc(x, u)

14
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where x ∈ Rn, u ∈ Rm, and z ∈ Rl are the state, input, and tracked-output vectors respectively, and fc : Rn×Rm →
Rn and gc : Rn × Rm → Rl represent the nonlinear dynamics and output control models respectively. The input,
tracked-output, and reference vectors are

u =
[
Ṫm, ṁoil,ref

]ᵀ
(5.2)

z =
[
Ẇnet, Tin, t

]ᵀ
r =

[
Ẇnet, ref , Tin, t, ref

]ᵀ
.

fc comprises equations for the dynamics of internal energy in the fluid streams (Eq. 4.7), wall temperature (Eq. 4.3),
mass flow rates and pressure in the CO2 stream (Eqs. 4.18, 4.28, and 4.27), the compressor shaft speed (Eq. 4.1),
and the thermal oil pump system (Eq. 3.20). We choose thermodynamic state variables of density and pressure (and
compute all other thermodynamic properties using the equation of state), so the state vector is

x =
[
Tᵀ
wall, eᵀ

CO2
, phigh, ṁc, ṁt, Nc, eᵀ

oil, ṁoil

]ᵀ
, (5.3)

where Twall = [Twall, 1, ..., Twall,Ncells, HX ]ᵀ, eCO2
= [eCO2, 1, ..., eCO2, Ncells ]

ᵀ, and eoil =

[eoil, 1, ..., eoil, Ncells, HX ]ᵀ. gc comprises the equations for Tin, t and Ẇnet (Eqs. 4.29 and 4.31).

5.2 Linearization and discrete-time conversion

We linearize the control model online about the current operating point (x0, u0) so that the control updates can be
computed using a quadratic programming (QP) solver. Using perturbed variables x′ = x − x0 and u′ = u − u0, a
local linear time-invariant model is given by

dx

dt
= Ax′ +B u′ + f0 (5.4)

z = C x′ +D u′ + g0,

where A, B, C, D represent the Jacobian matrices of fc and gc with respect to x and u, f0 = fc(x0,u0), and
g0 = gc(x0,u0). D is always zero and thus neglected from now on. Only certain terms are retained in the lin-
earized dynamics equations for heat exchanger wall temperature stream internal energy and (see Eqs. 4.4 and 4.8). We
implement MPC with a discrete-time version of Eq. 5.4 with sampling time ∆t,

x′k+1 = Ad x′k +Bd u′k + f0, d (5.5)

zk = C x′k + g0,

where [Franklin et al., 1990]

Ad = exp (A∆t)

Γ =

∫ ∆t

0

exp (A (∆t− τ)) dτ I (5.6)

Bd = ΓB, f0,d = Γ f0

The matrix exponentials are computed using the scaling and squaring method [Higham, 2005]. In the controller,
Eq. 5.5 is augmented with an output disturbance model for offset-free reference tracking (see Eq. 5.18).

5.3 State estimation

To implement MPC, we require an estimate x̂ of the state vector x. We assume that the mass flow rates, turbomachinery
speeds, and high-side pressure are directly measureable. However, the states inside the heat exchanger (the internal
energies and wall temperatures) are not measureable, so we estimate these states

xe =
[
Tᵀ
wall, eᵀ

CO2
, eᵀ
oil

]ᵀ
(5.7)

with an observer using measurements of the inlet and outlet fluid temperatures of each stream

y = [TCO2, in, TCO2, out, Toil, in, Toil, out]
ᵀ
, (5.8)

where y ∈ Rly . We estimate xe using a reduced submodel that describes the dynamics of wall temperature (Eq. 4.3)
and fluid stream internal energy (Eq. 4.7), treating the mass flow rates as inputs. In this model, the output temperatures
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in y are computed analogously to Eq. 4.29. The discrete-time linearization of this observer submodel is represented
by matrices Ae, Be, Ce and vectors x′e, u′e, f0, e and g0, e which are computed analogously to those used for control
(see Sec. 5.2).

We use an extended Kalman filter (EKF) [Gelb, 1974] to compute the state estimate x̂ from the measurements y.
Due to the approximations and coarser discretization used in the control model, there is significant mismatch between
the control and simulation models. To achieve offset-free reference tracking under this plant-model mismatch, we
augment the control model with an output disturbance d ∈ Rly acting on each measurement [Maeder et al., 2009]. A
similar approach would be required for a real plant, where the true behaviour can never be modelled exactly.

The dynamics and outputs of this augmented system are [Maeder et al., 2009][
x′e, k+1

dk+1

]
=

[
Ae 0
0 I

] [
x′e, k
dk

]
+

[
Be
0

]
u′e, k +

[
f0, e
0

]
(5.9)

and

yk = [Cy I]

[
x′e, k
d

]
+ g0, e. (5.10)

Defining the augmented state vector χk = [x′ᵀe, k dᵀ
k]ᵀ, we write the model given by Eqs. 5.9 and 5.10 as

χk+1 = Aa χk +Ba u′k + f0 a (5.11)
yk = Ca χk + g0, e.

The EKF assumes that the augmented system dynamics are given by

χk+1 = F (χk, u′k) + wk (5.12)

yk = G(χk, u′k) + vk,

where F and G represent the dynamics and output models in Equation 5.11, and wk and vk are zero-mean white
noise processes with covariance matrices Σw ∈ Rn+ly×n+ly and Σv ∈ Rly×ly respectively. Furthermore, it assumes
that at timestep k, the state estimate χ̂k is a normally-distributed random variable with mean ˆ̄χk and covariance
Σx, k ∈ Rnχ×nχ . We denote the mean of the output estimate corresponding to χ̂k as ˆ̄yk.

We update the state estimate by first computing the predicted next-timestep state and output estimates as

¯̂χ†k = F (¯̂χk−1, ūk−1) (5.13)
¯̂y†k = G(¯̂χ†k)

Σ†x, k = Aa Σx, k−1Aa
ᵀ + Σw.

Then, using the measurements yk, we correct the state estimate according to

ik = yk − ¯̂y†k (5.14)

Kk = Σ†x, k Ca
ᵀ
(
Ca Σ†x, k Ca

ᵀ + Σv

)−1

¯̂χk = ¯̂χ†k + Kk ik

Σx, k = (I −Kk Ca) Σ†x, k (I −Kk Ca)ᵀ +Kk Σv, kK
ᵀ
k ,

where ik is the innovation and Kk is the Kalman gain.

We set values for the noise covariance matrices based on nominal values for the estimated states and outputs
(TCO2, nom, eCO2, nom, Toil, nom, eoil, nom and Twall, nom — see Tab. 2 for values). We assume that all measure-
ments are independent and that measurement error is normally distributed with zero mean and variance of 2% of the
nominal measured value. Thus, the measurement noise covariance is

Σv = 0.02 × diag (TCO2, nom TCO2, nom Toil, nom Toil, nom) . (5.15)

We assume that the continuous-time process noise Σw, c is diagonal with a power spectral density of one. Additionally,
we assume that variance of the state variables (ehot, ecold, and Twall) is 10% of nominal and that the variance of the
disturbances variables is 5% of nominal. Under these assumptions, the continuous-time process noise is

Σw, c = diag (0.1 Twall, nom 0.1 eCO2, nom 0.1 eoil, nom
0.05TCO2, nom 0.05TCO2, nom 0.05Toil, nom 0.05Toil, nom) ,

(5.16)
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where eCO2, nom is a vector of length Ncells (eCO2, nom = [eCO2, nom, ..., eCO2, nom]) and similar for ecold, nom and
Twall, nom. Using the most recent augmented LTI model, we approximate the discrete-time process noise as

Σw = Aa Σw, cA
ᵀ
a ∆t. (5.17)

Our state estimation approach accounts for model mismatch in the models of the fluid streams, but not in the turbo-
machinery performance maps. This approach is reasonable, since for a real plant, the performance maps could be
frequently updated based on real operating data, removing mismatch. If accurate performance maps were not used,
the observer would need to also estimate output power (with an associated disturbance) to achieve offset-free tracking.

Table 2: Nominal variable values for estimator tuning
Variable Value
poil, nom: 4.0 MPa
Toil, nom: 570 K
eoil, nom: EOS(poil, nom, Toil, nom)
pCO2, nom: 12.0 MPa
TCO2, nom: 520 K
eCO2, nom: EOS(pCO2, nom, TCO2, nom)

5.4 MPC formulation

Here, we develop a model predictive controller for the control problem presented in Sec. 2. We use tracking MPC [Ma-
ciejowski, 2002] with the estimator detailed in Sec. 5.3. We compute the tracked outputs as

zk = Cz x′k + Cd dk + g0 (5.18)

where the matrix Cd maps the disturbances on to the tracked outputs. Since TCO2, out = Tin, t,

Cd =

(
0 0 0 0
0 1 0 0

)
. (5.19)

From the current reference vector rk, we compute the target state x′r and input u′r by solving the continuous-time
system [

A B
Cz 0

] [
x′r
u′r

]
=

[
−f0

rk − Cd d̂k − g0

]
(5.20)

for the current disturbance estimate d̂k (see Sec. 5.3). We use tracking MPC with a terminal state cost and costs on
control moves, so the cost functional takes the form [Maciejowski, 2002]

J(k, xk, U) =
∥∥∥x′k+Hp − x′r

∥∥∥2

P
+

Hp−1∑
i=0

∥∥x′k+i − x′r
∥∥2

Q
+ ‖∆uk+i‖2R , (5.21)

where Hp is the prediction horizon, U is the vector of control inputs

U =
[
u′ᵀk , u′ᵀk+1, ..., u′ᵀk+Hp−1

]ᵀ
, (5.22)

∆uk+i = u′k+i − u′k+i−1, and Q, P , and R are stage, terminal, and input costs. We compute the stage cost from the
output cost Qz ∈ Rl×l as Q = Cᵀ

zQzCz , so that

‖x′ − x′r‖
2
Q ≡ ‖z− r‖2Qz . (5.23)

As the plant is open-loop stable, we can obtain a stable control law by computing the terminal cost as the solution of
the discrete-time matrix Lyapunov equation [Maciejowski, 2002]

Aᵀ
dPAd − P +Q = 0. (5.24)

At each k, to compute the next control update uk, we solve the constrained QP

min
U

J(k, xk, U)

subject to x′k+i+1 = Ad x′k+i +Bd u′k+i + f0, d

for i = 1, ..., Hp − 1

z ∈ Z
u ∈ U

(5.25)
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for the current augmented state estimate (x̂k, d̂k) and previous control input uk−1. U and Z represent the admissible
input and output sets, which are discussed in Sec. 5.5. Our model has a relatively high state dimensionality due to the
discretization of the fluid streams. Thus, we formulate the QP using dense matrices (as in Maciejowski [2002]), so
its computational complexity depends only on m and l (and not n) [Wang and Boyd, 2010]. We solve the QPs using
Gurobi [Gurobi Optimization, 2018]. Using slack variables, we implement the constraints on z as soft constraints
with weightings discussed in Sec. 5.5. The constraint weights are set such that constraint violations are negligible for
all tested cases.

5.5 Constraints

In addition to the compressor speed constraints (see Sec. 4.6), we also consider input constraints and a maximum
turbine inlet temperature constraint. To guarantee feasibility of the optimization problems, state and output constraints
are implemented as soft constraints using weighted linear penalization (see Tab. 3 for parameter values). Constraint
weights were set such that state and output constraint violations are negligible.

Table 3: Constraint bounds and soft constraint parameters
Variable Constraint Weight
Compressor speed: See Sec. 4.6 1E6
Turbine inlet temperature: Tin, t ≤ 570 K 2000
Motor torque: 0 ≤ Tmotor ≤ 200 Nm -

−15 ≤ Ṫmotor ≤ 15 Nm/s -
Heat transfer oil flow rate: 3 ≤ ṁoil ≤ 25 kg/s -

−1.2 ≤ m̈oil ≤ 1.2 kg/s2 -

6 Results and discussion

This section presents the results of closed-loop simulations of the open sCO2 cycle detailed in Sec. 2 according to the
approach shown in Fig. 3. These simulations use the simulation model, control model, and controller presented in
Secs. 3, 5, and 4 respectively.

6.1 Controller tuning

The controller was manually tuned on the test cases presented in Sec. 6.2, yielding the weights in Eq. 6.1 and parameter
values in Tab. 4. The controller was tuned according to the following logic. Plants that can respond quickly to
power demand changes are critical for maintaining power quality and reliability, especially with high supply-side
uncertainty, so net power tracking is weighted highly. Turbine inlet temperature tracking corresponds to maximizing
cycle thermodynamic efficiency, which brings moderate financial benefit, but does not affect power system stability,
and so thus weighted less highly. The control input weights were tuned to (1) give smooth closed-loop response and
(2) prioritize the use of compressor torque for net power tracking, due to it’s predictable and controllable dynamics.
(Due to the typical ranges of each tracked output, the absolute value of the turbine inlet temperature tracking weight
is larger than that for net power.)

diag(Qz) = [1E−3, 2E1]
(
z = [Ẇnet, Tin, t]

)
(6.1)

diag(R) = [2E2, 1E5]
(
u = [Ṫm, m̈oil]

)
The sampling time, prediction horizon, and control model fidelity (set by the level of discretization in the fluid streams)
were set such that (1) the controller can adequately control the fastest system dynamics, (2) the prediction horizon
covers a large portion of a typical transient, and (3) the controller is computationally tractable. For the chosen settings,
control updates are reliably computed in less than 0.03 s (10% of the sampling time) using a 2015 Intel® Core™
i7-4770.

6.2 Closed-loop simulations

This section evaluates the controller’s performance through closed-loop simulations. In these simulations, for each
target power output Ẇnet, ref , the turbine inlet temperature setpoint Tin, t, ref is set as the maximum steady-state
turbine inlet temperature, as dictated by system constraints (see Sec. 5.5).
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Table 4: Controller settings
Parameter Value
Sampling time ∆t: 0.3 s
Estimator sampling time ∆te: 0.06 s
Prediction horizon Hp: 30 steps (9 s)
Heat exchanger cells (control model) Ncells,HX : 15 cells
Pipe cells (control model) Ncells, pipes: 5 cells
MPC weighting matrices Q, P , R: See Eq. 6.1

The first set of simulations (Fig. 8a) show closed-loop performance near the design-point power output. In this region,
the system can achieve the target net power outputs at the design-point turbine inlet temperature of 565 K. The
core system dynamics are weakly coupled near the design point as the controller can quickly manipulate compressor
torque to enact output power changes, while more gradually manipulating thermal oil flow rate to track turbine inlet
temperature.

Near the design-point (Fig. 8a), the controller tracks net power output setpoints quickly, with no steady-state error, and
with negligible overshoots. The controller enacts fast load changes by aggressively manipulating compressor torque.
For example, in response to the load reduction, the controller first decreases compressor torque at its rate constraint
then quickly increases it again to quickly attain the new target power output without overshooting. The controller also
tracks turbine inlet temperature setpoints well, but less tightly than for net power, as expected due to it’s tuning (see
Sec. 6.1) and the slower dynamics of temperatures (compared to mass flow rates). The controller maintains turbine
inlet temperature within 10 K of the design value despite operating between approximately 60 to 105% of nominal
power output. The compressor surge and turbine inlet temperature constraints are handled well, with virtually no
violations of either. Closed-loop performance is similar over the entire tested operating range.

The second set of simulations (see Fig. 8b) show highly off-design operation, with target power outputs far below the
nominal value. To reach low power outputs (below 60% of nominal) without violating the surge constraint, the turbine
inlet temperature target must be reduced below its design value. Varying the turbine inlet temperature target makes
control challenging for the following reasons: (1) thermal transients are highly nonlinear and are coupled with CO2

mass flow (see Sec. 4.4); (2) the compressor operates at the surge boundary for extended periods, limiting possible
control actions; and (3) the turbine operates over more of its performance map.

For the off-design case (Fig. 8b), the controller still performs well, despite the wide and nonlinear range of operating
points covered. Load increases are fast, with average ramp rates during transients comparable to those achieved near
the design point (often in excess of 100% of nominal output per minute). Load reductions take longer as they are
limited by the surge constraint. To significantly reduce net power output, the controller must reduce turbine inlet
temperature to near it’s new (lower) target value, involving the fundamentally slower thermal dynamics of the fluid
and component walls. For all load changes, the controller handles interactions between the thermal and mass flow
transients well, and can deeply converge net power output (the most important variable operationally) to its target
before converging turbine inlet temperature. Again, constraint satisfaction is excellent.

The results shown in Figs. 8a and 8b support the validity of the approximations used in the control model, particularly
the quasi-steady momentum assumption. For the open sCO2 cycle, this assumption has two implications: (1) High-
side pressure varies instantaneously with turbine operating point (see Eq. 4.27). (2) Turbine mass flow rate generally
follows compressor mass flow rate according to a first-order lag model, but deviates during strong thermal transients
to account for the changing specific volume of CO2 (see Eq. 4.28). The results for both design-point and off-design
operation clearly follow these trends. Moreover, even during strong thermal transients, compressor and turbine mass
flow rates are very close, suggesting that they may be modeled using a single variable in the control model. However,
this approach does not provide a mechanism to model mass transfer between the high- and low-pressure sides of the
system, which may be important when extending the proposed control strategy to closed cycles.

6.3 Discussion

Control of sCO2 cycles is challenging due to their complex dynamics, which arise from non-ideal-gas effects and
their non-condensing design. Existing model-based control strategies for similar systems (such as gas turbines) are
not applicable to sCO2 cycles as they do not consider non-ideal-gas effects. This article develops a control model
for sCO2 cycles by applying timescale-separation techniques to a high-fidelity truth model, and by locally linearizing
non-ideal-gas turbomachinery performance maps. This model is theoretically accurate over a wide operating range,
subject to validity of the heat transfer correlations and performance maps.
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(a) Closed-loop simulation, operation near design-point (b) Closed-loop simulation, highly off-design operation

Figure 8: Closed-loop simulations
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Overall, the controller performs well for all test cases supporting the validity of the proposed control strategy. For
MPC, the quality of control depends strongly on the accuracy of the control model, suggesting that the low-order
control model (Sec. 4) approximates the dynamics of the high-fidelity simulation model (Sec. 3) reasonably well.
With some modifications — namely, relaxing the fixed low-side pressure assumption and adding a valve model — the
control model could be used to implement MPC for more realistic sCO2 cycle variants, such as the recuperated cycle or
recompression cycle. The proposed modelling approach may also be applied to similar non-condensing non-ideal-gas
power cycles.

MPC is implemented by linearizing the nonlinear control model online at each sampling instant. For this system,
obtaining good performance from linear MPC requires that we retain only certain terms in the linearizations of the
wall temperature and stream internal energy models (see Eqs. 4.4 and 4.8). With this approach, good performance is
obtained using linear MPC, even for large setpoint changes that cover a wide nonlinear operating range. With linear
MPC, the control updates are computed reliably and quickly — in less than 10% of sampling interval on a 2015 Intel®
Core™ i7-4770. It is unclear if linear MPC will still be suitable when considering more complex cycle configurations
with variable low-side pressure and recuperation, however the our control modelling approach is equally compatible
with nonlinear MPC solvers.

The load changes demonstrated in this article are fast for a thermal power plant. During design-point and off-design
load changes, the controller demonstrates average ramp rates of approximately 150% of nominal power output per
minute. There are two caveats to this result: the system is small-scale, and is simpler than a recuperated or recom-
pression sCO2 cycle, which removes some challenging dynamics associated with recuperation and variable low-side
pressure. Real plants may also face additional constraints, such as maximum thermal ramp rates in component walls
or casings. Slower load changes are expected for more complex cycle configurations and for real plants, but the en-
couraging results presented in this article justify further investigation into the application of MPC to the sCO2 cycle
or related power cycles.

The results presented herein demonstrate several of MPC’s principal strengths. For example, the controller responds
rapidly to setpoint changes, coordinating both control inputs to enact fast and precise changes in net power output.
Despite the system’s highly nonlinear dynamics, the controller performs well over a very wide operating range, cov-
ering 35 to 105% of nominal power output, without any scheduling of tuning parameters. The results also highlight
MPC’s constraint handling capabilities, with the controller acting on input constraints in response to strong transients
and reliably preventing state constraints from being violated. The controller can safely track turbine inlet temperature
setpoints that lie close to the maximum turbine inlet temperature, and can reliably operate close to the compressor
surge boundary, thus expanding the safe operating range of the system. Many of these qualities directly impact the
‘flexibility’ of the system, allowing it more quickly respond to load changes and function over a wider and more effi-
cient operating envelope. These benefits would likely apply to other non-ideal-gas cycles, suggesting that MPC might
be a useful tool for improving the flexibility of thermal power plants more generally, thus facilitating higher renewable
penetration.

7 Conclusion

This article presented a methodology to implement MPC for non-condensing non-ideal-gas power cycles, then tested
this methodology on the high-pressure side of simple sCO2 cycle power block. First, to faithfully replicate the sys-
tem’s dynamics, we presented a high-fidelity gas-dynamics simulation model integrated with empirical non-ideal-gas
turbomachinery submodels. Next, we developed a control model by applying timescale separation arguments to the
simulation model, then implemented MPC via online relinearization of this control model. Finally, we performed
closed-loop simulations of a laboratory-scale sCO2 cycle using the high-fidelity simulation model as a substitute for
the real plant. These simulations demonstrated the effectiveness of the proposed controller for tracking output power
setpoint changes while keeping the system at target turbine inlet temperatures. The simulations show that MPC’s core
strengths, such as good dynamic performance over a wide operating range and routine handling of constraints, in-
crease the plant’s achievable ramp rates and expand its safe operating envelope. These flexibility improvements likely
apply to other thermal power plants, suggesting that MPC might be useful for improving power system flexibility more
generally, thus facilitating higher renewable energy share. The controller is computationally tractable on a standard
computer, and with some modifications, may be extended to more realistic sCO2 cycle configurations.

A Performance map models

This appendix describes the turbomachinery performance map models used in this work. These models are used to
compute ṁtb and Tout for a turbomachine given pin, pout, Tin, and Ns (as per Eq. 3.11). We focus on radial inflow
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turbines and centrifugal compressors, which are appropriate for smaller output power sCO2 cycles, such as remote
or modular plants [Jahn and Keep, 2017]. Our approach is equally applicable to axial turbomachinery provided that
appropriate maps are used.

A.1 Turbine

For typical sCO2 cycle operating conditions, the turbine operates in CO2’s ideal-gas-like region, so ideal-gas scaling
relations can be used to model off-design turbine operation [Jahn and Keep, 2017]. Under this approach [Glassman,
1972, Whitfield and Baines, 1990], turbine performance is parametrized using the mass flow parameter

MFP = ṁtb

√
Tin/pin (A.1)

and corrected speed

Ncor = Ns

√
Tin/Tin, des, (A.2)

where Tin, des is the design-point inlet temperature.

The design-point performance of a radial inflow turbine operating in the ideal gas region can be characterized by two
maps [Glassman, 1972, Whitfield and Baines, 1990] (shown in Fig. 9):

MFP = Mt1(PR, Ncor) (A.3)
η = Mt2(vtip/vis), (A.4)

where the pressure ratio is PR = pin/pout and vtip/vis is the ratio of turbine tip speed to the isentropic spouting
velocity of the gas (these two variables lie on the x-axes of the maps).
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Figure 9: Sample turbine performance maps [Glassman, 1972, Whitfield and Baines, 1990]

The turbine performance maps are evaluated as follows. First, we compute MFP from PR using the map Mt1 and
Ncor, then we compute ṁtb from Eq. A.1. Next, we compute the isentropic spouting velocity for the current operating
point as

vis =

√
2Cp, in Tin

(
1− PRγin/(γin−1)

)
, (A.5)

where the constant pressure and constant volume specific heats are computed from the inlet state and the ratio of
specific heats is γin = Cp, in/Cv, in. We then re-evaluate Eq. A.5 using the design-point pressure ratio and inlet
temperature to get the design-point isentropic spouting velocity vis, des. Next, we compute the velocity ratio as

vtip/vis = (vtip/vis)des (Ncor/Ndes) (vis/vis, des) . (A.6)

From vtip/vis, we compute η from map Mt2 then solve for the outlet state using

η = (hin − hout)/(hin − hout, is). (A.7)

The remaining outlet properties are then computed using the equation of state.

In this work, the turbine performance maps are based on data from Hiett and Johnston [1963], who published geome-
tries and performance maps for a range of radial inflow gas turbines developed by Ricardo & Co. We use the data for
the A70 turbine design due to its geometric similarity to power generation turbines and similarity in pressure ratio and
stage-Mach number to the turbines employed for sCO2 cycles.
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A.2 Compressor

In the sCO2 cycle, the compressor inlet conditions are typically close to CO2’s critical point, where the fluid properties
enable efficient compression. However, the strong non-ideal-gas property variations in this region cause compressor
performance to change substantially when operating at off-design inlet conditions. To capture these non-ideal-gas
scaling effects, we use 2D compressor maps that are parametrized using the corrected variables ṁcor, Ncor, and
∆hcor [Glassman, 1972]. These corrected variables are computed based on the deviation of the inlet conditions from
some chosen standard conditions (pstd, Tstd), which for sCO2 cycles are chosen as CO2’s critical point (7.366 MPa
and 304.1 K). From the standard conditions, the corrected variables are [Glassman, 1972]

ṁcor = ṁtb

√
1/Vcr (pstd/pin) ε (A.8)

Ncor = Ns Vcr (A.9)
∆hcor = ∆hVcr (A.10)

where the non-ideal-gas scaling factors Vcr and ε are

Vcr = (γin, std (γin + 1)Tstd)/(γin (γin, std + 1)Tin) (A.11)

ε =

( 2 γin, std
γin, std + 1

)(1−γ−1
in, std)

−1
/(

2 γin
γin + 1

(1−γ−1
in )

−1)
(A.12)

Using these corrected variables, compressor performance can be characterized using two 2D maps (shown in Fig. 10):

∆hcor = Mc1(ṁcor, Ncor) (A.13)
η = Mc2(ṁcor, ∆hcor). (A.14)

The compressor maps are evaluated in forward mode (where Tout and pout are outputs — see Eq. 3.9), as follows.
First, ṁtb, cor andNcor are computed from the compressor inlet conditions with Eqs. A.8 and A.9. Then, ∆hcor and η
are computed from the maps Mc1 and Mc2. Finally, ∆h is computed using Eq. A.10, then the outlet state is computed
from η using Eq. A.7 (as done for the turbine).

[k
J/
k
g
]

20 30 40 50 60 0 5000 10000 15000 2500020000

Figure 10: Design-point compressor performance maps [Jahn and Keep, 2017]. Off-design performance can be modeled by evalu-
ating the maps with corrected variables ṁtb, cor , Ncor , and ∆hcor .

Evaluation of compressor model from pressure ratio

The compressor performance map model cannot be explicitly reformulated in terms of pressure ratio. Accordingly,
in simulations, we evaluate this model from inputs pin, pout, Tin, and Ns (see Eq. 3.11) by solving the following
root-finding problem (illustrated in Fig. 11):

p̂out, T̂out = ftb( ˆ̇mtb, pin, Tin, Ns) (A.15)
0 = pout − p̂out.

In other words, we compute the compressor mass flow ˆ̇mtb such that ftb gives the correct pout, then take the outlet
fluid state as (pout, T̂out).
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Figure 11: Compressor PR versus mass flow curve for Ns = 0.916, Tin = 320 K, and pin = 8.629 MPa. The target outlet
pressure is 12.5 MPa.

As shown in Fig. 11, there are two solutions to this root-finding problem (ṁ1 and ṁ2). Due to the surge control that
we employ (see Sec. 4.6), the compressor is maintained at the right-side solution ṁ2. We ensure that the root-finder
finds this solution by imposing bounds

ṁ∗c ≤ ˆ̇mtb ≤ ṁc,max, (A.16)

where the surge and maximum mass flow rates are evaluated from lookup tables as

ṁ∗c = fc2(Ncor) (A.17)
ṁc,max = fc3(Ncor).

These lookup tables are formed from data used to build the compressor maps.

We form the compressor maps using data from Clementoni et al. [2015]. These maps are linearly scaled by design-
point mass flow rate and enthalpy rise to achieve the power output and pressure ratio. As primary performance factors
(stage Mach number and pressure ratio) can be maintained through appropriate geometry selections, the scaled maps
are representative of a real machine’s behavior.
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