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Abstract

We present a general solution of the coupled Einstein–Maxwell field equations (without the
source charges and currents) in three spacetime dimensions. We also admit any value of the
cosmological constant. The whole family of such Λ-electrovacuum local solutions splits into
two distinct subclasses, namely the non-expanding Kundt class and the expanding Robinson–
Trautman class. While the Kundt class only admits electromagnetic fields which are aligned
along the geometrically privileged null congruence, the Robinson–Trautman class admits both
aligned and also more complex non-aligned Maxwell fields. We derive all the metric and
Maxwell field components, together with explicit constraints imposed by the field equations.
We also identify the most important special spacetimes of this type, namely the coupled
gravitational-electromagnetic waves and charged black holes.

PACS class: 04.20.Jb, 04.50.–h, 04.40.Nr

Keywords: general 3D geometries, Kundt class, Robinson–Trautman class, exact solutions of Ein-
stein’s equations, electromagnetic field, cosmological constant, exact gravitational waves, charged
black holes

∗podolsky@mbox.troja.mff.cuni.cz, MatusPapajcik@centrum.sk

1

http://arxiv.org/abs/2108.12470v2


Contents

1 Introduction 3

2 All geometries and their canonical form in 2+1 gravity 4

3 Generic electromagnetic field in 2+1 gravity 5

4 Einstein–Maxwell field equations with Λ 7

4.1 Einstein field equations with a massless scalar field . . . . . . . . . . . . . . . . . . 8

5 All Kundt solutions 9

5.1 Integration of Rrr = κ0P
2F 2

r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Integration of Rrx = κ0P

2FrFx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 Integration of Rru = −2Λ + κ0P

2FrFu . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4 Integration of the Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.5 Integration of Rxx = 2Λ gxx + κ0P

2F 2
x . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.6 Integration of Rux = 2Λ gux + κ0P
2FuFx . . . . . . . . . . . . . . . . . . . . . . . 11

5.7 Integration of Ruu = 2Λ guu + κ0P
2F 2

u . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.8 Summary of the Kundt solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.8.1 The subclass f = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.8.2 The subclass f 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 All aligned Robinson–Trautman solutions 18

6.1 Integration of Rrr = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Integration of Rrx = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Integration of the Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 Integration of Rru = −2Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.5 Integration of Rxx = 2Λ gxx + κ0G

2F 2
x . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.6 Integration of Rux = 2Λ gux + κ0G
2FuFx . . . . . . . . . . . . . . . . . . . . . . . 20

6.7 Integration of Ruu = 2Λ guu + κ0G
2F 2

u . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.8 Summary of the aligned Robinson–Trautman solutions . . . . . . . . . . . . . . . . 21

7 All non-aligned Robinson–Trautman solutions 25

7.1 Integration of Rrr = κ0G
2F 2

r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Integration of Rrx = κ0G

2FrFx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 Integration of Rru = −2Λ + κ0G

2FrFu . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4 The Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.5 Remaining Einstein equations Rab = 2Λ gab + κ0G

2FaFb . . . . . . . . . . . . . . . 27
7.6 A simple particular solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Final summary and remarks 30

A Connections and curvature components in canonical coordinates 34

2



1 Introduction

Recently, in paper [1] we derived the most general solution of the Einstein equations with a
cosmological constant Λ and also an aligned pure radiation matter field (possibly gyrating null
dust/particles) in three spacetime dimensions. Here we extend this study to another important
non-vacuum case, which is the presence of an electromagnetic field. In fact, we explicitly derive
all solutions of the Einstein–Maxwell field equations with any value of Λ.

For many decades, the 2+1 dimensional Einstein gravity has attracted a lot of attention. The
main reason is that such gravity theory is mathematically simpler than standard general relativity
because the number of independent components of the curvature tensor is much lower. In fact,
the Weyl tensor identically vanishes, and the Riemann and Ricci tensors have the same number
of components. Consequently, there is no classic dynamical degree of freedom in 2+1 spacetimes.
The Ricci tensor — directly given by the Einstein field equations — fully determines the local
curvature of the spacetime. This implies that a general vacuum solution of Einstein’s equations
is just the maximally symmetric Minkowski, de Sitter (dS), or anti-de Sitter (AdS) spacetime
for Λ = 0, Λ > 0, or Λ < 0, respectively.

Despite such local simplicity/triviality of the 2+1 gravity theory, it can serve as a very useful
playground for various investigations, ranging from the black hole properties and cosmology to
high energy physics and quantum gravity. While the Einstein equations determine the spacetime
locally, there can be global topological degrees of freedom reflected in the appropriate domains of the
coordinates employed: It is possible to construct globally different geometries from locally identical
spacetimes by various identifications. In the context of black holes, this has been successfully used
for construction of famous BTZ-type solutions with horizons when Λ < 0 by performing nontrivial
identifications of the local AdS vacuum spacetime, pure radiation solutions, or spacetimes with
electromagnetic field [2–4]. The corresponding topological degrees of freedom play a crucial role
in quantum gravity models [5]. However, it is still not clear if they represent all possible non-
vacuum spacetimes. It is thus desirable to obtain and investigate more general exact solutions in
the presence of matter.

Many exact spacetimes in 2+1 dimensional Einstein gravity have already been found. They
are nicely summarized, classified and described in a helpful comprehensive catalogue [6]. Such
solutions were found in a great number of works by making various specific assumptions on their
symmetry, algebraic structure, or other geometrical or physical constraints. A general study of
solutions of 2+1 dimensional Einstein–Maxwell theory using the Rainich geometrization of the
electromagnetic field was presented in [7]. Using a different approach, in this paper we solve
the Einstein–Maxwell field equations generically, without making any assumption. In fact, we
systematically derive all possible such spacetimes, extending and generalizing previously known
exact electrovacuum solutions.

Specifically, in Sec. 2 we recall the key result of [1] that (virtually) all 2+1 geometries be-
long either to the family of (non-expanding) Kundt spacetimes or to the family of (expanding)
Robinson–Trautman spacetimes. We also present the canonical metric form and the natural null
triad. The related Appendix A contains the corresponding Christoffel symbols and all components
of the Riemann and Ricci tensors. In Sec. 3 we present the most general electromagnetic 2-form
field in 2+1 gravity, together with its dual 1-form, the equivalent Newman–Penrose scalars, and
the energy-momentum tensor. In Sec. 4 we formulate the (source-free) Einstein–Maxwell field
equations with Λ, expressed in a simple form. Sec. 5 contains an explicit step-by-step integration
of these field equations in the Kundt case, while Sec. 6 contains an analogous procedure for the
complementary Robinson–Trautman case. In both cases, the electromagnetic field is aligned with
the privileged null direction of the gravitational field. The resulting complete families of such
spacetimes are summarized in Subsec. 5.8 and 6.8, respectively. The distinct family of Robinson–
Trautman geometries with non-aligned electromagnetic fields is presented in Sec. 7, with a specific
particular solution obtained in Subsec. 7.6. Final summary and further remarks can be found in
concluding Sec. 8.

3



2 All geometries and their canonical form in 2+1 gravity

In Sec. 2 of our previous work [1], we investigated general 3-dimensional Lorentzian spacetimes
(M, gab) with the metric signature (+ +−). We proved the uniqueness theorem, namely that
the only possible such spacetimes are either expanding geometries of the Robinson–Trautman type
(with Θ 6= 0) or non-expanding geometries of the Kundt type (with Θ = 0). They are necessarily
twist-free and shear-free, see Theorem 1 in [1] (this observation was already made in [8]).

In a C1-spacetime there exists a geodesic null vector field k (defined as a tangent vector of null
geodesics at any point), which in D = 3 is equivalent to hypersurface-orthogonality, see Theorem 2
in [1]. Recall that the expansion Θ is the only nontrivial optical scalar,

Θ = ρ ≡ ka;bm
amb , (1)

which characterizes the properties of a null congruence generated by k, in a triad eI ≡ {k, l, m}
of two null vectors k, l and one spatial vector m, normalized as

k · l = −1 , m ·m = 1 . (2)

In [1], we also introduced canonical coordinates {r, u, x} for all Robinson–Trautman and Kundt
metrics, see Theorem 3,

ds2 = gxx(r, u, x) dx
2 + 2 gux(r, u, x) du dx− 2 du dr + guu(r, u, x) du

2 . (3)

These coordinates are adapted to their unique geometry, namely r is an affine parameter along the
null congruence generated by k, the coordinate u labels null hypersurfaces (such that ka ∝ u,a)
which naturally foliate the spacetimes, and the spatial coordinate x spans the 1-dimensional “trans-
verse” subspace with constant u and r.

It is also convenient to recall that the non-vanishing contravariant metric components gab are

gxx = 1/gxx , gur = −1 , grx = gux/gxx , grr = −guu + g2ux/gxx , (4)

equivalent to the inverse relations

gxx = 1/gxx , gur = −1 , gux = gxx g
rx , guu = −grr + gxx (g

rx)2 . (5)

The most natural choice of the null triad frame {k, l, m} satisfying (2) is

k = ∂r , l =
1

2
guu ∂r + ∂u , m =

1√
gxx

(

gux ∂r + ∂x
)

. (6)

A direct calculation for the metric (3) reveals that ka;b =
1
2gab,r. An explicit form of the expansion

scalar (1) thus becomes Θ = kx;xm
xmx, implying an important relation

gxx,r = 2Θ gxx , (7)

For our next investigation it seems convenient to introduce a new function G(r, u, x), which
fully encodes the spatial metric function gxx > 0 via the simple relation

G ≡ 1√
gxx

⇔ gxx = G−2 . (8)

The key relation (7) then takes the form

Θ = −(lnG),r . (9)

Now it immediately follows that for vanishing expansion, Θ = 0, the function G and thus also
the spatial metric gxx(u, x) must be independent of the coordinate r. It yields the Kundt class of
non-expanding, twist-free and shear-free geometries [9–13]. The complementary case Θ 6= 0 gives
the expanding Robinson–Trautman class of geometries [10,11,13–18], as summarized in Theorem 4
of our work [1].

The Christoffel symbols and all coordinate-components of the Riemann and Ricci curvature
tensors for the general metric (3), calculated using the relation (7), are listed in Appendix A.
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3 Generic electromagnetic field in 2+1 gravity

The aim of this work is to systematically investigate all possible gravitational and electromagnetic
fields in 2+1 dimensions, solving the coupled Einstein–Maxwell field equations.

Based on the results summarized in previous Sec. 2, all such spacetimes can be conveniently
written in the canonical coordinates {r, u, x} for the general metric (3). Consequently, generic
electromagnetic field takes the form of an antisymmetric 3× 3 Maxwell tensor

Fab =





0 Fru Frx

−Fru 0 Fux

−Frx −Fux 0



 , (10)

which is equivalent to considering the 2-form F = 1
2Fab dx

a ∧ dxb, that is explicitly

F = Fru dr ∧ du+ Frx dr ∧ dx+ Fux du ∧ dx . (11)

The field has only 3 independent components. These can be obtained from the electromagnetic
potential 1-form A = Aa dx

a by the standard relation

F = dA . (12)

Using (4), the corresponding contravariant components F ab ≡ gacgbdFcd read

F ru = − Fx

gxx
, F rx =

Fu

gxx
, Fux = − Fr

gxx
, (13)

where the useful functions are

Fr ≡ Frx , (14)

Fx ≡ gxxFru − guxFrx , (15)

Fu ≡ guxFru − Fux − guuFrx . (16)

In fact, these three functions are directly related to the components of the dual Maxwell field
1-form ∗F = ∗Fa dx

a defined using the Hodge star operator,

∗F a ≡ 1
2 ω

abcFbc , where ωabc =
1√−g ε

abc . (17)

Here g denotes the determinant of the metric gab, while εabc is the completely antisymmetric
Levi-Civita symbol, for which we employ the convention that εabc = εabc ≡ +1 if abc is an even
permutation of rux, it is −1 for odd permutation of rux, and 0 otherwise. For the metric (3) we
immediately get

− g = gxx ≡ G−2 , (18)

and in view of (10) we obtain

∗F r = GFux ,
∗Fu = −GFrx ,

∗F x = GFru . (19)

Using (14)–(16), the corresponding covariant components ∗Fa = gab
∗F b are

∗Fa = GFa , (20)

so that the dual 1-form Maxwell field reads

∗F = G (Fr dr + Fu du+ Fx dx ) . (21)

For completeness let us also recall the inverse relation to (17),

Fab = −ωabc
∗F c where − ωabc =

√−g εabc = G−1 εabc . (22)
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Next, it is necessary to evaluate the electromagnetic invariants

F 2 ≡ Fab F
ab , ∗F 2 ≡ ∗Fa

∗F a . (23)

A direct evaluation yields

F 2 = −2 ∗F 2 = −2G2
(

guuF
2
rx + 2Frx(Fux − guxFru) + gxxF

2
ru

)

. (24)

Moreover, Fab
∗F a ∗F b = 0 due to the symmetry reasons.

Similarly as for general relativity in D = 4, it is convenient to define Newman–Penrose scalars
of the Maxwell field by its three independent projections onto the frame (6),

φ0 ≡ Fab k
amb ,

φ1 ≡ Fab k
alb , (25)

φ2 ≡ Fabm
alb .

Explicit calculation reveals that

φ0 = GFrx = GFr , (26)

φ1 = Fru = G2
(

Fx + guxFr

)

, (27)

φ2 = G
(

guxFru − Fux − 1
2guuFrx

)

= G
(

Fu + 1
2guuFr

)

, (28)

so that the invariant can be expressed as

1
2F

2 = 2φ0φ2 − φ21 . (29)

These scalars have distinct boost weights +1, 0, −1, respectively, and can be used for invariant
algebraic classification of the electromagnetic field [13], based on its (non-)alignment with the
geometrically privileged null vector field k = ∂r of the metric. By definition the field is aligned if
its component with the highest boost weight vanishes. From (26) we immediately observe that

electromagnetic field is aligned with k ⇔ φ0 = 0 ⇔ Frx = 0 ⇔ Fr = 0 . (30)

It can also be shown that this is equivalent to the special property of the field, namely

Fab k
b = N ka . (31)

Such an aligned field has just two components, namely φ1 = Fru and φ2 = G (guxFru − Fux), and
F 2 = −2φ21. When φ1 = 0 ⇔ Fx = 0, the field is null. When φ2 = 0 ⇔ Fu = 0, it is non-null.

In the case when the electromagnetic field is both aligned and null, the invariant vanishes,
F 2 = 0. This describes purely radiative field, i.e., a propagating electromagnetic wave characterized
by the only non-vanishing component Fux.

There is a freedom in the choice of the frame normalized as (2), given by the local Lorentz
transformations. It consists of a boost k′ = B k, l′ = B−1 l which determines the distinct boost
weights +1, 0, −1 of (25), respectively. The second Lorentz transformation is a null rotation with
fixed k of the form

k′ = k , l′ = l+
√
2Lm+ L2 k , m′ = m+

√
2Lk . (32)

There is also an analogous null rotation with fixed l which changes k. However, in our case the
direction of k is geometrically privileged (being twist-free and shear-free). Only (32) thus needs
to be considered. It is easy to prove that the Maxwell scalars (25) transform as

φ′0 = φ0 ,

φ′1 = φ1 +
√
2Lφ0 , (33)

φ′2 = φ2 +
√
2Lφ1 + L2 φ0 .

Of course, the expression (29) is invariant since 2φ′0φ
′
2 − φ′21 = 2φ0φ2 − φ21.
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Finally, we need to evaluate the energy-momentum tensor for a generic electromagnetic field
which (in any dimension, including D = 3) is defined as

Tab ≡ κ0

8π

(

FacFb
c − 1

4gabF
2
)

, (34)

where κ0 > 0 is a constant depending on the choice of the physical units. Interestingly, in arbitrary
dimension D ≥ 3 the Maxwell field satisfies all the standard energy conditions, see Proposition 21
in [19].

A straightforward (but somewhat lengthy) calculation reveals that

8π
κ0

Trr = G2F 2
rx ,

8π
κ0

Trx = G2Frx(gxxFru − guxFrx) ,

8π
κ0

Tru = 1
2G

2(gxxF
2
ru − guuF

2
rx) ,

8π
κ0

Txx = −Frx(guxFru + Fux) +
1
2G

2(2g2ux − gxxguu)F
2
rx + 1

2gxxF
2
ru , (35)

8π
κ0

Tux = 1
2G

2
[

guxguuF
2
rx − 2gxxguuFruFrx + gxxFru(guxFru − 2Fux)

]

,

8π
κ0

Tuu = 1
2G

2
[

2F 2
ux + 2guuFrxFux + g2uuF

2
rx − 4guxFruFux

− 2guxguuFrxFru + (2g2ux − gxxguu)F
2
ru

]

,

and the corresponding trace T ≡ gab Tab is

8π
κ0

T = G2Frx(guxFru − Fux)− 1
2G

2(gxxF
2
ru + guuF

2
rx) . (36)

Now, it is a nice fact that, by combining (35) with (36) as Tab − Tgab, the result for all
components can be written in a simple factorized form as

8π
κ0

(Tab − Tgab) = G2FaFb , (37)

in terms of the functions Fa encoding the electromagnetic field, which we have introduced in
(14)–(16).

4 Einstein–Maxwell field equations with Λ

Having identified all 3-dimensional Lorentzian geometries — which can be written in the canonical
form (3) — and also the generic form of the electromagnetic field (10) with the energy-momentum
tensor of the form (35) implying (37), we can now apply the field equations.

Einstein’s equations are Rab − 1
2Rgab + Λ gab = 8π Tab, in which we also admit a non-vanishing

cosmological constant Λ. Their trace is R = 2(3Λ− 8π T ), so that the equations can be put into the
form Rab = 2Λ gab + 8π

(

Tab − T gab
)

. For the generic electromagnetic field Fab we have derived
the nice relation (37), and thus the Einstein field equations in 2+1 gravity with Λ, coupled to an
electromagnetic field, are simply

Rab = 2Λ gab + κ0G
2FaFb , (38)

where the functions Fa are defined by (14)–(16). Expressed in terms of the dual Maxwell field ∗F
1-form components, see (21) and (20), these are even simpler, namely

Rab = 2Λ gab + κ0
∗Fa

∗Fb . (39)

In addition to these equations for the gravitational field represented by the metric gab, we must
also satisfy the Maxwell equations d∗F = 4π ∗J and dF = 0 for the electromagnetic field Fab. In
the absence of electric charges and currents, in components these read F ab

;b = 0, F[ab;c] = 0. They
are equivalent to

(
√−g F ab),b = 0 , (40)

F[ab,c] = 0 , (41)

7



where, using (18), √−g =
√
gxx = G−1 . (42)

Recall also that the source-free Maxwell equation d∗F = 0, which is equivalent to (40), in
components reads ∗F[a,b] = 0. In view of (20), it can be directly written as

(GFa),b =
(

GFb),a . (43)

Our task is to completely integrate the coupled system of the field equations (38) and (40),
(41) [or, equivalently, (43) instead of (40)] in 2+1 dimensions for (3) and (10), both for the non-
expanding Kundt spacetimes (Sec. 5) and the expanding Robinson–Trautman spacetimes (Sec. 6
and Sec. 7). Explicit components of the Ricci tensor Rab, which enter (38), for these twist-free
and shear-free geometries are given by equations (A24)–(A29) in Appendix A.

4.1 Einstein field equations with a massless scalar field

Let us also remark that in three dimensions there is a relation between the Einstein–Maxwell
system (39) and the Einstein gravity equations (minimally) coupled to a massless scalar field Φ
such that

gab Φ;ab = 0 . (44)

Indeed, the corresponding energy-momentum tensor reads

Tab ≡ Φ,a Φ,b − 1
2gab Φ,cΦ

,c , (45)

implying the trace T = − 1
2 Φ,c Φ

,c, so that the Einstein equations Rab = 2Λ gab + 8π
(

Tab − T gab
)

become
Rab = 2Λ gab + 8πΦ,aΦ,b . (46)

With the identification

Φ,a ≡
√

κ0
8π

∗Fa , (47)

this system of equations is clearly equivalent to (39). The dual Maxwell field 1-form is thus

∗F =

√

8π

κ0
dΦ . (48)
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5 All Kundt solutions

In this section, we explicitly perform a step-by-step integration of the field equations in the non-
expanding case Θ = 0, which defines the Kundt family of spacetimes. Recall a consequence of (8)
and (9), namely that the function G is now r-independent. It can be renamed as G(u, x) ≡ P (u, x).
Also the 1-dimensional spatial metric gxx = G−2 must be r-independent, that is

gxx ≡ P−2(u, x) . (49)

Of course, gxx = P 2. Now, we will employ the Einstein field equations (38), which for the Kundt
spacetimes take the form

Rab = 2Λ gab + κ0P
2FaFb . (50)

5.1 Integration of Rrr = κ0P
2F 2

r

In view of Eq. (A24), Rrr = 0 for Θ = 0. Therefore, this Einstein equation immediately requires
Fr = 0, that is

Frx = 0 . (51)

It means that, inevitably, any electromagnetic field in the 2+1 Kundt spacetimes must be aligned
with k = ∂r. Such fields are fully described by the functions

Fr = 0 , Fx = P−2Fru , Fu = guxFru − Fux . (52)

There are only two possible components of the electromagnetic field, namely Fru and Fux.
In fact, this result is analogous to the situation in standard 3+1 general relativity, for which it

is well known that (due to the Mariot–Robinson theorem) any Einstein–Maxwell field (including a
cosmological constant Λ) in the Kundt class of geometries must be aligned, see the introductions
to Chapter 31 of [10] and Chapter 18 of [11].

5.2 Integration of Rrx = κ0P
2FrFx

The Ricci tensor component (A25) for Θ = 0 reduces to Rrx = − 1
2gux,rr. Since Fr = 0, we obtain

a general solution of this Einstein equation

gux = e(u, x) + f(u, x) r , (53)

where e and f are arbitrary functions of u and x. In view of Eqs. (4) and (49), the corresponding
contravariant component of the Kundt metric is

grx = P 2
[

e(u, x) + f(u, x) r
]

. (54)

5.3 Integration of Rru = −2Λ + κ0P
2FrFu

Using Eqs. (49) and (53), the Ricci tensor component (A26) is Rru = − 1
2 guu,rr +

1
2P

2(f||x + f2),
where

f||x ≡ f,x +
P,x

P
f ⇔ Pf||x ≡ (Pf),x . (55)

Actually, the symbol || denotes the covariant derivative (of a 1-form f) related to the spatial metric
gxx on the 1-dimensional “transverse” subspace with constant u and r, namely f||x = f,x − SΓx

xx f ,

where SΓx
xx ≡ 1

2g
xxgxx,x is the corresponding Christoffel symbol (see Appendix A). Although this

notation seems to be superficial here, we employ it in order to see the relation to our previous
studies [20–22] of Kundt and Robinson–Trautman spacetimes in any higher dimension D ≥ 4
where this geometric notation plays a key role.

Because Fr = 0, the corresponding Einstein equation thus simplifies, and can be integrated to

guu = a(u, x) + b(u, x) r + c(u, x) r2 , (56)

where a(u, x) and b(u, x) are arbitrary functions, while

c(u, x) ≡ 2Λ + 1
2P

2(f||x + f2) . (57)

9



5.4 Integration of the Maxwell equations

The crucial r-dependence of all metric functions for the 2+1 Kundt spacetimes is thus determined.
In general, guu is quadratic, gux is linear, and gxx ≡ P−2(u, x) is independent of r. Now, applying
the Maxwell equations (40), (41) with

√−g = P−1, we will determine the r-dependence of the
electromagnetic field.

In the present setting, there are only 4 independent Maxwell equations , namely 3 components
of (

√−g F ab),b = 0 and just 1 component of F[ab,c] = 0. Because (13) with (52) implies

F ru = −Fru , F rx = P 2(guxFru − Fux) , Fux = 0 , (58)

these 4 equations for the electromagnetic field have the form

Fru,r = 0 , (59)

(guxFru − Fux),r = 0 , (60)

(

P (guxFru − Fux)
)

,x
=

(Fru

P

)

,u
, (61)

Fux,r + Fru,x = 0 . (62)

These equations can be completely solved for the two non-trivial components Fru and Fux. Starting
with (59), we immediately obtain that

Fru = Q(u, x) , (63)

where Q(u, x) is an arbitrary function independent of r. By employing (62), we thus get

Fux = −Q,x r − ξ(u, x) , (64)

where ξ(u, x) is another arbitrary function. Equation (60) gives the constraint

Q,x = −f Q , (65)

and (61) reduces to the equation

(

P (eQ+ ξ)
)

,x
=

(Q

P

)

,u
. (66)

To summarize, by integrating all the Maxwell equations we obtained explicit components of
the (necessarily aligned) electromagnetic field in any 2+1 Kundt spacetime,

Frx = 0 , Fru = Q , Fux = f Q r − ξ , (67)

where the functions Q(u, x) and ξ(u, x) are constrained by equations (65), (66). Consequently,

Fr = 0 , Fx = P−2Q , Fu = eQ+ ξ , (68)

and, due to (26)–(28),

φ0 = 0 , φ1 = Q , φ2 = P (eQ+ ξ). (69)

When φ1 = 0 ⇔ Q = 0, the field is null, and then φ2 = P ξ. When φ2 = 0 ⇔ eQ = −ξ, it is non-
null, and then φ1 = Q.

Now, we can integrate the remaining three Einstein equations, which impose the unique relation
between the gravitational and electromagnetic field components.
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5.5 Integration of Rxx = 2Λ gxx + κ0P
2F 2

x

For Θ = 0, using Eqs. (A36) and (53), the Ricci tensor component (A27) reduces to Rxx = −fxx ≡
−
(

f||x +
1
2f

2
)

. The field equation Rxx = 2Λ gxx + κ0P
2(P−2Q)2 = (2Λ + κ0Q

2)P−2 implies

κ0Q
2 = −

[

2Λ + P 2(f||x + 1
2f

2)
]

. (70)

The electromagnetic field component Fru ≡ φ1 = Q(u, x) is thus explicitly determined by the cos-
mological constant Λ and by the metric functions P, f (provided the right-hand side of (70) is
non-negative). It is now convenient to introduce a rescaled form of f entering the metric function
gux = e+ f r, see (53), namely

F ≡ P 2f2 . (71)

Then the field equation (70) can be rewritten as

P 2(f||x + f2) = 1
2F − 2Λ− κ0Q

2 . (72)

We can thus simplify the metric function guu, namely its coefficient c in (56) given by (57), to

c(u, x) = Λ + 1
4F − κ0

2 Q
2 . (73)

At this stage, the most general Kundt solution in D = 3 takes the form

ds2 =
dx2

P 2
+ 2 (e+ f r) dudx − 2 dudr +

[

a+ b r +
(

Λ + 1
4F − κ0

2 Q
2
)

r2
]

du2 , (74)

and the Einstein–Maxwell field equation (72) using (55) reads

P (Pf),x = −(2Λ + 1
2F + κ0Q

2) . (75)

5.6 Integration of Rux = 2Λ gux + κ0P
2FuFx

Eq. (A28) with Θ = 0 for the metric (74) gives Rux = 1
2

[

f,u − b,x − eP 2(f||x + f2)− f (lnP ),u
]

−
1
4

[

(F − 2κ0Q
2),x + 2fP 2(f||x + f2)

]

r. Applying (72) and (68), (53), the corresponding field
equation Rux = 2Λ gux + κ0Q(eQ+ ξ) = 2Λe+ κ0(eQ

2 +Qξ) + 2Λf r splits into two conditions,
resulting from the coefficients for the powers r1 and r0, namely

F,x − 2κ0(Q
2),x + (F − 4Λ− 2κ0Q

2)f = −8Λf , (76)

f,u − b,x − (12F − 2Λ− κ0Q
2)e − f (lnP ),u = 4Λe+ 2κ0(eQ

2 +Qξ) . (77)

Using the field equation (75), Eq. (76) simplifies to (Q2),x = −2Q2f which is identically satisfied
due to (65). Only the constraint (77) thus remains, which can be put into the form

b,x = f,u − f (lnP ),u − 1
2 (F + 4Λ + 2κ0Q

2) e − 2κ0Qξ , (78)

that is

b,x = P
( f

P

)

,u
+ Pe (Pf),x − 2κ0Qξ . (79)

This is an explicit expression determining the metric function b(u, x).

5.7 Integration of Ruu = 2Λ guu + κ0P
2F 2

u

For Θ = 0 and the Kundt metric (74), using the relation e||x ≡ e,x + e P,x/P and similar for f||x,
e,u||x, f,u||x, a||xx, b||xx and c||xx (see Appendix A), the last Ricci tensor component (A29) reads

Ruu = A+B r + C r2 , (80)
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where

A = a(c− 1
2F ) + P 2

[

− 1
2a,xx + 1

2a,x

(

f − P,x

P

)

− 1
2b
(

e,x +
P,x

P
e+

P,u

P 3

)

+
(

f,u − b,x − c e
)

e+
(

e,ux +
P,x

P
e,u

)

+
P,uu

P 3
− 2

P 2
,u

P 4

]

, (81)

B = b
(

c− 1
2F − 1

2P (Pf),x
)

+ P 2
[

(

f,u − 1
2b,x

)

,x
+ (f,u − 1

2b,x)
(

f +
P,x

P

)

−c
(

e,x +
P,x

P
e+

P,u

P 3

)

− 2e (c,x + f c)
]

, (82)

C = c(c− F )− P 2
[

1
2c,xx + 1

2c,x

(

3f +
P,x

P

)

+ c
(

f,x +
P,x

P
f + 1

2f
2
)]

. (83)

Due to (56), (68), the corresponding field equation is Ruu = 2Λ(a+ b r + c r2) + κ0P
2(eQ+ ξ)2,

which splits into the following three constraints

A = 2Λ a+ κ0P
2(eQ+ ξ)2 , (84)

B = 2Λ b , (85)

C = 2Λ c . (86)

From (73), (75), (65) we easily derive interesting identities for spatial derivatives of c,

c,x = −f c , c,xx = (f2 − f,x) c . (87)

By using (87), the expression (83) reduces to C = c
[

c− 1
2F − 1

2P (Pf),x
]

, and substituting
from (73), (75) we obtain C = 2Λ c. The equation (86) is thus identically satisfied.

Surprisingly, the equation (85) is also identically satisfied. Applying (75), the first term in (82)
yields 2Λ b, while the complicated combination of various terms in the square brackets vanishes by
using the relations (87), (78), (73) and the field equations (65), (66). Therefore, B = 2Λb, which
is the equation (85).

We are thus left with only one equation, namely (84). Using (70), (73), (75) and (78), it can
be simplified to

a,xx−a,x
(

f − P,x

P

)

− a
(

f,x +
P,x

P
f
)

=− b
(

e,x +
P,x

P
e+

P,u

P 3

)

+ 2
(

e,ux +
P,x

P
e,u

)

(88)

− Pe2(Pf),x + 2ef
P,u

P
+ 2

(

P,uu

P 3
− 2

P 2
,u

P 4

)

− 2κ0 ξ
2 .

This equation determines the last metric function a(u, x).
Alternatively, it can be understood as an explicit expression for the ξ(u, x) component of the

Maxwell field, in terms of the metric functions P, e, f, a, b. Such an equation can be expressed in
a covariant form as

2κ0 ξ
2 =− a||xx + (fa)||x − b

(

e||x +
P,u

P 3

)

+ 2(e,u)||x (89)

− P 2e2f||x + 2ef
P,u

P
+ 2

(

P,uu

P 3
− 2

P 2
,u

P 4

)

,

where a||xx ≡ a,xx +
P,x

P
a,x and ψ||x ≡ ψ,x + ψ P,x/P , for ψ representing a,x, f , e and e,u.
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5.8 Summary of the Kundt solutions

We have thus solved all the Einstein–Maxwell equations with a cosmological constant Λ in 2+1
gravity for the complete Kundt family of non-expanding spacetimes. The generic gravitational
field of this type is

gxx = P−2(u, x) ,

gux = e(u, x) + f(u, x) r (90)

guu = a(u, x) + b(u, x) r + c(u, x) r2 ,

where

c = Λ+ 1
4F − κ0

2 Q
2 , (91)

with

F ≡ P 2f2 , (92)

c.f. (73), (71),while the electromagnetic field (67) reads

Frx = 0 ,

Fru = Q(u, x) (93)

Fux = f(u, x)Q(u, x) r − ξ(u, x) .

Written explicitly in a compact form,

ds2 =
dx2

P 2
+ 2 (e+ f r) du dx− 2 du dr

+
(

a+ b r +
(

Λ + 1
4F − κ0

2 Q
2
)

r2
)

du2 , (94)

and
F = Q dr ∧ du+ (f Q r − ξ) du ∧ dx , (95)

corresponding to the potential
A = Ar dr +Ax dx , (96)

where, considering (65),

Ar ≡ −
∫

Q du , Ax ≡ r
∫

f Q du−
∫

ξ du . (97)

It is now important to recall the Maxwell scalars given by (69),

φ0 = 0 ,

φ1 = Q , (98)

φ2 = P (eQ+ ξ) .

We have thus proved that all electromagnetic fields in the Kundt spacetimes in 2+1 gravity are
necessarily aligned (φ0 = 0). Moreover, they split into two distinct subclasses :

• The case φ1 = 0 ⇔ Q = 0: The field is null, in which case φ2 = P ξ and Fux = −ξ, so that

F = −ξ du ∧ dx . (99)

• The case φ2 = 0 ⇔ ξ = −eQ: The field is non-null with only φ1 = Q, corresponding to

F = Q dr ∧ du+Q (e+ f r) du ∧ dx . (100)
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Notice also that, applying the Lorentz null rotation (32) with fixed k and the uniquely chosen
parameter L = − 1√

2
e P in (33), the scalars (98) transform to

φ′0 = 0 ,

φ′1 = Q , (101)

φ′2 = P ξ .

Therefore, with respect to the triad with m′ = m+
√
2Lk = P (∂x + f r ∂r), the condition for the

Maxwell field being non-null is φ′2 = 0 ⇔ ξ = 0.
The two electromagnetic components Q, ξ and the five metric functions P, e, f, a, b describing

the gravitational field are mutually constrained by the following Einstein–Maxwell field equations:

Q,x = −f Q , (102)

(QPe+ Pξ),x =
(Q

P

)

,u
, (103)

P (Pf),x = −(2Λ + 1
2F + κ0Q

2) , (104)

b,x = P
( f

P

)

,u
+ Pe (Pf),x − 2κ0Qξ , (105)

a,xx − a,x

(

f − P,x

P

)

− a
(

f,x +
P,x

P
f
)

= −b
(

e,x +
P,x

P
e+

P,u

P 3

)

+ 2
(

e,ux +
P,x

P
e,u

)

(106)

− Pe2(Pf),x + 2ef
P,u

P
+ 2

(

P,uu

P 3
− 2

P 2
,u

P 4

)

− 2κ0 ξ
2 .

see Eqs. (65), (66), (75), (79) and (88).
Interestingly, the form of the electromagnetic field (95) and also the same field equations

(102)–(106) can formally be obtained by setting D = 3 in the corresponding equations for higher-
dimensional Kundt spacetimes with an aligned Maxwell field [12].

Let us now separately discuss two geometrically distinct subclasses, namely f = 0 and f 6= 0.

5.8.1 The subclass f = 0

From (92) it follows that f = 0 ⇔ F = 0, so that the equations (102)–(106) considerably simplify
to

Q,x = 0 , (107)

(QPe+ Pξ),x =
(Q

P

)

,u
, (108)

κ0Q
2 = −2Λ , (109)

b,x = −2κ0Qξ , (110)

(Pa,x),x = −b
(

(Pe),x +
P,u

P 2

)

+ 2(Pe,u),x + 2
(P,u

P 2

)

,u
− 2κ0 P ξ

2 . (111)

In this case, Q is necessarily a constant, and Λ ≤ 0 because

2Λ = −κ0Q2 . (112)

Therefore, the electromagnetic component φ1 is also independent of u and x,

Fru = φ1 = Q =
√

− 2
κ0

Λ . (113)
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Keeping both the functions P (u, x) and ξ(u, x) arbitrary, the equation (108) determines the
metric function e(u, x). Moreover, the function b(u, x) is directly determined by the spatial integral
of ξ via (110). Finally, integrating (111) we obtain a(u, x).

Thus, we have obtained a complete and explicit family of such electrovacuum Kundt spacetimes
in 2+1 gravity, namely

ds2 =
dx2

P 2
+ 2 e du dx− 2 du dr +

(

a+ b r + 2Λ r2
)

du2 , (114)

and
F = Q dr ∧ du− ξ du ∧ dx . (115)

It admits four physically distinct subcases :

• The case Q = 0 = ξ: The electromagnetic field F vanishes, and necessarily Λ = 0. The
metric is

ds2 =
dx2

P 2
+ 2 e du dx− 2 du dr +

(

a+ b r
)

du2 , (116)

where b(u) is independent of x. It is a vacuum solution without a cosmological constant, and
thus in 2+1 gravity it must be flat Minkowski space. We derived this metric in our previous
work [1], see Eq. (82) with J = 0 = N therein.

• The case Q = 0: Again, Λ = 0 and b = b(u), so that the metric has the form (116), but
there is now a radiative (null) electromagnetic field

F = −ξ du ∧ dx . (117)

The amplitude ξ(u, x) must satisfy the field equation (108), which is (P ξ),x = 0. Therefore,

ξ(u, x) =
γ(u)

P (u, x)
, (118)

where γ(u) is an arbitrary profile function of the retarded time u. Finally, a(u, x) is then
obtained by integrating the remaining field equation (111).

• The case ξ = 0: The electromagnetic field is non-null, and has the form

F = Q dr ∧ du , (119)

where Q is a constant uniquely determined by negative cosmological constant Λ via (113).
The electromagnetic field is thus uniform, and positive (or zero) Λ is not allowed.

The metric is of the form (114). The field equation (110) implies that b = b(u), while the
remaining (108) and (111) reduce to

(Pe),x = −P,u

P 2
, (120)

(Pa,x),x = 2(Pe,u),x − 2(Pe),ux . (121)

The latter can be immediately integrated to

a,x = 2e,u − 2

P

(

Pe
)

,u
+
δ(u)

P
, (122)

where δ(u) is any function of u. After prescribing an arbitrary metric function P (u, x), we
obtain e(u, x) by integrating (120), and a(u, x) by integrating (122).
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• The general case Q 6= 0, ξ 6= 0: In the generic case with both the non-null component of the
electromagnetic field Q = const. and its null component ξ(u, x), we obtain the superposition
(115). The metric reads (114), with a cosmological constant Λ < 0 (notice that Λ = 0 implies
Q = 0 due to (112), while Λ > 0 is forbidden). The metric functions a and b are determined
by the differential equations (110) and (111), respectively, and there is also the constraint
(108) determining e.

This family of Kundt spacetimes in 2+1 gravity can be interpreted as mutually coupled
exact gravitational and electromagnetic waves (characterized by the functions a(u, x) and
ξ(u, x), respectively) which propagate on the background with Λ < 0 and uniform Maxwell
field (characterized by the constant Q). The simplest such background is

ds2 = dx2 − 2 du dr + 2Λ r2 du2 , (123)

which is the 2+1 analogue of the exceptional electrovacuum type D metric with Λ < 0 found
by Plebański and Hacyan [23], see also Eq. (7.20) in [11]. Indeed, introducing U = 1/(2Λu)
and V = 2(u+ 1/(Λr)), the metric (123) takes the form ds2 = dx2 − 2 dUdV/(1− ΛUV)2
which is clearly the direct-product E1×AdS2 spacetime.

5.8.2 The subclass f 6= 0

Recalling F ≡ P 2f2, cf. (92), in this case F 6= 0. The Kundt metric takes the general form (94),
the aligned electromagnetic field is (95), and the corresponding Einstein–Maxwell field equations
are (102)–(106).

By inspecting this system, it is seen that the first three differential equations (102), (103), (104)
relate the metric functions P, e, f and the electromagnetic field components Q, ξ. Subsequently,
the remaining two equations (105) and (106) can be used to evaluate the metric functions b and
a, respectively.

Starting with (102), we immediately observe that there are two distinct subcases :

• The case Q = 0: The electromagnetic field is null (with φ1 = 0, φ2 = P ξ),

F = −ξ du ∧ dx . (124)

The field equation (102) is identically satisfied, putting no restriction on the function f ,
while (103), (104) reduce to

P ξ = γ(u) , (125)

P (Pf),x = −
(

2Λ + 1
2 (Pf)

2
)

. (126)

The first equation determines ξ, giving the same expression as (118), i.e., ξ(u, x) = P−1 γ(u),
while the second equation can be integrated for the variable (Pf) in terms of the integral of
P−1, yielding

f(u, x) = −2
√
ΛP−1 tan[

√
Λ
∫

P−1 dx] for Λ > 0 , (127)

and the expression for Λ < 0 is analogous, replacing tan by tanh.

In the final step, the metric functions b and a are obtained by integrating the field equations
(105) and (106), respectively.

• The case Q 6= 0: In this generic case, the field equation (102) explicitly determines the
metric function f in terms of the electromagnetic field component Q, which occurs in

F = Q dr ∧ du+ (f Q r − ξ) du ∧ dx , (128)

as
f(u, x) = −(lnQ),x . (129)
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However, there is a further constraint given the field equation (104),

P (Pf),x = −
(

2Λ + 1
2 (Pf)

2 + κ0Q
2
)

. (130)

Notice that it can also be rewritten as

F,x = −f (F + 4Λ+ 2κ0Q
2) , (131)

or, equivalently,

κ0Q
2 = − 1

2f

[

F,x + (F + 4Λ)f
]

. (132)

It remains to be investigated what are the constraints resulting from the simultaneous solu-
tion of equations (129) and (132).
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6 All aligned Robinson–Trautman solutions

After completing the derivation and preliminary description of the non-expanding Kundt class, we
will now concentrate on systematic integration of the field equations in the expanding case Θ 6= 0,
which defines the Robinson–Trautman family of spacetimes.

Recall that the field equations (38) take the form

Rab = 2Λ gab + κ0G
2FaFb , (133)

where Fa are defined by (14)–(16). In this section we assume that the electromagnetic field is
aligned with k = ∂r, see (30), that is

Frx = 0 ⇔ Fr = 0 . (134)

This considerably simplifies the field equations (133) whenever at least one of the index a, b is r.

6.1 Integration of Rrr = 0

From Eq. (A24) we immediately get the constraint

Θ,r +Θ2 = 0 , (135)

which determines the r-dependence of the expansion scalar Θ. Its general solution can be writ-
ten as Θ−1 = r + r0(u, x). Because the metric (3) is invariant under the gauge transformation
r → r − r0(u, x), without loss of generality we can set the integration function r0(u, x) to zero.
The expansion thus simplifies to

Θ =
1

r
. (136)

Integrating now the key relation (9) we obtain

G(r, u, x) =
P (u, x)

r
, (137)

where P (u, x) is any function independent of r. Using (8), we immediately get the generic spatial
metric function gxx ≡ G−2 in the form

gxx =
r2

P 2(u, x)
. (138)

Of course, by inversion gxx = P 2 r−2.

6.2 Integration of Rrx = 0

Using Eqs. (A25) and (135), which implies Eq. (136), the Ricci tensor component Rrx becomes

Rrx = − 1
2

(

gux,rr − gux,r r
−1

)

. (139)

The corresponding field equation Rrx = 0 can be integrated, yielding a general solution

gux = e(u, x) r2 + f(u, x) , (140)

where e and f are arbitrary functions of u and x. In view of Eqs. (5) and (138), the contravariant
component of the Robinson–Trautman metric is

grx = P 2
[

e(u, x) + f(u, x) r−2
]

. (141)
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6.3 Integration of the Maxwell equations

Now, applying the Maxwell equations (40), (41) with
√−g = G−1 = r/P , we will determine the

electromagnetic field. There are only 4 independent Maxwell equations, namely 3 components of
(
√−g F ab),b = 0 and just 1 component of F[ab,c] = 0. Because (13) with (134) implies

F ru = −Fru , F rx =
P 2

r2
(guxFru − Fux) , Fux = 0 , (142)

these 4 equations for the electromagnetic field take the form

(r Fru),r = 0 , (143)
(

r−1(guxFru − Fux)
)

,r
= 0 , (144)

r2
(Fru

P

)

,u
=

(

P (guxFru − Fux)
)

,x
, (145)

Fux,r + Fru,x = 0 . (146)

They can be solved for the non-trivial components Fru and Fux. From (143) we get

Fru =
Q(u, x)

r
, (147)

where Q(u, x) is an arbitrary function of u and x. By employing (146), we thus obtain

Fux = −Q,x ln |r| − ξ(u, x) , (148)

where ξ(u, x) is another arbitrary function. Equation (144) with (140) then reduces to

(f Q

r2
+Q,x

ln |r|
r

+
ξ

r

)

,r
= 0 , (149)

which gives the following three independent constraints

f Q = 0 , Q,x = 0 , ξ = Q,x , (150)

so that ξ = 0 and Q = Q(u) is independent of x.
We thus conclude that the components of a generic aligned electromagnetic field in any 2+1

Robinson–Trautman spacetime can be written as

Frx = 0 , Fru =
Q(u)

r
, Fux = 0 , (151)

with the constraint
f Q = 0 , (152)

and the Maxwell equation (145) which reduces to

(Q

P

)

,u
= Q (e P ),x . (153)

Consequently,

Fr = 0 , Fx = P−2Qr , Fu = eQ r , (154)

and, due to (26)–(28),

φ0 = 0 , φ1 =
Q

r
, φ2 = e P Q . (155)

When φ1 = 0 ⇔ Q = 0 then φ2 = 0. Therefore, there are no null electromagnetic fields of this
type. When φ2 = 0 ⇔ eQ = 0, it is non-null, and then φ1 = Q(u)/r. Notice also, that due to
(152), either we have a vacuum solution (Q = 0) or a non-null electromagnetic field characterized
by Q(u) in the Robinson-Trautman spacetime without the non-diagonal metric term (gux = 0).
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Now, we will integrate the remaining Einstein’s equations which couple the gravitational and
electromagnetic fields. In view of (152), there are two cases to consider, namely Q = 0 and f = 0.

• The case Q = 0: The electromagnetic field completely vanishes, so that the spacetimes are
vacuum (with any cosmological constant Λ). All such Robinson–Trautman solutions in 2+1
gravity were found and described in our previous work [1]. Interestingly, for these vacuum
spacetimes the function f remains non-vanishing (which is not true in D ≥ 4).

• The case f = 0: In this case, the metric component gux reduces to

gux = e r2 ⇔ grx = P 2 e . (156)

This simplifies the generic Ricci tensor components in Appendix A, which will now apply.

6.4 Integration of Rru = −2Λ

Using (156), (136) and (138), the Ricci tensor component (A26) becomes

Rru = − 1
2

(

r guu,r
)

,r
r−1 + 1

2c r
−1 + 2P 2e2 , (157)

where
c ≡ 2P 2

(

e||x − 1
2hxx,u

)

, e||x ≡ e,x + e P,x/P , (158)

from which we obtain useful identities

P e||x = (Pe),x , e P 2 e||x = 1
2 (P

2e2),x , (159)

and thus
c = 2

[

P (Pe),x + (lnP ),u
]

. (160)

With Eq. (157), the Einstein equation Rru = −2Λ can now be easily integrated to give

guu = −a− b ln |r| + c r + (Λ + P 2e2) r2 , (161)

where a(u, x) and b(u, x) are arbitrary functions. The r-dependence of all metric components is
thus fully established.

6.5 Integration of Rxx = 2Λ gxx + κ0G
2F 2

x

Using Eqs. (135)–(138) and (156), the general Ricci tensor component (A27) becomes

Rxx = −c P−2 r − 2 e2 r2 + P−2 r guu,r . (162)

Substituting now the expression (161), we obtain Rxx = 2Λ gxx − b/P 2. The corresponding Ein-
stein equation with (154) reads Rxx = 2Λ gxx + κ0Q

2/P 2. It is satisfied if, and only if,

b(u) = −κ0Q2 . (163)

6.6 Integration of Rux = 2Λ gux + κ0G
2FuFx

Using Eqs. (136), (138), (156), and (161) with (163), the Ricci tensor component Rux given by
Eq. (A28) reads

Rux = 2Λ gux + κ0 eQ
2 − 1

2 a,x r
−1 . (164)

The field equation with (154) is Rux = 2Λ gux + κ0 eQ
2, so that we obtain just one simple con-

straint
a,x = 0 ⇔ a = a(u) . (165)

The function a can depend only on the coordinate u, and the most general Robinson–Trautman
aligned electrovacuum solution thus takes the form

ds2 =
r2

P 2
dx2 + 2 e r2 dudx− 2 dudr

+
(

− a(u) + κ0Q
2(u) ln |r|+ 2

[

P (Pe),x + (lnP ),u
]

r + (Λ + P 2e2) r2
)

du2 . (166)
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6.7 Integration of Ruu = 2Λ guu + κ0 G
2F 2

u

The Ricci tensor component Ruu for the metric (166), given generally by Eq. (A29), becomes

Ruu = 2Λ guu +A+ 1
2

[

a,u − (a− 1
2b)c−△c

]1

r
+ 1

2

[

b,u − bc
] ln r

r
, (167)

where

A = −P 2e2 b+ 1
4 c

2 + 1
2P

2e c,x − 1
2c,u − 1

2△(P 2e2) + P (Pe,u),x − 2
P 2
,u

P 2
+
P,uu

P
, (168)

c is given by Eq. (160), and
△c ≡ hxx c||xx = P (Pc,x),x (169)

is the covariant Laplace operator on the 1-dimensional transverse Riemannian space spanned by x,
applied on the function c. Remarkably, after substitution from (160) and evaluation, the expression
for A enormously simplifies to

A = −P 2e2 b . (170)

Moreover, using the Maxwell equation (153) which can be rewritten as

Q,u = 1
2cQ , (171)

and the relation (163), that is b = −κ0Q2, we easily prove that b,u = b c. The last term in (167)
thus always vanishes. To summarize, the last Ricci tensor component takes the form

Ruu = 2Λ guu + κ0 e
2P 2Q2 + 1

2

[

a,u − (a− 1
2b)c−△c

]1

r
. (172)

Using (154), the corresponding field equation reads Ruu = 2Λ guu + κ0 e
2P 2Q2, so that we obtain

only one additional condition determined by the term proportional to r−1, namely

a,u = (a+ κ0

2 Q2) c+△c . (173)

Let us observe that the equation (171) implies

c(u) = 2 (lnQ),u , (174)

i.e., the function c must necessarily be independent of the spatial coordinate x. Due to (169),
△c = 0, and the field equation (173) reduces to

a,u = (a+ κ0

2 Q2) c . (175)

Its general solution with (174) is

a(u) = Q2
(

κ0 ln |Q| − µ
)

, (176)

where µ is any constant. The metric function a(u) is thus directly related to the electromagnetic
field Q(u).

6.8 Summary of the aligned Robinson–Trautman solutions

We have solved all the Einstein–Maxwell equations with a cosmological constant Λ and aligned
electromagnetic field in 2+1 gravity for the Robinson–Trautman family of expanding spacetimes.
In the canonical coordinates, the generic gravitational field of this type is

gxx = P−2(u, x) r2 ,

gux = e(u, x) r2 , (177)

gur = −1 ,

guu = µQ2(u)− κ0Q
2 ln

∣

∣

∣

Q

r

∣

∣

∣ + 2 (lnQ),u r + (Λ + P 2e2) r2 ,
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where µ is a constant, Q(u) is any function of u, and the metric functions P, e satisfy the field
equation (153), that is

(Q

P

)

,u
= Q (e P ),x . (178)

The corresponding aligned electromagnetic field reads

Frx = 0 ,

Fru =
Q(u)

r
, (179)

Fux = 0 ,

see (151), i.e., it has only one component Fru.
Written explicitly in the usual compact form, the solution is

ds2 =
r2

P 2

(

dx+ e P 2du
)2 − 2 dudr

+
(

µQ2 − κ0Q
2 ln

∣

∣

∣

Q

r

∣

∣

∣
+ 2 (lnQ),u r + Λ r2

)

du2 (180)

with

F =
Q

r
dr ∧ du equivalent to ∗F =

Q

P
dx+ e P Q du , (181)

corresponding to the potential

A = Q ln
r

r0
du , (182)

and the Maxwell scalars (155)

φ0 = 0 ,

φ1 =
Q

r
, (183)

φ2 = e P Q .

It follows that there are no aligned (purely) null electromagnetic fields in the Robinson–Trautman
spacetimes in 2+1 gravity because φ1 = 0 implies φ2 = 0. Moreover, φ2 = 0 ⇔ eQ = 0. Either we
have a vacuum solution (Q = 0) or a non-null electromagnetic field characterized by Q(u) in the
Robinson-Trautman spacetime without the non-diagonal metric term gux (e = 0).

The simplest e 6= 0 solution of the field equation (178), which can be rewritten as

(lnP ),u + P (e P ),x = (lnQ),u , (184)

is
P = 1 , e = x (lnQ),u + α(u) , (185)

where α(u) is an arbitrary function of u, yielding the metric

ds2 = r2
(

dx+
(

α+ x (lnQ),u
)

du
)2

− 2 dudr

+
(

µQ2 − κ0Q
2 ln

∣

∣

∣

Q

r

∣

∣

∣+ 2 (lnQ),u r + Λ r2
)

du2 . (186)
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Another interesting subclass of the Robinson–Trautman spacetimes (180) with aligned Maxwell
field (181) arises when both sides of the field equation (178) vanish, (Q/P ),u = 0 ⇔ (e P ),x = 0.
Then the metric functions P and e are both factorized in the coordinates u and x as

P = Q(u)β(x) , e =
α(u)

Q(u)β(x)
, (187)

where α(u), β(x) are arbitrary functions of the respective coordinates. Consequently, e P = α(u).
(For β = 1 we obtain simply P (u) = Q(u).) In such a case, the metric (180) takes the form

ds2 =
r2

Q2

(dx

β
+ αQ du

)2

− 2 dudr

+
(

µQ2 − κ0Q
2 ln

∣

∣

∣

Q

r

∣

∣

∣+ 2 (lnQ),u r + Λ r2
)

du2 , (188)

and the Maxwell scalars are

φ0 = 0 , φ1 =
Q

r
, φ2 = αQ .

With respect to the natural triad (6), there are thus two components of the admitted Maxwell
field, namely non-null component φ1 and the electromagnetic radiation φ2 (φ2 6= 0 requires α 6= 0).
However, let us remark that, due to the freedom in the choice of the local null triad, under which
the Maxwell scalars transform as (33), at a given point there exists a special triad in which φ′2 = 0.

There is a special case Q = const., for which the metric (188) simplifies to

ds2 = r2
(

dϕ+ α(u) du
)2 − 2 dudr +

(

m− κ0Q
2 ln

∣

∣

∣

Q

r

∣

∣

∣+ Λ r2
)

du2 , (189)

where the rescaled constant reads m ≡ Q2µ, and the new coordinate is

ϕ =
1

Q

∫

dx

β(x)
. (190)

For α(u) = 0 (that is without the electromagnetic radiation component), and for compact coor-
dinate ϕ, this family of spacetimes represents charged black holes with any value of the cosmological
constant Λ. Indeed, by introducing the time coordinate t via the transfomation

du = dt+
(

m− κ0Q
2 ln

∣

∣

∣

Q

r

∣

∣

∣
+ Λ r2

)−1

dr , (191)

we obtain the metric

ds2 =−
(

−m+ κ0Q
2 ln

∣

∣

∣

Q

r

∣

∣

∣− Λ r2
)

dt2 +
dr2

−m+ κ0Q
2 ln

∣

∣

∣

Q

r

∣

∣

∣
− Λ r2

+ r2dϕ2 , (192)

with the electromagnetic field

F =
Q

r
dr ∧ dt corresponding to A = Q ln

r

r0
dt . (193)

This is the standard form of cyclic symmetric, electrostatic solution with Λ in polar “Schwarzschild”
coordinates found by Peldan in 1993 [24], see Eq. (11.56) in [6], which extended previous solutions
by Gott, Simon and Alpert [25, 26], Deser and Mazur [27], and Melvin [28] to any cosmological
constant, see also Garćıa [29]. A thorough review and discussion of this class of solutions is
contained in [30] and also Section 11.2 of [6].

For α(u) 6= 0 the spacetime (189) in general contains additional electromagnetic radiation
component φ2 6= 0. It remains to be analyzed in detail if such a situation can be physically
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interpreted as a charged black hole with a specific radiation, or if the function α(u) is just some
kind of a kinematic parameter.

Similarly, the general Robinson–Trautman solution (180) with aligned electromagnetic field
(181) needs to be understood and explicitly related to other known solutions summarized in
Chapter 11 of [6], in particular the non-static ones. This seems to be in principle possible because,
e.g., for e 6= 0 the transformation (191) introduces the metric component gtx typical for stationary
spacetimes.
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7 All non-aligned Robinson–Trautman solutions

After completing the systematic derivation of all aligned electromagnetic fields in the family of
expanding Robinson–Trautman geometries, we now investigate the possible non-aligned fields.

The Einstein–Maxwell equations are (133), in which the functions Fa are defined by (14)–(16).
The generic non-aligned electromagnetic field has φ0 6= 0 ⇔ Frx 6= 0 ⇔ Fr 6= 0.

7.1 Integration of Rrr = κ0 G
2F 2

r

Using Eq. (A24) for the Ricci tensor component Rrr, we obtain the constraint

κ0 F
2
r = −gxx (Θ,r +Θ2) , (194)

where Θ 6= 0 is the optical scalar representing the expansion of the privileged null congruence
generated by k = ∂r. Let us recall that it is directly related to the spatial metric function gxx via
the relations

gxx = G−2 with Θ = −(lnG),r ≡ −G,r

G
, (195)

see (8), (9). Therefore, the metric component gxx must necessarily depend on the coordinate r,
otherwise Θ = 0.

It is possible to substitute from (195) into (194), but we found more convenient to keep the
expansion scalar Θ in (194). This equation explicitly expresses the non-aligned Maxwell field
component Frx ≡ Fr in terms of the metric component gxx (and its r-derivatives via G). This
relation can be rewritten as

κ0 F
2
rx = G−2 Θ2

(

(Θ−1),r − 1
)

. (196)

Notice that (in the Robinson–Trautman family) Frx = 0 ⇔ Θ−1 = r + r0(u, x). This fully
corresponds to the previously studied aligned case, for which (136) applies.

7.2 Integration of Rrx = κ0 G
2FrFx

Using Eq. (A25) for the Ricci tensor component Rrx and (194), we get the relation

1
2 (Θ gux,r − gux,rr) = κ0G

2Fr (Fx + guxFr) . (197)

In view of (14), (15), this is equivalent to

κ0 Fru Frx = 1
2 (Θ gux,r − gux,rr) . (198)

Therefore, by prescribing any metric function gux, the electromagnetic field component Fru is
explicitly determined.

Notice that it admits a special solution Fru = 0 ⇔ Θ gux,r = gux,rr. This occurs either when
gux is independent of the coordinate r,

gux = B(u, x) , (199)

or, using (195), when Θ = (lnG−1),r = (ln gux,r),r which can be completely integrated as

gxx = A(u, x)
(

gux,r
)2
, (200)

where A > 0 is any function independent of r.
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7.3 Integration of Rru = −2Λ + κ0G
2FrFu

The generic Ricci tensor component Rru is given by (A26), so that the corresponding Einstein–
Maxwell field equation becomes

− 1
2guu,rr +

1
2g

rxgux,rr +
1
2g

xx
(

gux,r||x + (gux,r)
2
)

−Θ,u − 1
2Θ

(

gxxgxx,u + grxgux,r + guu,r
)

= −2Λ + κ0G
2Fr Fu . (201)

This uniquely determines the third electromagnetic field component (16) represented by Fu. Using
(14)–(16) and then (194), (198), the last term on the right-hand side can be expressed as

κ0G
2 Frx (guxFru − Fux − guuFrx)

= κ0 g
rxFru Frx − κ0 g

xxFux Frx − κ0 g
xxguu F

2
rx

= −κ0 gxxFux Frx + 1
2g

rx(Θ gux,r − gux,rr) + guu
(

Θ,r +Θ2
)

. (202)

The field equation (201) thus reads

κ0 Fux Frx = 1
2gxx

(

guu,rr +Θ guu,r + 2(Θ,r +Θ2)guu − 4Λ
)

(203)

+ gux(Θ gux,r − gux,rr)− 1
2

(

gux,r||x + (gux,r)
2
)

+ 1
2Θ gxx,u + gxxΘ,u .

By prescribing any metric function guu, the third electromagnetic field component Fux is thus
explicitly determined.

To summarize, by employing three (out of six) independent components of the Einstein field
equations, we have now derived explicit expressions (196), (198) and (203) which determine all
three components of the electromagnetic field, namely Frx, Fru and Fux, respectively, in terms of
the three (so far) independent metric components gxx, gux and guu.

These three expressions are equivalent to equations (194), (197), (201) for the three dual
electromagnetic functions Fa ≡ ∗Fa/G. They can be written in a very compact form

κ0 F
2
r = α , (204)

κ0 Fr Fx = β − α gux , (205)

κ0 Fr Fu = γ , (206)

where the functions α, β, γ are useful shorthands for the combination of the three metric functions

α ≡ − gxx (Θ,r +Θ2) , (207)

β ≡ 1
2 gxx (Θ gux,r − gux,rr) , (208)

γ ≡ 1
2

[

gxx(4Λ− guu,rr) + gux gux,rr + gux,r||x + (gux,r)
2 (209)

− 2gxxΘ,u −Θ(gxx,u + gux gux,r + gxx guu,r)
]

.

Consequently,

Fr =

√

α

κ0
, Fx =

(β

α
− gux

)

Fr , Fu =
γ

α
Fr . (210)

Let us recall that α is fully determined by gxx, the function β is determined by gxx and gux,
while the third metric component guu enters only γ.
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7.4 The Maxwell equations

As the next step, we apply the 4 independent Maxwell equations in the form (43) and (41), namely

(GFa),b =
(

GFb),a and Fux,r + Fru,x − Frx,u = 0 , (211)

which restrict the possible electromagnetic field and its coupling to the gravitational field. For ex-
plicit evaluation of the partial derivatives with respect to a, b = {r, u, x} we employ the expressions
directly following from (195) and (204)–(206), implying (210), namely

G,a = − 1
2G

3 gxx,a , (212)

Fr,a =
1

κ0Fr

(

1
2α,a

)

, (213)

Fx,a =
1

κ0Fr

(

(β − α gux),a − 1
2 (β − α gux)

α,a

α

)

, (214)

Fu,a =
1

κ0Fr

(

γ,a − 1
2γ
α,a

α

)

. (215)

Using these relations in calculating (GFa),b =
(

GFb),a for ab = rx, ru, ux we obtain

(

α,x + 2α
G,x

G

)

− 2(β − α gux),r + (β − α gux)
(α,r

α
+ 2Θ

)

= 0 , (216)

(

α,u + 2α
G,u

G

)

− 2γ,r + γ
(α,r

α
+ 2Θ

)

= 0 , (217)

γ,x − γ
(α,x

2α
− G,x

G

)

− (β − α gux),u + (β − α gux)
(α,u

2α
− G,u

G

)

= 0 , (218)

respectively. Notice that the terms in the large brackets depend only on gxx ≡ G−2 and their
derivatives. The last Maxwell equation (211), using the inversion of (14)–(16),

Frx = Fr , (219)

Fru = G2(Fx + guxFr) , (220)

Fux = guxG
2(Fx + guxFr)− Fu − guuFr , (221)

reads

β,x + β,r gux + β
[

gux,r − gux

(α,r

2α
+ 2Θ

)

−
(α,x

2α
− 2

G,x

G

)]

− 1

2G2

[

2γ,r − α,r

( γ

α
− guu

)

+ α,u + 2α guu,r

]

= 0 . (222)

The four equations (216)–(218) and (222) put restrictions on the metric functions, encoded in
G,α, β, γ.

7.5 Remaining Einstein equations Rab = 2Λ gab + κ0 G
2FaFb

Finally, it is necessary to solve the remaining three Einstein equations (38) for the components
ab = xx, ux, uu. Using (210) we immediately derive their form

Rxx = 2Λ gxx +
G2

α
(β − α gux)

2 , (223)

Rux = 2Λ gux +
G2

α
(β − α gux) γ , (224)

Ruu = 2Λ guu +
G2

α
γ2 . (225)
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Substituting the explicit expressions for the corresponding Ricci tensor components (A27)–(A29)
reveals a rather complicated system of PDEs for the metric functions which must be solved together
with (216)–(218) and (222).

At this stage, it does not seem possible to find a general solution of these equations. However,
we have achieved a separation of the variables representing the gravitational and the electromag-
netic field. Indeed, the system of 7 equations (216)–(218), (222), and (223)–(225) with (A27)–(A29)
involves only the three metric functions gxx, gux, guu, encoded also in the functions G and α, β, γ
defined in (195) and (207)–(209). After their solution is found, the corresponding three (dual)
components of the electromagnetic field Fr , Fx, Fu are easily obtained by applying the relations
(210). The components Frx, Fru, Fux are then their simple combinations (219)–(221).

7.6 A simple particular solution

To demonstrate the usefulness of our formulation of the most general Einstein–Maxwell field
equations and also to show that the class of Robinson–Trautman 2+1 spacetimes with non-aligned
electromagnetic field is not empty, we will now derive a special solution of the above system of
equations.

Let us assume that only the non-aligned component Fr of the electromagnetic field is non-
trivial, i.e.,

Fr =

√

α

κ0
6= 0 , Fx = 0 , Fu = 0 . (226)

The field equations (204)–(206) then imply

β − α gux = 0 , (227)

γ = 0 . (228)

Further simplification is achieved by assuming

gux = 0 . (229)

In such a case the condition (227) β = 0 is satisfied due to (208), while (228) gives

guu,rr − 4Λ + 2Θ,u +Θ
(

guu,r − 2
G,u

G

)

= 0 . (230)

The Maxwell equations (216)–(218), (222) reduce to

α,x

α
+ 2

G,x

G
= 0 , (231)

α,u

α
+ 2

G,u

G
= 0 , (232)

α,r guu + α,u + 2αguu,r = 0 , (233)

and the final three Einstein equations simplify as

Rxx = 2Λ gxx , (234)

Rux = 0 , (235)

Ruu = 2Λ guu , (236)

where

Rxx = gxx guu
(

Θ,r +Θ2
)

+ 2gxxΘ,u +Θ
(

gxxguu,r + gxx,u
)

, (237)

Rux = − 1
2guu,xr +

1
2Θguu,x , (238)

Ruu = 1
2guuguu,rr +

1
4g

xxgxx,uguu,r − 1
2g

xxgxx,uu

− 1
2g

xxguu||xx + 1
4 (g

xxgxx,u)
2 + 1

2Θ
(

guuguu,r − guu,u
)

. (239)
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The equations (231) and (232) can be easily integrated, yielding

α = f(r)G−2 ≡ f(r) gxx , (240)

where f(r) is any function of the coordinate r. Equation (233) gives the constraint

guu,r +
( f ′

2f
+Θ

)

guu − G,u

G
= 0 , (241)

in which f ′ is the derivative of f . It thus remains to solve (230), (241) and (234)–(236).
Now, combining (240) with the definition (207) we obtain

Θ,r +Θ2 = −f(r) ,
which is the Ricatti-type equation for the expansion Θ. Using the substitution Θ = z,r/z, it can
be rewritten as the linear equation z,rr + f(r) z = 0. Let us consider here only the simplest case
of a constant f ,

f ≡ C2 . (242)

By applying (195) we obtain the explicit solution

Θ(r) = C cot(Cr) , (243)

G =
P (u, x)

sin(Cr)
, (244)

gxx =
sin2(Cr)

P 2(u, x)
. (245)

(We have applied the coordinate freedom, namely a trivial constant shift in the coordinate r, to
simplify the expressions.) It is now easily seen that for the particular choice

P = 1 , (246)

guu = 0 , (247)

Λ = 0 , (248)

all the remaining field equations (230), (241) and (234)–(236) are satisfied because Rxx = 0,
Rux = 0 and Ruu = 0. We have thus obtained a special Robinson–Trautman solution

ds2 = sin2(Cr) dx2 − 2 du dr , (249)

with a non-aligned electromagnetic field

Fr =
C√
κ0G

=
C√
κ0

sin(Cr) , Fx = 0 , Fu = 0 , (250)

that is

∗F =
C√
κ0

dr . (251)

Using (219)–(221), this is equivalent to

F =
C√
κ0

sin(Cr) dr ∧ dx , (252)

corresponding to the potential

A = − 1√
κ0

cos(Cr) dx . (253)

By rescaling the coordinates r and u the constant C can be set to C = 1, but we prefer to keep it
free because it represents the value of the electromagnetic field and r is not dimensionless.

Actually, (249) is the metric 3) on page 133 of [32] for q = 0, which admits 4 Killing vectors
(see also the metric (4.1) in [33]).
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8 Final summary and remarks

In this contribution we systematically solved the Einstein–Maxwell equations with Λ, obtaining
all electrovacuum 2+1 spacetimes. We identified main geometrically distinct subclasses, and we
explicitly derived the corresponding metrics and electromagnetic fields. In particular:

• The metric of any such spacetime can be written in canonical coordinates in the form (3)

ds2 = G−2 dx2 + 2 gux du dx− 2 du dr + guu du
2 . (254)

• The generic electromagnetic Maxwell 2-form field and its dual 1-form have three independent
components (11) and (21), namely

F = Fru dr ∧ du+ Frx dr ∧ dx+ Fux du ∧ dx , (255)
∗F = G (Fr dr + Fu du+ Fx dx ) , (256)

where Fr = Frx, Fx = gxxFru − guxFrx, Fu = guxFru − Fux − guuFrx.

• In terms of the Newman–Penrose scalars (25) of distinct boost weights +1, 0, −1, the
Maxwell field invariants F 2 ≡ Fab F

ab and ∗F 2 ≡ ∗Fa
∗F a are

1
2F

2 = − ∗F 2 = 2φ0φ2 − φ21 . (257)

The electromagnetic field is aligned with k = ∂r ⇔ φ0 = 0 ⇔ Frx = 0 ⇔ Fr = 0.

Such an aligned field has only two components, namely φ2 = GFu ≡ G (guxFru − Fux) and
φ1 = G2Fx ≡ Fru. In the case when φ2 = 0 ⇔ Fu = 0, the electromagnetic field is non-null,
characterized just by φ1 = Fru. Contrarily, when φ1 = 0 ⇔ Fx = 0, it is null (radiative),
characterized just by φ2 = −GFux.

• Evaluating the energy-momentum tensor (34) we derived that, in terms of these quantities,
the Einstein–Maxwell field equations take a simple form (38),

Rab = 2Λ gab + κ0G
2FaFb , (258)

(equivalent to Rab = 2Λ gab + κ0
∗Fa

∗Fb) and (43), (41),

(GFa),b =
(

GFb),a , F[ab,c] = 0 . (259)

• In the triad (6) of the metric (254), all optical scalars of a congruence generated by the
privileged null vector field k = ∂r vanish except, possibly, expansion

Θ = −(lnG),r . (260)

There are thus two geometrically distinct classes of spacetimes to be investigated:

1. Θ = 0, defining the non-expanding Kundt class, with the metric function

G ≡ P (u, x) , (261)

2. Θ 6= 0, defining the expanding Robinson–Trautman class, with the metric function

G ≡ G(r, u, x) . (262)

• Keeping the full generality, we explicitly integrated the coupled system of the field equa-
tions (258) and (259) both for the Kundt and the Robinson–Trautman spacetimes. It turned
out that, as in standard 3+1 general relativity, the Kundt class only admits aligned elec-
tromagnetic fields while the Robinson–Trautman class admits both aligned and non-aligned
electromagnetic fields. Therefore, we treated these three distinct families of spacetimes in
three separate sections of our paper, namely Sec. 5, Sec. 6, and Sec. 7, respectively.

30



• All Kundt spacetimes (Sec. 5) with necessarily aligned electromagnetic fields have the form

ds2 =
dx2

P 2
+ 2 (e+ f r) du dx − 2 du dr

+
(

a+ b r +
(

Λ + 1
4P

2f2 − κ0

2 Q
2
)

r2
)

du2 , (263)

and
F = Q dr ∧ du+ (f Q r − ξ) du ∧ dx , (264)

corresponding to the potential
A = Ar dr +Ax dx , (265)

where Ar = −
∫

Q du and Ax = r
∫

f Q du−
∫

ξ du, see equations (94)–(97). As summarized
in Subsec. 5.8, the function Q(u, x) represents the non-null component, while the function
ξ(u, x) represents the null component of the Maxwell field. Their relation to the metric
functions P, e, f and a, b is explicitly given by the Einstein–Maxwell equations (102)–(106).
In Subsec. 5.8 we presented a basic description of these solutions, separately for two geomet-
rically distinct subclasses f = 0 and f 6= 0.

This large family of non-expanding Kundt spacetimes contains many interesting subclasses
which represent electrovacuum universes and also waves on these cosmological backgrounds.
The simplest of them are gravitational and electromagnetic pp-waves with Λ = 0. These
are defined by the condition ka;b =

1
2gab,r = 0 which requires f = 0, b = 0, Q = 0. The field

equations (107)–(111) then yield the explicit metric in the Brinkmann form [31]

ds2 =
dx2

P 2
+ 2 e dudx− 2 dudr + a du2 , (266)

and the coupled electromagnetic wave

F = − γ(u)

P (u, x)
du ∧ dx , (267)

corresponding to

A = Ax dx where Ax = −
∫

γ(u)

P (u, x)
du . (268)

Here γ(u) is an arbitrary profile function of the retarded time u, while the metric function
a(u, x) is obtained by integrating the only remaining field equation (111).

• All Robinson–Trautman spacetimes (Sec. 6) with aligned electromagnetic fields (for which
the metric function G simplifies to G = P (u, x)/r) can be written as

ds2 =
r2

P 2

(

dx+ e P 2du
)2 − 2 dudr

+
(

µQ2 − κ0Q
2 ln

∣

∣

∣

Q

r

∣

∣

∣
+ 2 (lnQ),u r + Λ r2

)

du2 (269)

with

F =
Q(u)

r
dr ∧ du corresponding to A = Q(u) ln

r

r0
du , (270)

see equations (180)–(182). Here µ is a constant while the metric functions P and e satisfy
the field equation (178), that is

(Q

P

)

,u
= Q (e P ),x . (271)

The dual 1-form Maxwell field reads

∗F =
Q

P
dx+ e P Q du . (272)
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As summarized in Subsec. 6.8, the function Q(u) gives the non-null component φ1 = Q(u)/r
of the Maxwell field. Somewhat surprisingly, there is also an additional null (radiative)
component φ2 = e P Q when e 6= 0. However, such Maxwell fields cannot be purely null
because φ1 = 0 implies φ2 = 0.

The simplest e 6= 0 solution of the field equation (271) is P = 1, e = x (lnQ),u + α(u), which
yields the metric (186).

Another interesting subclass (188) arises for factorized P such that P = Q(u)β(x) and
e P = α(u). The special case α = 0 and Q = const. of these expanding Robinson–Trautman
spacetimes is equivalent to the solution (192), (193),

ds2 = −Φ(r) dt2 +
dr2

Φ(r)
+ r2dϕ2 , Φ(r) = −m+ κ0Q

2 ln
∣

∣

∣

Q

r

∣

∣

∣− Λ r2 , (273)

which is the family of cyclic symmetric, electrostatic black holes with Λ found in [24] and
discussed in Section 11.2 of [6].

• The complementary class of Robinson–Trautman spacetimes with non-aligned electromag-
netic fields is presented in Sec. 7. In this more complex case, the metric has the form (254)
with a general function G(r, u, x), cf. (262). Moreover, the electromagnetic field now has
a nontrivial component φ0 6= 0 ⇔ Frx 6= 0 ⇔ Fr 6= 0, which considerably complicates the
solution of the Einstein–Maxwell equations.

Nevertheless, we were able to explicitly express the generic three components of the Maxwell
field separately in terms (of the combination) of the metric functions as

Fr =

√

α

κ0
, Fx =

(β

α
− gux

)

Fr , Fu =
γ

α
Fr , (274)

where the functions α, β, γ are defined in (207)–(209). Interestingly, α is determined only
by gxx, β is determined by gxx and gux, while the third metric component guu enters only γ.

We also derived a fully explicit form (216)–(218), (222) of all 4 Maxwell equations (259).
Finally, there are 3 remaining Einstein equations (223)–(225). This system of 7 equations
involves only 3 metric functions. After their solution is found, all components Fr, Fx, Fu of
the corresponding electromagnetic field are easily obtained using (274). In this sense, we have
achieved a separation of the variables representing the gravitational and the electromagnetic
field.

Although at present it is not possible for us to find a general solution to these 7 equa-
tions, the formulation of the problem presented here seems to be useful. This fact has been
demonstrated in Subsec. 7.6 where we have explicitly identified a particular solution with
non-aligned electromagnetic field

ds2 = sin2(Cr) dx2 − 2 du dr , (275)

with

F =
C√
κ0

sin(Cr) dr ∧ dx corresponding to A = − 1√
κ0

cos(Cr) dx . (276)

This special exact Robinson–Trautman spacetime contains electromagnetic field which has
only the non-aligned component Fr = (C/

√
κ0 ) sin(Cr). It admits 4 Killing vectors [32–34].

Of course, many questions have remained open. First of all, it is necessary to find explicit
relations to already known solutions summarized in [6]. Some basic identifications have already
been presented here, namely:
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• Maximally symmetric backgrounds (Minkowski, de Sitter, anti-de Sitter) are contained both
in the Kundt and Robinson–Trautman class of spacetimes (263) and (269), respectively.

• There are electrovacuum backgrounds in the form of direct-product geometries, such as the
2+1 analogue of the exceptional Plebański–Hacyan metric with Λ < 0 and uniform Maxwell
field (123).

• We identified the complete family of pp-waves in flat space, which are spacetimes admitting
a covariantly constant null vecor field. In the Brikmann form (266) they include the off-
diagonal metric terms.

• Within the Robinson–Trautman class with aligned fields we explicitly identified the cyclic
symmetric charged black holes with any cosmological constant and electrostatic field (273).

Our main problem now is to identify all other known classes of solutions in 2+1 dimensions by
using specific invariant geometrical characterizations (such as an algebraic structure, symmetries,
identification of rotation and acceleration of the sources, etc.). Subsequently, explicit coordinate
transformation must be found to relate our form of the solutions to those derived previously.

After identification of new spacetimes, their geometrical and physical analysis should be per-
formed. Also, a systematic integration of the field equations for non-aligned Maxwell fields in the
Robinson–Trautman class is desirable. However, these tasks are left for future works.

Acknowledgments

This work was supported by the Czech Science Foundation Grant No. GAČR 20-05421S. We are
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A Connections and curvature components in canonical co-

ordinates

The Christoffel symbols for the general non-twisting spacetime (3) after applying the condition
(7) are

Γr
rr = 0 , (A1)

Γr
ru = − 1

2guu,r +
1
2g

rxgux,r , (A2)

Γr
rx = − 1

2gux,r +Θgux , (A3)

Γr
uu = 1

2

[

− grrguu,r − guu,u + grx(2gux,u − guu,x)
]

, (A4)

Γr
ux = 1

2

[

− grrgux,r − guu,x + grxgxx,u
]

, (A5)

Γr
xx = −Θgrrgxx − gux||x +

1
2gxx,u , (A6)

Γu
rr = Γu

ru = Γu
rx = 0 , (A7)

Γu
uu = 1

2guu,r , (A8)

Γu
ux = 1

2gux,r , (A9)

Γu
xx = Θgxx , (A10)

Γx
rr = 0 , (A11)

Γx
ru = 1

2g
xxgux,r , (A12)

Γx
rx = Θ , (A13)

Γx
uu = 1

2

[

− grxguu,r + gxx(2gux,u − guu,x)
]

, (A14)

Γx
ux = 1

2

[

− grxgux,r + gxxgxx,u
]

, (A15)

Γx
xx = −Θgrxgxx +

SΓx
xx , (A16)

where

SΓx
xx ≡ 1

2g
xxgxx,x = −G,x

G
(A17)

is the Christoffel symbol with respect to the only spatial coordinate x, i.e., coefficient of the
covariant derivative on the transverse 1-dimensional space spanned by x.

The non-vanishing Riemann curvature tensor components are then

Rrxrx = −
(

Θ,r +Θ2
)

gxx , (A18)

Rrxru = − 1
2gux,rr +

1
2Θgux,r , (A19)

Rruru = − 1
2guu,rr +

1
4g

xx(gux,r)
2 , (A20)

Rrxux = 1
2gux,r||x +

1
4 (gux,r)

2 − gxxΘ,u − 1
2Θ

(

gxx,u + gxxguu,r
)

, (A21)

Rruux = gu[u,x],r +
1
4g

rx(gux,r)
2 − 1

4g
xxgxx,ugux,r

+Θ
(

gux,u − 1
2guu,x − 1

2guxguu,r
)

, (A22)

Ruxux = − 1
2 (guu)||xx + gux,u||x − 1

2gxx,uu + 1
4g

rr(gux,r)
2

− 1
2guu,rexx +

1
2guu,xgux,r − 1

2g
rxgxx,ugux,r +

1
4g

xx(gxx,u)
2

− 1
2Θgxx

[

grrguu,r + guu,u − grx(2gux,u − guu,x)
]

. (A23)
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Finally, the components of the Ricci tensor are

Rrr = −
(

Θ,r +Θ2
)

, (A24)

Rrx = − 1
2gux,rr +

1
2Θgux,r +

(

Θ,r +Θ2
)

gux , (A25)

Rru = − 1
2guu,rr +

1
2g

rxgux,rr +
1
2g

xx
(

gux,r||x + (gux,r)
2
)

−Θ,u − 1
2Θ

(

gxxgxx,u + grxgux,r + guu,r
)

, (A26)

Rxx = −gxx grr
(

Θ,r +Θ2
)

+ 2gxx
(

Θ,u − grxΘ,x

)

+ 2guxΘ,x − fxx

+Θ
[

2gux||x + 2gux,rgux + gxx
(

guu,r − 2grxgux,r
)

− 2exx
]

, (A27)

Rux = − 1
2g

rrgux,rr − 1
2guu,rx + 1

2gux,ru − 1
2g

rx
[

gux,r||x + (gux,r)
2
]

+gxx
(

1
2gux,rgux||x − 1

2exxgux,r
)

+ guxΘ,u

+Θ
[

guxguu,r − 1
2 (guugux,r − guu,x)− gux,u + 1

2g
rxgux,rgux + 1

2g
rxgxx,u

]

, (A28)

Ruu = − 1
2g

rrguu,rr − grxguu,rx − 1
2g

xxexxguu,r + grxgux,ru − 1
2g

xxgxx,uu

+gxx(gux,u||x − 1
2guu||xx) +

1
2 (g

rrgxx − grxgrx)(gux,r)
2 + 1

2g
xxgux,rguu,x + 1

4 (g
xxgxx,u)

2

+ 1
2Θ

[

− grx(2gux,u − guu,x − guxguu,r) + guuguu,r − guu,u
]

, (A29)

and the Ricci scalar is

R = guu,rr − 2grxgux,rr − 2gxxgux,r||x − 3
2g

xx(gux,r)
2

+2Θ,r guu + 4Θ,u + 2Θ2guu +Θ(2guu,r + 2grxgux,r + 2gxxgxx,u) . (A30)

The symbol || denotes the covariant derivative with respect to gxx :

gux||x = gux,x − gux
SΓx

xx , (A31)

gux,r||x = gux,rx − gux,r
SΓx

xx , (A32)

gux,u||x = gux,ux − gux,u
SΓx

xx , (A33)

(guu)||xx = guu,xx − guu,x
SΓx

xx , (A34)

where exx and fxx are convenient shorthands defined as

exx ≡ gux||x − 1
2gxx,u , (A35)

fxx ≡ gux,r||x +
1
2 (gux,r)

2 . (A36)

The expressions (A24)–(A29) of the Ricci tensor enable us to write explicitly the gravitational
field equations for any D = 3 Kundt or Robinson–Trautman spacetime.
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[12] J. Podolský and M. Žofka, General Kundt spacetimes in higher dimensions, Class. Quantum
Grav. 26 (2009) 105008 (18pp).
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[20] J. Podolský and R. Švarc, Explicit algebraic classification of Kundt geometries in any dimen-
sion, Class. Quantum Grav. 30 (2013) 125007 (25pp).

36
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