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The effects of a finite guide field on the distribution of plasmoids in high-Lundquist-number current sheets
undergoing magnetic reconnection in large plasmas are investigated with statistical models. Merging of
plasmoids is taken into account either assuming that guide field flux is conserved resulting in non-force-free
profiles in general, or that magnetic helicity is conserved and Taylor relaxation occurs to convert part of the
summed guide field flux into reconnecting field flux towards minimum energy states resulting in force-free
profiles. It is found that the plasmoid distribution in terms of reconnecting field flux follows a power law with
index 7/4 or 1 depending on whether merger frequencies are independent of or dependent on their relative
velocity to the outflow speed, respectively. This result is approximately the same for the force-free and non-
force-free models, with non-force-free models exhibiting indices of 2 and 1 for the same velocity dependencies.
Distributions in terms of guide field flux yield indices of 3/2 for the non-force-free model regardless of velocity
dependence. This is notably distinct from the indices of 11/8 and 1 for the force-free models independent
of and dependent on velocity, respectively. At low guide field fluxes the force-free models exhibit a second
power law index of 1/2 due to non-constant flux growth rates. The velocity dependent force-free model
predicts the production of slightly more rapidly moving large guide field flux plasmoids which is supported by
observational evidence of flux ropes with strong core fields. Implications are discussed on particle acceleration
via Fermi processes.

I. INTRODUCTION

Impulsively fast magnetic reconnection is a ubiquitous
phenomenon widely observed in magnetized space, solar,
astrophysical, and laboratory fusion plasmas1–4. How-
ever, fast collisionless reconnection mechanisms based on
non-MHD (Magnetohydrodynamic) effects such as two-
fluid or kinetic effects5 are only applicable to scales much
smaller than system sizes of these magnetized plasmas
in space and astrophysics. In large systems, collisional
MHD models such as the Sweet-Parker model are com-
monly used to describe reconnection processes. However,
the predicted Sweet-Parker reconnection rate is much too
slow to be consistent with many large scale phenomena
like solar flares. At high Lundquist numbers, it has been
realized that these current sheets can potentially fracture
in a cascading process which results in a significantly in-
creased reconnection rate6. The instability responsible
for this process is the plasmoid instability, which can
grow rapidly leading to a reconnection rate that remains
fast and is weakly dependent on the Lundquist num-
ber7–10. Thus, the plasmoid instability has been pro-
posed as a promising mechanism to couple global system
scale to local dissipation scales in reconnecting current
sheets, although there exist alternative models based on
MHD turbulence11.
In the MHD regime this instability is found at suffi-

ciently high Lundquist numbers7, causing the breakup
of long current sheets into chains of self contained mag-
netic islands. These magnetic islands are highly dynamic,
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interacting with each other as they move through the
length of the primary current sheet until they exit. Elec-
trons can be efficiently accelerated to high energies by
these dynamic magnetic islands12,13 emitting observable
radiation14. The acceleration process is based on reflec-
tion of particles from the ends of each contracting mag-
netic island resulting in first order Fermi acceleration.
Additionally, higher energy particles which are free to
move throughout the primary current sheet across mul-
tiple islands can be mirrored and accelerated by an en-
hanced Fermi process15,16. A better understanding of the
magnetic configuration of plasmoids and their statistical
properties may help reveal how plasmoids can contract,
the relative velocities with which they interact, and hence
how the particles within and in between are accelerated.

Previous studies have shown how this instability can
interrupt a Sweet-Parker current sheet which surpasses
Sc ∼ 104 depending on preexisting noise9,17. A plas-
moid unstable current sheet undergoes a cascading pro-
cess which generates new plasmoids until their mean sep-
aration is low enough that the local Lundquist number
of reconnecting current sheets between them has been re-
duced below Sc, thus stable to the plasmoid instability6.
These plasmoids, however, are highly dynamic through
their interaction. Between the time when a plasmoid is
born and the time when it advects out of the reconnec-
tion layer, it may absorb smaller plasmoids or be ab-
sorbed by larger plasmoids. Reconnection of their sur-
rounding current sheets leads to the accretion of flux as
well. Over time, the current sheet may produce very
large plasmoids on the order of one tenth the length of
the sheet or greater18.

Due to the importance of plasmoids in reconnection ad-
jacent phenomena, statistical scalings have been sought
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both analytically and numerically to describe the distri-
bution of plasmoids most commonly in terms of their re-
connecting flux ψ, as f(ψ). In the Hall-MHD (magneto-
hydrodynamic) regime, f ∝ exp(−ψ) behavior has been
predicted19. This exponential dependence of reconnect-
ing flux has been observed in the near-Earth space with
limited in-situ measurements by a few satellites20,21, by
remote-sensing measurements of solar eruptions22, and
in laboratory experiments23,24 but with limited resolu-
tions. In the 3D MHD regime without a guide field, an
entropy variational principle has been used to derive25 a
power law index of 3, while 2D relativistic particle-in-cell
simulations have been paired with Monte Carlo meth-
ods to uncover a power law index in the range of 1 to
2. The often reported scaling is f(ψ) ∝ ψ−2, seen in
many 2D MHD simulations and justified in most cases
by statistical approaches26–30. It has also been argued
that the combination of a power law index of 1 with an
exponential tail could appear as a power law index of 2 in
numerical results, and analytical models explaining this
behavior have been proposed22,28. Specifically, Huang et
al28 developed a statistical approach which deftly demon-
strates how the power law dependence of the distribution
can be replicated by accounting for the essential behav-
iors of the unstable current sheet. Two models, one which
allows for variation in the relative velocity to the mean
outflow of these plasmoids and one which does not, pro-
duce power law indices of 1 and 2 of the reconnecting
flux, respectively. All of these models do not explicitly
take into account of the presence of a finite guide field in
the reconnecting current direction. In many natural cir-
cumstances, however, a finite guide field is present during
reconnection which may modify the distribution of plas-
moids. Work by Ni et al31 found that the presence of
a guide field does not have a major impact on the in-
stability itself. We expand here the approach of Huang
et al. to investigate effects of a finite guide field on the
plasmoid distributions.
Both models of Huang et al.28 are further developed

here by adopting force-free field profiles internal to plas-
moids as a result of Taylor relaxation32 to determine
the distribution of plasmoids in the presence of a finite
guide field. Without a guide field, the current sheet
and the plasmoids within are essentially non-force-free,
e.g. the incoming reconnecting field pressure is balanced
by plasma pressure. With a finite guide field, however,
plasmoids become magnetic flux ropes33 which are long
known34 to relax towards a force-free state possessing a
strong core field in an approximately cylindrical shape35.
Such force-free fields are also known in the laboratory
pinch experiments as a result of Taylor relaxation32,36,
during which magnetic energy is minimized while con-

serving magnetic helicity37. The force-free fields, ~B, are
given by36,38

∇× ~B = λ~B, (1)

where λ is the eigenvalue determined by boundary con-
ditions. The lowest order solution to this equation was

found to be Bz = B0J0(λr) and Bθ = B0J1(λr) in cylin-
drical coordinates. Here J0 and J1 are the zeroth and
first order Bessel functions of the first kind, respectively.
Taylor showed36 that in toroidal pinch experiments with
large Lundquist numbers and moderate toroidal fields,
these profiles reasonably predicted the peaked toroidal
(core) field at the center with a much reduced magni-
tude or even reversed direction at the edge by extending
beyond the first zero of J0.

Magnetic reconnection with a guide field can be
thought of as transporting magnetic helicity from the
background into the plasmoids in the current sheet. If
these plasmoids with a finite magnetic helicity are al-
lowed to relax towards a minimum energy state while
advecting towards the current sheet exit, their internal
field structures will take a form of force-free profiles.
When plasmoids merge, magnetic helicity can be dis-
sipated in the secondary current sheets. However for
high Lundquist numbers (≥ Sc) this dissipation is low
for moderate to weak guide fields39 while magnetic en-
ergy is reduced significantly during merging. Therefore,
the plasmoid merging process can be also regarded as a
Taylor relaxation process to minimize magnetic energy
while conserving the total magnetic helicity so that the
resultant plasmoids also take the form of force-free pro-
files. Making use of these assumptions, the anti-parallel
reconnection model is modified to include the effects of
Taylor relaxation with a finite but moderate guide field,
following plasmoid mergers where adequate time for re-
laxation is available. These details are discussed in Sec-
tions II B and IV. Hence, a distribution of reconnecting
and guide field plasmoid fluxes can be obtained. An al-
ternative model is also provided which simply adds guide
field fluxes upon plasmoid coalescence without Taylor re-
laxation40. This represents the strong guide field regime
where Taylor relaxation is not allowed and the plasmoids
are not force-free while non-negligible magnetic helicity
is dissipated in the merging secondary current sheets.
For both the relative-velocity independent and velocity
dependent models, the non-force-free and force-free dis-
tributions are compared and their implications and dif-
ferences are discussed.

In Section IIA we derive the relationships necessary to
relate the reconnecting and guide field fluxes of a plas-
moid to its magnetic helicity, providing the rate at which
plasmoids gain magnetic helicity from the background
reconnection. Some assumptions of the cylindrical plas-
moid model are also discussed, along with their validity
regimes. Section II B lays out further assumptions about
magnetic helicity dissipation as relevant to the construc-
tion of a statistical equation which conserves magnetic
helicity in plasmoid mergers. The non-force-free, guide
field conserving model is also provided as the alternate
regime of a strong guide field. Section III provides the
numerical methods and solutions to the equations de-
rived in Section II B. These distributions and their fea-
tures are discussed in detail in Section IV. With solutions
in hand, the assumptions made earlier can be verified
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or constrained. Section V summarizes the results, espe-
cially where relevant to particle acceleration. Possible
future improvements to the statistical equations are also
discussed.

II. THEORETICAL MODELS

A. Relations between Relaxed Plasmoids and the

Reconnecting Current Sheet

Several simple but important relations between force-
free plasmoids and the reconnecting current sheet where
they are embedded are described in this Section. Each
isolated plasmoid either when they are born or as a re-
sult of merging of two plasmoids is assumed to take the
force-free profiles, as predicted by Taylor through min-
imizing magnetic energy while conserving magnetic he-
licity. Unlike Taylor, however, both the guide field and
reconnecting field fluxes are not conserved; rather they
are determined by the embedded current sheet as follows.
We assume that these plasmoids are simple axisymmetric
cylinders as shown in Fig. 1(a) embedded in the recon-
necting current sheet. The relations between these plas-
moids and the background current sheet are derived in a
straightforward manner by relating the plasmoid radius
a to the eigenvalue λ. At the edge of the plasmoid r = a,
we match the background reconnecting and guide fields
(termed Brec and Bg, respectively) to the azimuthal and
axial magnetic components of the cylindrical plasmoids,
Bθ and Bz respectively. We note that this is less valid for
smaller, newly born plasmoids as their radius is not suf-
ficiently large to reach the asymptotic values of Brec and
Bg. The impact of this assumption, however, is likely
small, and will be discussed in Section III. Eliminating
B0 from the profiles, we have that

Brec
Bg

=
J1(λa)

J0(λa)
. (2)

There are infinitely many solutions to this equation.
However, we assume that the solution with the lowest
value of λa should be used. This is because solutions
with higher λa involve a reversing guide field, yielding
higher energy configurations. These configurations are
unstable to kink modes past the critical λa = 3.176, lead-
ing to non-axisymmetric dynamics which we do not seek
to capture in this model.41 This assumption is supported
by observations which do not typically exhibit a reversed
guide or core field within plasmoids. For the rest of this
paper, the lowest solution with λa satisfying Eq. (2) will
be used. Figure 1(b) shows two such examples of lowest
λa: one for Bg = 0.75Brec and one for Bg = 0. For each
choice of Bg/Brec, the corresponding λa is determined as
shown in Fig. 1(c). Furthermore, once λa is determined,
B0 may also be determined from both Bg = B0J0(λa)
and Brec = B0J1(λa).
The reconnecting flux per unit length (ψ) and the guide

field flux (φ) contained within a plasmoid will be defined
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FIG. 1: (a) Schematic of a cylindrical plasmoid
embedded in part of the reconnecting current sheet
shown with the coordinates used in this paper. The
dotted separatrix coincides with either λa ≈ 2.405 or
≈ 1 in (b). Field lines are drawn on the select surfaces
(omitting the separatrix and innermost surface), shown

as blue outside the plasmoid and green inside. We
assume for simplicity the field lines are nearly circular
up until the separatrix. (b) The plasmoid field profiles
are shown to connect to the constant background field

at r = a, for the cases of Bg/Brec = 0.77 and
Bg/Brec = 0. (c) The functional dependence of λa

versus Bg/Brec is shown to illustrate their relationship.
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as follows:

ψ =

∫ a

0

B0J1(λr)dr, φ =

∫ a

0

B0J0(λr)2πrdr. (3)

For a toroidal system, ψ is the analog of the poloidal flux
per unit axial length and φ is the analog of the toroidal
flux. In the construction of our statistical kinetic equa-
tion it will become necessary to relate the reconnecting
flux, guide field flux, and magnetic helicity through the
background quantities by eliminating individual depen-
dencies on λ and a. The eigenvalue equation can be in-
tegrated over an area with the ẑ normal, which using
Stoke’s theorem and Eq. (3) gives:

∫

∇×B · ẑdA =

∮

Bθ(a)θ̂ · d~l =

2πaBrec = λ

∫

~B · ẑdA = λφ.

(4)

Performing the same integration with the θ̂ normal we
obtain:

∫

∇×B · θ̂dA =

∮

Bz ẑ · d~l =

(B0 −Bg)l = λ

∫

~B · θ̂dA = λψl.

(5)

The loop integration was performed along the magnetic
axis for a distance of l and returns on the cylindrical
surface where the axial magnetic field component equals
the background Bg. There is no contribution to the loop
integration at the ends of the plasmoid due to the radial
magnetic field being zero in the model. Dividing Eq. (4)
by the square of Eq. (5) with rearrangements leads to

2πλaBrecB0

(B0 −Bg)2
=
B0φ

ψ2
= ζ, (6)

where the constant dimensionless term has been renamed
as ζ for simplicity. The same conclusion can be arrived
at from dimensional analysis when the goal is an expres-
sion relating ψ and φ which does not expressly contain
statistical variables such as the plasmoid radius a. In-
stead, only the combination of λa is involved as specified

in Fig.1(c) for a given Bg/Brec. Using ∇ × ~A = ~B the
vector potential can be found for each plasmoid, namely:

~A(λr) =
B0

λ

[[

J1(λr) −
a

r
J1(λa)

]

θ̂ + J0(λr)ẑ
]

, (7)

where the gauge choice has been made such that
Aθ(λa) = 0 for each plasmoid to be isolated to avoid
generating magnetic helicity through linking neighbor-
ing plasmoids and surroundings. (Otherwise the concept
of relative helicity42,43 needs to be invoked.) The mag-
netic helicity for each plasmoid may then be calculated

directly using K =
∫

~A · ~Bd3r. The resulting relation can
be manipulated to yield

K = ψφ

[

λa
B2
rec +B2

g

Brec(B0 −Bg)
+

B0

Bg −B0

]

= αψφ, (8)

where the constant coefficient has been renamed α. This
gives a simple relationship for the magnetic helicity which
depends only on ψ and the background parameters:

K = α(ζ/B0)ψ
3. (9)

The growth rate of the plasmoid magnetic helicity due
to reconnection if the plasmoid relaxes more rapidly than
the rate by which the primary current sheet reconnects
(an assumption to be justified in Section II B), is given
by

dK

dt
= 3γ(α(ζ/B0))

1/3K2/3. (10)

The assignment dψ/dt = γ has been made for brevity. To
determine the final state of a plasmoid which has formed
as the result of the merger of two plasmoids, we may
then exploit either guide field flux conservation or mag-
netic helicity conservation depending on the background
conditions.

B. The Kinetic Equations for the Plasmoid Distribution

A standard governing kinetic equation for plasmoid
size distribution in terms of the reconnecting field flux in-
cludes contributions from the sources, growth, and sinks
of plasmoids as they evolve in the dynamic current sheets.
The source of plasmoids is always localized at zero flux
while their growth is based on the overall reconnection
rate. The latter is determined by the critical Lundquist
number for a Sweet-Parker current sheet to become un-
stable8: Sc ∼ 104. Therefore, the stable current sheets
which lie in between plasmoids add flux to the plasmoids
at a rate dψ/dt = BVA/

√
Sc = γ. Following Huang &

Bhattacharjee28, with the assumption that mergers occur
with a frequency independent of the plasmoid relative ve-
locities, the statistical kinetic equation is given by

∂f

∂t
+ γ

∂f

∂ψ
= ξδ(ψ)− n>

τA
f − 1

τA
f, (11)

where

n>(ψ) =

∫

∞

ψ

f(ψ′)dψ′. (12)

All of the solutions obtained are steady state with ∂t = 0.
On the right, the first term, ξδ(ψ), represents the creation
of plasmoids where δ(ψ) is Dirac δ-function. The second
term represents the loss due to absorption by larger plas-
moids with a rate proportional to their number, n>(ψ),
assuming a typical relative speed on the order of VA. The
third is the sink term representing the advection of plas-
moids out of the reconnection layer. The Alfvén time
τA = L/VA is that of the reconnecting component of the
background current sheet. The solution for this equation
was determined to be28

f(ψ) =
2C

γτA

exp(−ψ/γτA)
[C − exp(−ψ/γτA)]2

(13)
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where C = 1 + 2/N and N is the number of plasmoids.
This solution possesses three regimes: a constant initial
section where plasmoids grow due to reconnection not
having had time to merge yet, followed by a power law
dependence with the index of 2 where mergers dominate
dynamics, then lastly an exponential tail where advection
loss dominates for the largest plasmoids. When account-
ing for plasmoids with varying velocities relative to the
mean outflow, the statistical kinetic equation takes on a
modified merger rate according to:

∂F

∂t
+ γ

∂F

∂ψ
= ξδ(ψ)h(v) − H

τA
F − 1

τA
F, (14)

where

H(ψ, v) =

∫

∞

ψ

∫

∞

−∞

|v − v′|
VA

F (ψ′, v′)dv′dψ′. (15)

The plasmoid creation term is now endowed with
a velocity distribution, assumed to be h(v) =
(1/

√
πVA) exp(−v2/V 2

A) (although as noted by Huang et
al28 and confirmed by our own tests the solution is not
very sensitive to the exact distribution chosen). The coa-
lescence term corrects the rate at which mergers occur by
the difference in velocity between the two merging plas-
moids, approximating the resultant velocity as that of
the larger plasmoid. An analytical solution to the steady
state form of this equation is not known, it is instead
solved numerically.

C. A Model for Force-Free Plasmoids

Equations 11 and 14 can be modified to account for the
effects of Taylor relaxation with a guide field. As the re-
connecting flux of a plasmoid grows by reconnection, its
magnetic helicity also grows. This change in magnetic he-
licity calls for a continuous modification to the plasmoid
internal profiles if there is sufficient time for the plasmoid
to continuously relax. This condition is generally satis-
fied as the plasmoids grow on the tearing mode growth
time while relaxation is mostly Alfvénic, evidenced for
example from experimental observations44. Furthermore,
the relaxation time is defined with respect to a given plas-
moid’s local Alfvén time. For current sheets with many
small plasmoids, the vast bulk of the plasmoid popula-
tion will have the local Alfvén times orders of magnitude
faster than the global Alfvén time, thereby consistent
with globally super-Alfvénic growth rates 10,45,46. The
relaxation time is also much shorter than the plasmoid
advection time in the current sheet or equivalently the
reconnection time on order of

√
ScτA = 100τA. There-

fore it is well justified to assume that all plasmoids in
the current sheet, other than those having very recently
undergone coalescence, are always in a force-free state at
any given time minimizing their magnetic energy while
conserving magnetic helicity. For these plasmoids then,
the reconnecting field flux and helicity are related accord-
ing to Eq. (9), α(ζ/B0)ψ

3 = K.

As hinted above, in many instances it will be assumed
that there is ample time in between mergers for a given
plasmoid to reach the force-free state. Small plasmoids
rarely encounter plasmoids with a lower flux, and large
plasmoids experience a small change in magnetic helicity
when merging, thereby not deviating significantly from
the force-free state. For intermediate plasmoids, how-
ever, there may exist a regime where plasmoids merge
too frequently at comparable magnetic helicities to fully
relax to a force-free state in between mergers. Therefore,
we develop models in two opposing limits: one model for
all plasmoids to be force-free after relaxation while con-
serving magnetic helicity even during plasmoid mergers,
as described in this subsection. The other model on non-
force-free plasmoids without relaxation while conserving
guide field flux, as described in the next subsection. The
range of validity for the force-free assumption will require
further discussion, however it will be reserved for Section
IV.

Regardless of whether the resultant plasmoid is force-
free, magnetic helicity is conserved if the helicity change
or dissipation in the secondary current sheet during co-
alescence is negligible. The change in magnetic helic-
ity during plasmoid merging is due to the change in
the linkage between the guide field flux contained in the
secondary current sheet and the reconnecting field flux
around the current sheet. An estimate of the rate of
change in magnetic helicity per change in magnetic en-
ergy, W , is given by39

∣

∣

∣

∣

WdK

KdW

∣

∣

∣

∣

= 2
δs|Bg|
LsBrec

, (16)

where δs and Ls are thickness and length of the sec-
ondary current sheet, respectively. Since δs/Ls is the
steady state reconnection rate for the plasmoid merging,
it should range from 0.1 to 1/

√
Sc = 0.01, depending on

collisionality. Therefore, when the guide field is compa-
rable to or weaker than the reconnecting field, no signif-
icant helicity is expected to be generated or dissipated
by secondary current sheets. This permits our consid-
eration of the plasmoid merger process as simultaneous
Taylor relaxation. In a strong guide field, the dissipa-
tion of magnetic helicity would not be negligible and so
the merging process would not be one of constant helic-
ity. In fact, Taylor relaxation does not typically occur in
this limit in the laboratory fusion plasmas and resultant
profiles are generally not force-free.

With the assumptions above, the statistics of the new
models can be described with modification of Eqs. (11)
and (14). The non-velocity independent variable is cho-
sen to be K, and the corresponding reconnection growth
is given by Eq. (10). The loss term now includes ad-
vection and plasmoid mergers while a source is added to
account for the resultant plasmoids which reached the K
in question by merging. If we denote the sources and
sinks as ΣS(K) and note that the influx of probability
density is given by f(K)dK/dt, then the conservation of
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particle number for a dynamic distribution yields

d

dt

∫

f(K)dK +

∫

d

dK

(

f(K)
dK

dt

)

dK =

∫

ΣS(K)dK.

(17)
Taking the steady state and equating the integrands,
the distribution of plasmoids with a velocity independent
merger frequency is therefore given by

3γ

(

αζ

B0

)1/3
d

dK

(

K2/3f

)

= ξδ(K)− N + 1

τA
f

+
1

τA

∫ K/2

0

f(K ′)f(K −K ′)dK ′,

(18)

where N is the total number of plasmoids. The growth
rate is present inside the derivative in order to ensure
that, if only reconnection growth were present, f is con-
served. Here all mergers trigger a change in magnetic
helicity, so the quantity n> of Eq. (11) is instead inte-
grated from 0 to ∞, becoming N . The merger term as-
sumes the frequency of plasmoid mergers betweenK−K ′

and K ′ is f(K ′)dK ′/τA, adding f(K −K ′) to f(K), in
a similar manner to Fermo et al19 where plasmoid area
is conserved. It is integrated to K/2 in order to avoid
double counting. Combined with the merger loss term,
this kinetic model is constructed such that magnetic he-
licity is conserved by plasmoid mergers. Each merger
transforms the resultant plasmoid to a new magnetic he-
licity which, ignoring reconnection and advection terms,
keeps the total helicity in the distribution constant. Sim-
ilar modifications can be made to the velocity dependent
model:

3γ

(

αζ

B0

)1/3
∂

∂K

(

K2/3F

)

= ξδ(K)h(v)− Ht + 1

τA
F

+
1

τA

∫ K/2

0

∫

∞

−∞

|v − v′|
VA

F (K ′, v′)F (K −K ′, v)dv′dK ′

(19)
with

Ht(v) =

∫

∞

0

∫

∞

−∞

|v − v′|
VA

F (K ′, v′)dv′dK ′. (20)

Note that the notation of F for velocity dependent distri-
butions and f for velocity independent distributions will
be used from here on. The same process is used as before
to modify the merger rate to conserve magnetic helicity.
Once again, Ht is simply H of Eq. (14) integrated from
0, and the resultant velocity of a merger is assumed to
be that of the larger plasmoid. A proof of the helicity
conserving property of the merger terms, Eq. (20) and
the last line of Eq. (19), is presented in Appendix A by
showing their first helicity moment is zero. It is easily ex-
tended to the velocity independent case as well. Both of
these force-free models are solved numerically in Sec.III.

D. A Non-Force-Free Model

As an opposing limit of the force-free plasmoid model,
which is more applicable in the strong guide field regime,
we offer an alternative model where plasmoid internal
field profiles are not necessarily force-free but total guide
field flux is conserved by mergers. In this case, the kinetic
equation in ψ is unchanged from Huang et al. but the
kinetic equations in φ are similar to those of the relaxing
model in terms of K:

γg
df

dφ
= ξδ(φ) − N + 1

τA
f +

1

τA

∫ φ/2

0

f(φ′)f(φ − φ′)dφ′

(21)
and

γg
∂F

∂φ
= ξδ(φ)h(v) − Ht + 1

τA
F+

1

τA

∫ φ/2

0

∫

∞

−∞

|v − v′|
VA

F (φ′, v′)F (φ− φ′, v)dv′dφ′
(22)

for constant and non-constant velocities, respectively.
Here Ht is the same as Eq. (20) with the substitution
ψ → φ. Similar logic is employed for the source and
loss terms, but the growth rate due to reconnection
is modified. For a current sheet of thickness δ, while
ψ is proportional to Brecδ per unit length, φ is pro-
portional to Bgδ

2. The resultant growth rate is then
γg = Bgδ

2/τA,local = Bg(l
2/Sc)(VA/l) = BgVAL/NSc,

where the local current sheet length l = L/N . This solu-
tion is also pursued numerically.

III. NUMERICAL SOLUTIONS TO GUIDE FIELD

MODELS

The method of Jacobi relaxation was used to find the
steady state solution of the force-free model, and for-
ward Euler time stepping was used to find the quasi-
steady state solution of the non-force-free model47. In
both cases a logarithmically spaced grid was employed
for the non-velocity variable, so the magnetic helicity or
guide field flux conserving source term needed to make
use of interpolation. The value of f(K−K ′) (or f(φ−φ′))
was found by using quadratic interpolation to K − K ′

(φ−φ′), while f(K ′) (f(φ′)) was simply evaluated at the
grid points. All K (φ) integrations were performed with
Simpson’s rule adapted for the logarithmic grid. The
v integrations were performed using trapezoidal quadra-
ture on a uniform grid. All integration source terms con-
verge to at least second order. The convective gradient
terms were calculated with Euler upwinding. To avoid
roundoff error, the magnetic helicity solution was found
as a function of K1/3 ∼ ψ which significantly lowered the
number of decades spanned by the domain. When us-
ing Jacobi iteration the non-force-free solution suffered
from unstable over-relaxation unless a very high preci-
sion was used, leading to the choice to iterate in time
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until a quasi-steady state was reached. In both cases
the lower bound was fixed to determine ξ and an upper
bound was chosen equal to 0. The solutions are given
assuming Bg = Brec = L = vA = 1 (where Brec is used
for vA), except for the strong guide field regime where
Bg = 100Brec is used.

A. Velocity Independent Models

10-10 100

K

100

1010

1020

f(
K

)

f(K) ~ K-5/4

f(K) ~ K-2/3

FIG. 2: The solution to the steady state statistical
kinetic equation (Eq. 18) as a function of magnetic

helicity, K, for the force-free model e with S 106. The
power law slopes match the K−2/3 and K−5/4 lines

well, with the similar exponential tail to that of Huang
et al28, but a second power law results at low K from

the fact that dK/dt is not constant.

The distribution as a function of magnetic helicity for
the velocity independent model was calculated for ap-
proximately S = 106, which assumes N ∼ S/Sc. It
is important to stress that in practice when solving for
the distributions, instead of choosing S we choose the
left bound, which determines the number of plasmoids,
which in turn is used to estimate S. A plot of the dis-
tribution can be found in Fig. 2 for N = 97.2. The
helicity dependent solution can be converted to a solu-
tion as a function of the reconnecting field flux by using
ψ = (K/α(ζ/B0))

1/3 (equivalent to assuming all plas-
moids are always force-free), and enforcing

∫

fψ(ψ)dψ =
∫

fK(K)dK = N where dK = 3(αζ/B0)ψ
2dψ (fψ , fK ,

and fφ are simply f for each variable with subscripts
to emphasize their respective normalizing scale factors).
The similarities between the force-free and the non-force-
free models at S = 106 are apparent as shown in Fig. 3.
The exponential tail has been incrementally stretched to
higher ψ for the force-free model, and even more subtle is
the lessening of the power law index from 2 to 7/4. These
changes may in practice be hard to detect from an exper-
imental or numerical standpoint. The flux distributions

10-4 10-3 10-2 10-1

100

105

f(
)

Force-Free
Non-Force-Free

f( ) ~ -7/4

f( ) ~ -2

FIG. 3: Distributions for both the force-free (Eq. 18
with Eq. 9) and non-force-free (Eq. 11) models, at

S = 106. There is a very slight reduction of slope in the
force-free distribution with a 7/4 power law index,

deviating from the ψ−2 behavior of the non-force-free
distribution.

for multiple Lundquist numbers are shown in Fig. 4 for
the force-free model. As expected, at higher Lundquist
numbers the power law region is extended similarly to
the behavior of the non-force-free solution28.

10-6 10-4 10-2

100

105

1010

f(
)

S = 1e6
S = 1e7
S = 1e8

FIG. 4: Distribution of force-free plasmoids versus ψ.
Results are shown for S ∼ 106, 5× 106, and 107.

Further differences are revealed in the comparison be-
tween the force-free and non-force-free distributions as a
function of φ. Figure 5 shows both models for a simi-
lar number of plasmoids (Nff ∼ 100, Nnff ∼ 60) with
significant differences between the assumption of mag-
netic helicity conservation and relaxation, versus guide
field flux conservation. The force-free model ties the φ
distribution to the ψ distribution, so the power law in-
dex of 7/4 in ψ produces a power law index of 11/8 in
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10-10 10-5

100

105

1010

f(
)

Force-Free
Non-Force-Free

f( ) ~ -1/2

f( ) ~ -11/8

f( ) ~ -3/2

FIG. 5: The force-free distribution (Eq. 18 with Eq. 6)
for ∼ 100 plasmoids alongside the non-force-free

distribution (Eq. 21) for 60 plasmoids and
Bg = 100Brec. The non-force-free model produces a
power law index of 3/2 with a constant initial region,
and the relaxing model has power law indices of both
1/2 and 11/8, resulting from a non-constant dφ/dt.

φ because of Eq. 6 (B0φ = ζψ2) and the requirement of
consistent normalization (

∫

fψ(ψ)dψ =
∫

fφ(φ)dφ = N).
Additionally, the non-constant φ growth rate of the force-
free model results in a second low-φ power law with index
1/2. In the non-force-free case, a steeper power law in-
dex of 3/2 is obtained, with an approximately constant
initial region. Both models begin to exhibit exponential
decay around roughly the same value of φ.

B. Velocity Dependent Models

Using the numerical methods mentioned above, the
solutions to the distribution of plasmoids with varying
velocities were also found. For the Gaussian velocity
distribution calculated in a domain of ψ ∈ [0, 0.1] and
v ∈ [−3, 3] with f(0, 0) ∼ 106 the solutions are shown in
Figs. 6 and 7.
Figure 6 displays the solutions after translation to ψ

using the force-free relations, as well as after integration
in v. It is plotted alongside the integrated non-force-free
distribution for comparison. The result of the inclusion
of Taylor relaxation in this model differs from that of the
velocity independent model. The exponential tail is once
again extended slightly and the transition to the power
law region is largely unchanged, but the power law in-
dices are both 1. Note that using N ∼ S/Sc, the Sweet-
Parker thickness δ can be found (δ ∼ l/

√
Sc ∼ L

√
Sc/S)

as 4 × 10−5. The average value of the magnetic field
magnitude, B, for the Taylor profile is 0.575Brec, so plas-
moid widths reach the order of magnitude of the current
sheet thickness at ψ = 2.32 × 10−5 when B scales lin-
early with ψ. This is relatively close to the constant pre-

10-4 10-2

102

104

106

f(
)

Force-Free
Non-Force-Free

f( ) ~ -1

FIG. 6: The solutions to the steady state statistical
kinetic ψ equation with the velocity distribution effects
included. Both the force-free (Eq. 19 with Eq. 9) and

non-force-free (Eq. 14) solutions are shown with
velocity dependence integrated out. The total number

of plasmoids present in both solutions is ≈ 250.

merger region, meaning the inability of small plasmoids
to fill the current sheet may not play a significant role.
Furthermore, plasmoids slightly below the current sheet
width may already be sufficiently large so as to exhibit
the essential properties sought for replicating the force-
free behavior predicted here. Assuming the ψ at which a
given plasmoid first merges with another is proportional
to l = L/N = LSc/S, the competing processes both scale
as 1/S and hence this balance should not change for dif-
ferent S.

FIG. 7: Two-dimensional distribution showing the
velocity dependence of the force-free solution. The
differences between the force-free and non-force-free

distributions are nuanced, with a ∼ 1.5% redistribution
of probability density away from the center line in the

power law (10−4 − 10−2) regime.
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A two-dimensional distribution of the solution in ψ and
v is shown in Fig. 7. The power law region begins where
the approximately constant distribution begins to nar-
row, indicating that collisions occur frequently in this
region. The narrowing in the velocity spread continues
until a near delta-function distribution results. The com-
parison of guide field distributions in the force-free and
non-force-free cases are shown in Fig. 8. Again the mag-
netic helicity conserving force-free distribution presents a
less steep power law than the guide field flux conserving
non-force-free distribution at higher φ.

10-10 10-5

105

1010

f(
)

Force-Free
Non-Force-Free

f( ) ~ -1/2

f( ) ~ -3/2

f( ) ~ -1

FIG. 8: The force-free (Eq. 19 with Eq. 6) and
non-force-free (Eq. 22) φ distributions plotted with the
velocity dependence integrated out. The non-force-free
distribution has the same power law as the velocity
independent case, -3/2, and the relaxing distribution
exhibits a -1 power law, once again accompanied by a
distinct low-φ power law with an index of 1/2. In this
case the non-force-free distribution shown has ∼ 60

plasmoids with Bg = 100Brec.

IV. DISCUSSION

In all models shown as functions of ψ, one can im-
mediately observe similarities between the numerical so-
lutions obtained here and those of Huang et al28. The
initial region appears approximately constant, which can
be understood as most plasmoids growing due to re-
connection prior to experiencing a single merger. If
dψ/dt = γ = 0.01 and we assume the average time be-
tween mergers is τA/N which for 100 plasmoids is 0.01,
then on average a plasmoid will not merge until they
reach the size at ψ ≈ 10−4. Regarding the exponential
decay, this occurs wherever the dominant loss mechanism
becomes becomes advection, i.e. the remaining number
of plasmoids above a certain ψ, n> (the integral of f from
ψ to ∞), is on the order of one. This can be seen in any
of the distributions by estimating n> ∼ f(ψ)∆ψ with

ψ ∼ ∆ψ near the start of the exponential decay, and ex-
plains why steeper distributions transition to exponential
decay at smaller ψ.

As can be seen in Fig. 3, the velocity independent
force-free distribution differs only slightly from the non-
force-free distribution. Of these differences in the force-
free distribution, the most visible are a weak reduction
in slope, and an extension of the exponential tail. The
change in slope can be understood as an effect of flux
conversion from guide field to reconnecting as a result
of Taylor relaxation conserving magnetic helicity. Guide
field fluxes add during a merger while reconnecting field
fluxes do not. To satisfy the relationship φ = ζψ2/B0

[Eq.(6)] for the force-free field after relaxation while con-
serving magnetic helicity, the excess guide field flux must
be converted to reconnecting field flux. In practice, using
these relationships one finds that at most 20.6% of the
guide field flux will be converted after a merger between
equivalent flux plasmoids. Given that smaller plasmoids
are much more populous, mergers often result in little
flux conversion, and hence the slope change in f is subtle.
This can be understood more quantitatively by a com-
parison between the merger terms in the force-free and
non-force-free statistical equations. These terms side by
side can be rewritten for ψ as (dropping the τA):

ψ/21/3
∫

0

(

1− ψ′3

ψ3

)

−2/3

f(ψ′)f( 3

√

ψ3 − ψ′3)dψ′ −Nf(ψ)

and

ψ
∫

0

f(ψ)f(ψ′)dψ′ −Nf(ψ)

(23)
where a scaling factor is present in the force-free expres-
sion as a result of the transition from K to ψ. Due to
the monotonic decreasing nature of f , f((ψ3−ψ′3)1/3) ≥
f(ψ) over the bounds of integration, increasing the inte-
grand, and the overall value of the source in Eq. (18).
This is further aided by the scaling factor, which within
the bounds of the integral reaches a maximum of 22/3.
The integration interval is slightly shortened by the up-
per bound of ψ/21/3, however due to the steepness of
f and the scaling factor, the latter effect is outweighed
by the former. In the case of the velocity dependent
model the slope is far less steep and the collision rate is
weighted by differential velocity (see Fig. 6). This more
mild slope lowers the enhancement of F ((v, ψ3−ψ′3)1/3)
in the integral, allowing it to be muted by an effect in-
troduced with the inclusion of a velocity distribution. A
comparison of the ψ − v dependence of the non-force-
free distribution with the force-free distribution in Fig. 9
shows that in the power law regime, the force-free distri-
bution experienced an outward shift of plasmoids from
the central low v region to higher v regions. Overall,
the average speed of plasmoids increased by 1.5%. While
this change is small, this causes plasmoid mergers to oc-
cur more frequently in the power law region, increasing
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the steepness of F slightly. This may be an effect of flux
conversion leading to more rapidly moving low flux plas-
moids ”leapfrogging” into the merger-dominated regime
and shortly merging with other plasmoids. While this
bolstered collisionality may increase the steepness, any
merger resulting in flux conversion still boosts the ψ of
one of the plasmoids. That is why in both the velocity
independent and dependent force-free models, the expo-
nential tail of the distribution is extended, albeit to a
lesser extent in the velocity dependent model.

FIG. 9: Heat map of the difference between the
force-free model and the non-force-free model. The two

regions are separated based on which F is larger
(non-force-free ”NF” and force-free ”FF”). In the

central low-v region, FNF > FFF . In the outer regions
FNF < FFF .

From Fig. 5, the differences in the velocity indepen-
dent guide field distributions are much more pronounced
than those of ψ. While one may expect flux conversion
of guide field flux to reconnecting flux would cause the
force-free model to have a steeper slope than the non-
force-free model (at least without velocity), the results
are quite the opposite. This is due primarily to the re-
connection growth rates of φ in the two models. In the
non-force-free case the growth rate is the constant γg
for all plasmoids, however, the relaxing model does not
grow φ at a constant rate. The nature of the guide field
flux in this model is assumed to be passive, and a plas-
moid’s ψ grows in a manner which maintains a force-free
state at the expense of the growth of guide field flux.
Therefore the plasmoid follows φ = ζψ2/B0 [Eq.(6)] so

that dφ/dt = 2γ
√

B0φ/ζ, growing faster the larger it
gets. The force-free growth rate, although smaller than
γg initially, surpasses its non-force-free counterpart near
φ ≈ 10−6. This non-constant growth rate leads to an-
other distinguishing feature of the force-free model, a 1/2
power law index at low φ. This two versus one power
law difference between models is much more significant
than that which occurs later in φ, and could significantly
ease the difficulty in determining which model is most

appropriate for a given data set. The same effects are
seen in the velocity dependent distribution comparison,
although in this case the non-force-free power law is the
same as the velocity independent version, even though
the force-free power law has changed. This relates to the
increase in steepness observed in the velocity dependent
force-free ψ distribution. Since φ ∼ K2/3 in the force-free
model, mergers add φ in a sort of two-thirds quadrature.
However, directly adding φ in the non-force-free model
allows for a larger ”jump” when merging, leading to a
more significant difference in slopes.

10-10 10-5

10-1

100

101

K
-1

dK
/d

t co
ll

v dependent (v=0)
v independent

FIG. 10: Plot which shows rate of change of K due to
mergers, normalized to the given K as a function of φ.
It demonstrates where the average change in helicity

due to a merger is small enough that a plasmoid may be
able to partially or fully relax in between collisions.

In Section II B, the force-free model was chosen to be
the limit where all plasmoids are in a force-free state at
all times, even when merging. However, it is possible that
a plasmoid which undergoes two rapid consecutive merg-
ers may not reach a force-free state in between the merg-
ers, even though magnetic helicity conservation is unaf-
fected. Figure 10 shows the rate of change of a plasmoid’s
magnetic helicity, normalized to its helicity right before
merging as a function of φ, solely due to mergers for the
force-free models. This reveals where in the distribution
a given plasmoid experiences the most frequent and sig-
nificant mergers. The velocity dependent model is shown
evaluated at v = 0. As an exercise, if one considers relax-
ation to be possible when the helicity changes by no more
than the given K in an Alfvén time, the v-independent
model would exhibit force-free plasmoid configurations
before φ ≈ 10−9 and after φ ≈ 10−3, while slower plas-
moids in the v-dependent model would be force-free after
φ ≈ 10−4 as well as before φ ≈ 10−9. The drop off at
high φ indicates that the largest plasmoids in the expo-
nential tail should be frequently found in a relaxed state.
However, this is simply meant to illustrate where in the
distribution plasmoids undergo the most change. If relax-
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ation can take place sufficiently rapidly, then one will ob-
serve characteristics of the force-free model in the region
of rapid helicity change. Lastly, we note that we assume
that mergers of 3 or more plasmoids are rare enough so
that their effects on the distribution are negligible.

V. CONCLUSIONS

These models do not necessarily represent the exact
distributions of plasmoids in a current sheet which un-
dergoes dynamic reconnection. Due to the disruption of
relaxation by frequent mergers at some scales, it may be
more appropriate to treat the non-force-free and force-
free cases as asymptotic behaviors. From Fig. 10, we ex-
pect to observe force-free plasmoids at the smaller scales,
as well as the largest. The suspicion that large ψ plas-
moids may be able to relax is hinted at by the observation
of Taylor-like relaxed flux ropes present in the solar wind
as well as the earth’s magnetotail48,49. While in the Hall-
MHD regime, these results may still indicate that larger
plasmoids are capable of achieving a force-free state, sug-
gestive of some processes dominated by magnetic helicity
conservation.
The results here indicate that guide field flux distri-

butions may be noticeably distinct, especially due to the
introduction of a second low-φ 1/2 power law index in
the force free model. Experimentally, however, this can
be a challenging quantity to measure. A more directly
measurable characteristic would be the distribution of
plasmoid sizes, or the quantity a in the force-free case.
From the surface integration of the reconnecting field we
can easily demonstrate that ψ ∼ a in the force-free case.
Unfortunately, the distinction of this from the non-force-
free model may also prove difficult. Using the conclu-
sions of Uzdensky et al50, in the incompressible limit
of the anti-parallel plasmoid instability the width of a
plasmoid perpendicular to the current sheet would fol-
low wp ∼ ψ/Brec. This incompressible limit may also
be thought of as the case of strong guide field where
the added magnetic pressure augments the pressure of
the magnetized plasma within. Hence one may only be
able to distinguish the physical size distributions as well
as the ψ distributions can be distinguished between the
force-free and non-force-free models. Instead, a more ac-
cessible indication that helicity conservation is, to some
extent, playing a role may simply be the presence of an
enhanced core field in line with that of the Taylor profiles
internal to the plasmoids which form the backbone of the
force-free model34,35,48,51. It should be noted that if the
ψ distributions (or more importantly a or wp distribu-
tions) are similar between the force-free and non-force-
free models and the φ distributions vary largely, then the
internal plasmoid guide field pressures will also be signif-
icantly different. Here, guide field pressure would reach
noticeably greater levels in the force-free model over the
non-force-free model.
The models presented here may also prove relevant to

the plasmoid distribution when the external guide field is
negligible. Instabilities which arise in three dimensions
such as kink modes add an out-of-plane magnetic field
to an otherwise anti-parallel configuration. The process
of flux rope merging in 3D is a particularly important
example of an event where kinking occurs in an otherwise
straight cylindrical island in 2D. The condition of thin
flux ropes being necessary should be mentioned to ensure
that the characteristic length scale of a kink does not
largely affect the assumption of approximately straight
cylindrical Taylor states (as in high aspect ratio reverse
field pinch devices). This negligible guide field regime is
not forbidden in any way by our equations. Rather, it is
the case where the quantity λa is the first zero of J0(x).
This phenomenon of Taylor relaxation where the external
guide field is zero has been observed experimentally52.

The addition of relaxation has also allowed for an in-
crease in the spread of plasmoid velocities. Although it
is a small change of 1.5%, a Fermi-like process involving
multiple reflections from plasmoids can add up to cause
an increase in the highest achievable energy of charged
particles undergoing this acceleration. More significantly,
the acceleration which occurs during island contraction
relies on how quickly the island is compressed. The en-
hancement of guide field pressures in the relaxing model
and the increasing rate with which guide field flux is ac-
creted onto a plasmoid can result in a greater effective
mirror velocity in a first order process53.

The force-free model’s alterations to particle accelera-
tion processes and the speed of plasmoids in the outflow
are unlikely to affect the global rate of energy conversion
in any considerable capacity. While energization may be
enhanced for some high energy particles already capa-
ble of undergoing Fermi acceleration, they represent a
minute fraction of the overall energy of the plasma and
therefore are not likely to contribute to the global energy
conversion rate in a significant manner. It is possible,
however, that dissipation of magnetic energy during the
Taylor relaxation that accompanies plasmoid growth and
mergers could result in a modified conversion rate. The
assumption of perpetual relaxation as a plasmoid grows
due to reconnection leaves the reconnecting flux growth
rates the same, but the guide field flux growth rates dif-
fer significantly between models. In addition it can be
shown that a force-free plasmoid’s total magnetic energy
goes linearly with its guide field flux. For large plas-
moids, the guide field flux growth rate is enhanced in the
force-free model, but for small plasmoids it is significantly
hindered. Because of this it is not clear whether the over-
all rate of energy conversion would increase or decrease
between models. Therefore we leave this calculation to
future investigations.

In order to make a more robust model of the plasmoid
distribution in a guide field, several more effects may be
included in the future. Specifically, the assumption of
merged plasmoids adopting the velocity of the larger al-
lows for the narrowing of the velocity dependent distribu-
tion to a near delta function in v. If instead flux weighted
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averaging was used, a greater spread in velocity at higher
ψ would result. This broadening is also suggested by the
spread in the velocity distribution found by Lingam and
Comisso25. In parallel, a more thorough investigation of
the effects of the choice of H(v) on the distribution of
plasmoid velocities may be of interest. While this work
has focused on the distribution in fluxes and helicity,
more realistic merging rules may be accompanied by var-
ied effects on the distribution of plasmoid velocities. It
may also prove important to address the possibility of in-
complete or particularly slow plasmoid mergers. Coales-
cence rates have been observed to stall in simulations due
to a sloshing effect at high Lundquist numbers54. This
delayed or inhibited coalescence could give rise to more
efficient production of high flux plasmoids in our statis-
tical models. Additionally, there have been growth rates
proposed for the plasmoid instability which would modify
the Sweet-Parker reconnection rate γ used here. While
they may not affect the power law slope, an increase or
decrease in γ would affect where the transition from the
constant region to the power law region occurs. Numer-
ical or experimental investigations of these distributions
may seek to determine which model is most appropriate
for the problem of plasmoid unstable reconnection in a
guide field, or whether they both remain contained within
their expected regimes. Observation of power law behav-
ior outside the limits of the force-free and non-force-free
models may suggest that conservation of an alternative
quantity holds over guide field flux or magnetic helicity,
while something in between may, if appropriate, suggest
an intermediate regime which possesses characteristics of
both distributions.

Appendix A: Magnetic Helicity Conservation of the

Collision Terms in the Plasmoid Kinetic Equation

A required characteristic of our plasmoid kinetic equa-
tion is that the terms involving plasmoid mergers must
conserve magnetic helicity in the distribution. In other
words, the first moment of the following equation, from
Eq. (19), must be zero:

(

dF

dt

)

merge

= − F

τA

∞
∫

0

∞
∫

−∞

|v − v′|
VA

F (K ′, v′)dv′dK ′

+
1

τA

K/2
∫

0

∞
∫

−∞

|v − v′|
VA

F (K ′, v′)F (K −K ′, v)dv′dK ′.

(A1)

In this section we will prove that this is true. We
begin by integrating the equation over the entire velocity
space v. For readability, the we will use the shorthand
∫

v

=
∫

∞

−∞
dv and

∫

K

=
∫

∞

0
dK, as well as ∆v̂ = |v−v′|/VA:

∫

v

(

dF

dt

)

merge

= − 1

τA

∫∫∫

v,v′,K′

∆v̂F (K, v)F (K ′, v′)

+
1

τA

∫∫

v,v′

∆v̂

K/2
∫

0

F (K ′, v′)F (K −K ′, v)dK ′.

(A2)

Some reshuffling of the final term will prove useful.
First, a substitution of x = K −K ′ yields

∫∫

v,v′

∆v̂

K/2
∫

0

F (K ′, v′)F (K −K ′, v)dK ′

=

∫∫

v,v′

∆v̂

K
∫

K/2

F (K − x, v′)F (x, v)dx.

(A3)

Given that v, v′, and x are integrated out, we can
rename them as v′, v, and K ′, respectively, without af-
fecting the results

∫∫

v,v′

∆v̂

K/2
∫

0

F (K ′, v′)F (K −K ′, v)dK ′ =

∫∫

v′,v

∆v̂

K
∫

K/2

F (K −K ′, v)F (K, v′)dK ′.

(A4)

Therefore, the identical integrand on both side of the
above equation permits the following relationship:

∫∫

v,v′

∆v̂

K/2
∫

0

F (K ′, v′)F (K −K ′, v)dK ′ =

1

2

∫∫

v,v′

∆v̂

K
∫

0

F (K ′, v′)F (K −K ′, v)dK ′.

(A5)

A property of our distributions is that F (K, v) = 0 for
K < 0 and equivalently F (K − K ′, v) = 0 for K ′ > K.
Therefore we may extend theK integration out to infinity
producing a convolution, and replace the result into our
integrated merger terms:

∫

v

(

dF

dt

)

merge

= − 1

τA

∫∫∫

v,v′,K′

∆v̂F (K, v)F (K ′, v′)

+
1

2τA

∫∫

v,v′

∆v̂F (v′) ∗ F (v),
(A6)
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where we use the standard notation for a convolution
F (v′) ∗ F (v) with explicit v dependence to differentiate
between the primed and unprimed variables. The next
step is to Laplace transform this equation from K to s,
and take a derivative with respect to s:

−
∫∫

v,K

Ke−sK
(

dF

dt

)

merge

=

− 1

τA

∫∫

v,v′

∆v̂L′[F ](s, v)L[F ](0, v′)

+
1

2τA

∫∫

v,v′

∆v̂

[

L[F ](s, v′)L′[F ](s, v)

+L′[F ](s, v′)L[F ](s, v)
]

.

(A7)

Taking the negative of Eq. (A7) and evaluating it at
s = 0,

−
∫∫

v,K

L′

[(

dF

dt

)

merge

]

(0, v) =

∫∫

v,K

K

(

dF

dt

)

merge

= 0.

(A8)
This proof can easily be generalized to the velocity in-
dependent case, and is also of course applicable to the
guide field conserving regime with K replaced with φ.

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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