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Abstract—The main building block of Internet of Things
(IoT) ecosystem is providing low-cost scalable connectivity for
the radio/compute-constrained devices. This connectivity could
be realized over the licensed spectrum like Narrowband-IoT
(NBIoT) networks, or over the unlicensed spectrum like NBIoT-
Unlicensed, SigFox and LoRa networks. In this paper, perfor-
mance of IoT communications utilizing the unlicensed band,
e.g. the 863-870 MHz in the Europe, in indoor use-cases like
smart home, is investigated. More specifically, we focus on
two scenarios for channel access management: i) coordinated
access, where the activity patterns of gateways and sensors are
coordinated with neighbors, and ii) uncoordinated access, in
which each gateway and its associated nodes work independently
from the neighbor ones. We further investigate a distributed
coordination scheme in which, devices learn to coordinate their
activity patterns leveraging tools from reinforcement learning.
Closed-form expressions for capacity of the system, in terms of
the number of sustained connections per gateway fulfilling a
minimum quality of service (QoS) constraint are derived, and
are further evaluated using simulations. Furthermore, delay-
reliability and inter network interference-intra network collision
performance tradeoffs offered by coordination are figured out.
The simulation results highlight the impact of system and
traffic parameters on the performance tradeoffs and characterize
performance regions in which coordinated scheme outperforms
the uncoordinated one, and vice versa. For example, for a packet
loss requirement of 1%, the number of connected devices could
be doubled by coordination.

Index Terms—5G, Battery Lifetime, Coordination, Internet of
things, Reinforcement learning, Smart Home.

I. INTRODUCTION

Providing connectivity for billions of smart devices, i.e.
Internet of things (IoT), is considered as one major driver
of the next generations of wireless networks [1–5]. While the
ecosystem for providing higher data rates in 5G is known, the
ecosystem for realization of IoT in 5G and beyond networks
is still unclear. The main reason consist in the fact that cost-
efficiency plays an important role in the realization of IoT
[6]. In order to provide a cost-effective smart-home sensor
network, the deployment of terminals and access points has to
be of plug and play character. Also, the sensor’s price should
be as low as few dollars, which results in simpler terminal
devices compared to the existing wireless modules [1, 5, 7,
8]. This simplified device design with limited radio front-end
requires a novel system design for IoT because it can create
adverse propagation conditions, which increases link failure,
retransmission rates, and energy waste, and hence, results in
short battery lifetimes. The maintenance cost of smart-home

systems will be high if their batteries need frequent replace-
ment due to short battery lifetimes [9]. Realizing systems with
less human intervention [10], as a big driver of smart-home
services are of paramount importance for many applications,
e.g. it has been claimed that more than 10 years of battery
lifetime is required in some 5G use-cases [1].

A. Literature Study

Early visions on next generation wireless access networks,
requirements and enablers, and use-cases including IoT com-
munications could be found in [4, 11, 12]. In [13], research
gaps in relation with IoT and Industry 4.0 have been inves-
tigated, including business models and connection with the
emerging topic of block-chain. Comprehensive investigations
of IoT communications in the context of 5G, opportunities,
recent advances and proposed solutions, and open problems
could be found in [5, 8, 14]. Broadly speaking, there are two
major solutions for providing wireless connectivity for IoT de-
vices: solutions over the licensed spectrum, and solutions over
the unlicensed spectrum. These two categories are described
in the following.

IoT over the Licensed Spectrum

Solutions in the licensed spectrum are mainly updated
(upgraded) versions of existing cellular infrastructures which
can accommodate IoT traffic on the same radio resources as
existing non-IoT traffic is served (on exclusive radio resourced
dedicated to IoT) [15]. Examples of updated and upgraded
systems are LTE- category M and NB-IoT, where the lat-
ter has been proposed with LTE Rel. 13 in 2015 [16, 17].
The legacy connectivity procedure in LTE-Advanced (LTE-A)
networks includes synchronization, connection establishment,
authentication, scheduled data transmission, confirming suc-
cessfulness of data transmission, and connection termination
[18]. Random access channel (RACH) of the LTE and LTE-
A systems is the typical way for IoT devices to establish
a connection with the BS, and become connected to the
network. In RACH, each device randomly chooses a preamble
from a set of available preambles for contention-based access
to the BS. Since the total number of collisions and energy
wastages, especially when a massive number of devices try
to get access to the network [18]. Once a device successfully
passes the RA procedure, it sends scheduling requests to the
BS through the physical uplink control channel (PUCCH),
the BS performs the scheduling and sends the scheduling
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grants back through the physical downlink control channel
(PDCCH), and the granted devices send data over the granted
physical uplink shared channel (PUSCH) resources to the BS.
The connection establishment, scheduling, and scheduled data
transmission procedures in the existing cellular networks have
been designed and optimized for a different traffic pattern
than the IoT communications. While they work well for
a limited number of long-length communications sessions,
for battery-limited IoT devices with a massive number of
short-length communications sessions these procedures are
the bottlenecks. Then, network congestion, including radio
network congestion and signaling network congestion, is likely
to happen [19]. Towards isolating the impact of serving
IoT communications from non-IoT communications, in LTE
release 13, use of dedicated resources for IoT communications,
i.e. NB-IoT connectivity, has been proposed [16]. NB-IoT
technology represents a big step towards accommodation of
IoT traffic over cellular networks [20]. Data transmission in
NB-IoT takes place in a narrow bandwidth, i.e. 200 kHz,
which results in more than 20 dB extra link budget compared
to the standard LTE-A systems. While using cellular-based
IoT serving solutions provides reliability to the system, these
solutions usually have complicated and more expensive radio
modules than solutions deployed in the unlicensed band, which
also results in shorter battery lifetimes [7, 21]. Then, here we
narrow our focus down to the smart home scenario in which
each home is equipped with a private gateway operating in
the industrial scientific and medical (ISM) radio band and
tens/hundreds of connected smart devices per home, office,
or factory.

IoT over the Unlicensed ISM Spectrum

From 1G to 4G, the telecommunications industry has spent
a great deal of re- sources investigating how to realize high-
throughput infrastructure but forgotten about scalable low-
power low-rate systems in which, energy efficiency and bat-
tery lifetime are crucially important. Along with telecoms’
transition from 3G to 4G networks, some 3GPP-independent
companies have tried to enter the market and provide large-
scale IoT connectivity over the unlicensed spectrum, e.g.
SigFox and LoRaWAN. While reliability over the unlicensed
spectrum is a big concern for these solutions, they have
focused on minimizing the cost per device and maximizing
the battery lifetime in order to deliver a competitive service
at a low cost. Regarding the fact that energy consumption in
the synchronization, connection establishment, and signaling is
comparable with, or even higher than, the energy consumption
in the actual data transmission [22], IoT solutions over the un-
licensed spectrum leverage grant-free radio access for energy
saving [21]. In grant-free access, once a packet is triggered at
the device, it is transmitted without any handshaking with the
BS or authentication process. Furthermore, the IoT solutions
over the unlicensed spectrum mainly leverage narrowband, or
even ultra-narrowband, communications in order to cover a
large area with the minimum possible energy consumption at
the device-side [23]. These low-power wide-area (LPWA) IoT
networks over the unlicensed spectrum, along with cellular

NB-IoT and LTE-M networks, are expected to share 60 percent
of the IoT market among themselves, a number that is expected
to grow over time, and hence the competition between LPWA
technologies is becoming intense [23, 24]. Furthermore, one
needs to add Wi-Fi and Bluetooth-powered IoT solutions to
the list of competitors for enabling IoT connectivity. SigFox
(introduced in 2009) and LoRa (introduced in 2015) are the
two most important IoT solutions deployed over unlicensed
spectrum [15]. These two solutions along with several other
solutions coexist on the same band, and hence, are vulnerable
to collisions when the network scales. These solutions are
referred to as capillary solutions because they use a star
topology, and hence, data is transferred over installed local
gateways by users, where these gateways have Internet connec-
tivity [9, 25, 26]. The main design objective in these solutions
is to shift complexity from device side to network side, in order
to enable connectivity for low complexity devices, which also
reduces the price per module significantly [15, 23].

B. Motivation: Interference in coexisting IoT networks

When collecting data from a huge number of devices, the
density of the gateways obviously will be large, at least one
per home, and hence, the interference coming from the devices
sharing the same resource simultaneously could be significant.
According to [27], tolerable interference level on each carrier
can greatly affect the system performance. Then, regarding the
open-access nature of the ISM band, this impact is even more
severe and therefore it requires more investigation. To get in-
sights into the interference problem in the ISM band, one may
refer to Fig. 3 of [28], in which interference measurements in
the European 868 MHz ISM band have been depicted. In this
figure, one sees that in use-cases like a business park, the ISM
band has been occupied almost all the time. This means that
there is a high probability of collision in data transmission over
the ISM band in dense use-cases [29]. Furthermore, regarding
the fact in those solutions devices are not easily reachable and
controllable through the network, change in communications
characteristics of devices, e.g. adapting them to the network
traffic, is not possible without human intervention.

C. Related Works

The impact of interference on IoT communications has
been investigated in several experiments through radio mea-
surements, including [28, 30–32]. Due to the crucial impact
of interference on IoT communications, especially as shown
in [28, 30], different studies have investigated approaches for
modeling and mitigation of interference in different use-cases
[33, 34]. In [35], a cooperative spectrum sensing approach
for interference-aware communications has been developed.
Autonomous interference mapping for industrial IoT Networks
over unlicensed bands has been proposed in [36]. Machine
learning approaches for sensing and modeling of interference
in IoT communications has been investigated in [37]. The
performance of Nb-IoT communications over unlicensed spec-
trum has been investigated [38].

The authors in [39–41] have investigated Iot communica-
tions in indoor use-cases, with special focus on the impact of



interference. More specifically, [39, 41] leverage 3D Mapping
in Dense Indoor IoT Scenarios for characterization of interfer-
ence and throughput. In [40], decentralized machine learning
approaches are used for mitigation of traffic in indoor IoT
communications. One observes that there is a lack of research
on interference modeling and management from co-existing
IoT networks in indoor use-cases, which is investigated in this
work.

D. Contributions and Structure

Here, we aim at investigating the impact of (i) system
parameters, including communication protocol and propaga-
tion environment parameters, as well as (ii) traffic parameters,
including a plurality of devices per square area and activity
profiles of them on capacity, delay, and battery lifetime as
three key performance indicators (KPIs) of IoT ecosystem.
Then, we present a learning-powered coordination solution
for enhancing the KPIs of interest through coordination of
activity pasterns of neighboring networks. The feasibility of
the proposed solution has been investigated in a smart home
scenario, where the results show the operation regions in
which, coordinated and uncoordinated access perform favor-
ably. The major contributions of this work are as follows.
• Present an interference management protocol for coexist-

ing grant-free radio access IoT networks by coordinating
activity patterns of devices.

• Derive analytical expressions for the KPIs of interest,
including battery lifetime, experienced delay, and outage
probability.

• Present existence of a switchover operation point where
beyond this point, the uncoordinated protocol outper-
forms coordinated protocol in capacity and battery life-
time.

• Shed light on the increase in the capacity of the sys-
tem, in handling simultaneous connections, by proper
coordination through simulations results. For example, in
the smart-home use case, for packet loss ratio of 1%,
results confirm more than 100% increase in the number
of sustained connections per apartment.

The remainder of this paper is organized as follows. The
system model, performance indicators of interest, and key
assumptions are introduced in the next section. Analytical
analysis and derivation of closed-form analytical expressions
for performance indicators are given in section III. Simulation
results and discussions are presented in section IV. In section
V, the concluding remarks are presented.

II. SYSTEM MODEL, ASSUMPTIONS, AND KPIS

We consider a smart home network in a building with
multiple apartments. One must note that while the analytical
expressions in the following are presented in the context of the
smart home, they could be easily extended to any other IoT
use case, e.g. smart office, factory, business park, and even
outdoor IoT applications. Each apartment is equipped with
a gateway and multiple sensors distributed randomly in each
apartment. The gateway and sensors in each apartment can
receive interference from neighboring sensors and gateways.

Each sensor sends its measurement data every Tr seconds.
Associated nodes to each gateway use a grant-free access
protocol to communicate with the gateway in a channel with
a bandwidth of W . Both actuators and sensors have limited
battery capacity. Moreover, gateways are connected to the
electricity grid and can exchange information with each other
using their backhaul already deployed in the building. Let
us assume M sensors, N actuators, and one gateway have
been deployed in each apartment, where the gateway has been
located at the center. The transmit powers of sensors, actuators,
and gateway are P st , P

a
t , and P gt , respectively. Furthermore,

the data rates of sensors and actuators are Rs, Ra respectively.
Sensors have a reporting period of Tr, and hence, each sensor
sends a chunk of data with a length of Du bits plus Do

bits overhead information to the gateway each Tr seconds.
If it doesn’t receive ACK in Tack, it will resend the packet.
Actuators have an operation period of Ta, and hence, each
actuator sends a packet of length Da+Do bits to the gateway
each Ta seconds to let the application know that it is awake.
If it doesn’t receive a response in Tack, it will resend the
packet. Also, the gateway will send the set of new orders to
the actuator, and the actuator will execute them if any. Gateway
also broadcasts beacons regularly to let nodes know that it is
ready and can receive data from devices.

A. Realistic Interference Model for Smart Home Applications

From [42], one may define the received power from a device
to a gateway as:

Pr(d) = Pt +Atr − Ltr − PL(d), (1)

where d is the communications distance, Pt is the transmit
power, Pr the received power, Atr the gain of transmit/receive
antennas, Ltr the losses in transmitter/receiver, and PL is
the pathloss. From [42]-[43], the pathloss between transmit-
ter/receiver can be modeled as:

PL(d) = 20 log10(f) + 10δ log10(d) + 34.4(dB)+

+KfLfIf + Is(KweLwe +KwiLwi), (2)

where f is the carrier frequency in MHz (e.g. 868), δ is the
pathloss exponent, r is the communications distance in km,
If is 1 if transmitter and receiver are in different floors, and
Is is 1 if transmitter and receiver are in the same floor. Also,
Kf represents number of floors between them and Lf the
attenuation loss of each floor. Furthermore, Kwe

and Kwi

represent numbers of external and internal walls between them,
and Lwe and Lwi the attenuation losses of external and internal
walls. In these expressions, the walls separating two neighbor
apartments have been denoted by external walls, while the
walls inside each apartment have been denoted by internal
walls. Let us consider a brick wall of width 10 cm is between
a sensor and gateway in apartment of interest, and a wall of
width 20 cm is between a sensor in a neighbor apartment
and the gateway in the apartment of interest. Then, from [43]
one sees that the respective pathloss for these two sensors
(if they have the same distance to the gateway) will be 4
and 6 dB, respectively, which shows that neighbor sensors



can significantly affect the system performance by making
interference. The interference at gateway g is given by:

Ig =
∑
x∈Φ

axPLgxPt (3)

where Φ is a set of interfering nodes and ax is a binary
variable which is equal to 1 if the node is transmitting and
is 0 otherwise. Also PLgx is the pathloss between node x and
gateway g.

B. Key Performance Indicators of Interest

Given a quality of service (QoS) metric for communica-
tions, e.g. number of dropped packets in a period of time,
maximum number of supported devices in the system, i.e.
system capacity, is the main KPI to be investigated. This
KPI indicates whether the set of provisioned radio frequency
resources and its respective MAC protocol can handle the
required amount of traffic load with a predetermined reliability
level or not. Furthermore, battery lifetime is of great interest in
IoT applications. This is due to the fact that the maintenance
cost of IoT systems will be high if their batteries need to
be replaced frequently. Furthermore, a big driver of IoT is
realizing systems with less human intervention [9], which is
in contrast with the need for battery replacement. Then, here
we will investigate the impact of protocol, environment, and
traffic parameters on the battery lifetime.

III. RADIO RESOURCE MANAGEMENT

Grant-free access, in which each device sends data to
the gateway without the need for prior handshaking, is the
underlying multiple access over the ISM band. From the
network side, the only restriction comes for the fair use of
the channel, i.e. there are regulations for maximum transmit
power and/or duty cycle of each sub-band. Here, we go further
and investigate how devices, including gateways and sensors,
can utilize the channel in a coordinated manner, while there
is still no need for resource reservation and signaling.

A. Coordination for Radio Access Control

In order to exemplify the coordination, let us assume the
time is divided into communications frames, each containing
K subframes. The start of a communication frame could be
announced by the gateway through beacons. Now, we define
two operation modes for IoT networks in each apartment:
coordinated and uncoordinated access. In the uncoordinated
mode, the IoT network in each apartment has full access
to the radio resources at all the subframes. However, in the
coordinated mode, the IoT network in each apartment has
access to the radio resources in dedicated time slots, where
the choice of subframes could be done in a centralized or
distributed way, as follows.

1) Centralized Coordinated Radio Access: In the coordi-
nated radio access mode, each gateway has an activity pattern,
which is coordinated with the neighbors, as depicted in Fig. 1.
In a beacon-based communications setup, each gateway may
send beacons in the allocated time slot for its activity, and its
associated devices send packets in response. Meantime, the

gateway broadcasts acknowledgment to the nodes from which
data has been received successfully. Even the coordination
could be implemented within devices connected to a gateway,
i.e., devices could be categorized into K classes, where each
class can only send data to the BS in some predefined
subframes.

2) Distributed Coordinated Radio Access: In the distributed
coordinated radio access mode, the selection of subframes on
which each gateway or device is active is carried out by learn-
ing from past communications. Towards this end, each device
keeps an index for each action, where the action is defined as
the choice of a subframe for transmission and keeps track of
successes and failures in transmission over different subframes
(actions). Multi-arm bandit (MAB) learning, a low-complexity
class of reinforcement learning, has been recently investigated
in literature for adapting communication parameters of IoT
devices [44, 45], and has shown its merits due to its low
complexity and superior performance. The good thing with
learning-powered coordination is its ability to adapt itself to
the environment in case of change in the environment, e.g.
addition of a new gateway. In the following, we present how
MAB learning works and could be leveraged in our problem.

MAB Learning for Distributed Coordinated Access: In
reinforcement learning learning, each device aims at maxi-
mizing its objective function, e.g. reliability, battery lifetime,
or experienced delay by choosing the best action, given the
rewards of its previous actions (data transmissions). After
choosing the action at time t, the device receives an acknowl-
edgment(ACK) or non-acknowledgment (NACK) as a reward,
which is accumulated under the index of each action by 1
and 0, respectively. Furthermore, the device keeps track of
the number of times it has visited each action to be able to
get the average value of each action. Furthermore, having the
number of times an action has been experienced is also useful
for determining the value of each action for re-experience,
i.e. exploration, instead of always working based on the
best results so far (exploitation). This type of reinforcement
learning is commonly described as multi-arm bandit in the
machine learning literature [46]. Due to its widespread appli-
cations in gambling, robotics, etc. MAB learning has been well
investigated in the literature, and efficient solutions have been
proposed to minimize agent’s regret. The interested reader is
referred to [46] for further information on MAB problems.
In the following, we present an algorithm for distributed
coordination of IoT devices in a distributed way using MAB
learning.

The Algorithm: Due to the random nature of interference
coming from a wide set of coexisting IoT devices, we model
our problem to a stochastic MAB problem. For stochastic
MAB, the MAB in which each arm’s reward is drawn from
a probability density function, the upper confidence bound
(UCB) algorithm performs close to optimally [46]. Among
UCB algorithms, we choose the UCB1 algorithm [47]. This is
because this algorithm attains a regret growing at O(log n),
where n is the number of rounds [48]. In this algorithm,
the device’s aim is to maximize its self-accumulative return
(summation of discounted rewards) in the long term. Towards
this end, the device needs to follow an optimized tradeoff



Algorithm 1: MAB learning for distributed coordina-
tion of co-existing IoT devices

1 Initialization: Zk(1)=0, Tk(1)=1,∀k ∈ A;
2 for t = 1, 2, · · · do

- Update value: Vk(t) = Zk(t) +
√
α log(t)/Tk(t);

- Take action: arg maxk∈A Vk(t)→ A(t);
- Receive reward: ξ(t) ∈ {0, 1};
- Update reward: Zk(t+1)=Zk(t),∀k ∈ A\A(t);

ZA(t)(t+1)=ZA(t)(t)+ξ(t);
- Update counter: TA(t)(t+1)=TA(t)(t)+1;

Tk(t+1)=Tk(t),∀j ∈ A\A(t);
- return A(t);

between exploration and exploitation, where the former in-
dicates decision epochs in which agent tries different actions
even if their previously observed rewards are less than the
others, and the latter indicates decision epochs at which agent
acts greedy based on the previous rewards. This could be
achieved by exploring frequently after changes in the network
for becoming up to date and then reducing the exploration
rate to zero in order to exploit from the knowledge gained
in interaction with the environment. This procedure has been
summarized in Algorithm 1, in which A = {1, · · · ,K},
• k ∈ {1, · · · ,K} represent the indexes of actions,
• Vk(t) represents the value of action k at time t,
• A(t) ∈ {1, · · · ,K} represents the selected action at t,
• Tk(t) represents the number of times action k has been

selected until time t,
• ξ(t) ∈ {0, 1} represents the received reward,
• Zk(t) represents the accumulated reward for action k

until time t,
• α ∈ (0, 1) tunes the exploration/exploitation tradeoff.

3) Uncoordinated Grant-free Radio Access: In the unco-
ordinated radio access mode, there will not be any coordi-
nation among devices in different apartments in connecting
to the same gateway, as well as among activity patterns of
gateways in different apartments. Each gateway is always on,
sends beacons regularly (several times per reporting period
of devices), and sends ACKs back per received packet. We
consider ALOHA to be used for modeling communications
between devices and the access points in this scenario [49].

B. Performance Tradeoffs offered by Coordination

Coordination offers two tradeoffs. The first tradeoff consists
in transmission delay, which is traded to achieve reliability. In
other words, in coordinated radio access, a device waits for
a proper time slot dedicated to its network to send data. The
second tradeoff is between interference level from neighbor
networks and probability of collision with packets from the
same network. This is due to the fact that coordinated MAC
benefits from reducing interference from devices deployed in
neighbor networks at the cost of reducing the time at which
devices located in an apartment must send their packets. In
section IV, we will see the traffic regions at which coordinated
MAC outperforms the uncoordinated MAC and vise versa.

Fig. 1: Coordinated access for K=2, i.e. time frame is divided
to two slot, in a centralized way. Orthogonal time slots (blue
and green) are allocated to neighbor networks, i.e. the three
gateways. The network placed in the middle performs its
communications in the first slot of each frame, and the two
networks which are on the left and right sides perform their
communications in the second slot of each communication
frame.

Fig. 2: (Left) Coordinated activity management for coexisting
IoT devices within a network (K=3), where devices have
learned to transmit in one of the three time periods. For
example, the green devices send their packets int he third slot
of each frame. (Right) Coordinated activity management for
coexisting gateways, where gateways configure their activities
in a distributed way. For example, the communications be-
tween blue gateway and its devices occur in the first slot of
each frame.

IV. ANALYTICAL KPI MODELING

In this section, we derive analytical expressions for system
capacity and expected battery lifetime of connected devices as
a function of the system, MAC, and traffic parameters. These
expressions enable us to see how different parameters impact
the performance tradeoffs.

A. System capacity

We assume packet arrival at each node is a Poisson process
with rate λ. In case a collision occurs, each colliding node
retries at a later time, where the trial time instances are Poisson
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Fig. 3: The reliability-delay tradeoff offered by coordination.

distributed points with the rate ϑ. We aim to investigate the
maximum number of devices that can be supported in the
system while the QoS constraint is satisfied. We start with
the analysis of the fully-coordinated MAC, in which there is
no interfering neighbor network in tier 1. Denote by M the
number of devices deployed in each apartment that are reusing
the radio resources. Then, the average success probability is
defined as:

Psuc = ET {e−2T (M−1)Kmax(λ,ϑ)}, (4)

in which we have assumed that collision with intra-network’s
transmissions results in a collision. Using Jensen’s inequality,
(4) can be lower bounded as:

Psuc ≈ e−2T̄K(M−1) max(λ,ϑ). (5)

In the above expressions, 1/K represents the share of each
network from the radio resource, i.e. K is the radio resources
reuse factor, T is a random variable showing the packet length
in the time domain with a mean of T̄ , and Ex represents
expectation over x. For coordinated access in which there
are still N interfering neighbors, the successful transmission
probability is approximated as:

Psuc ≈ e−2T̄K(M−1+NM/i) max(λ,ϑ), (6)

where i denotes the number of concurrent transmissions from
a neighbor network that causes collisions in the gateway of
interest. It is clear that i depends on the tolerable interference
level of the gateway and the number and material of interme-
diate walls. One can extend the above expressions to the case
where there are multiple classes of neighbors with different
i:s, i.e. with different levels of isolations between them, as
shown in Fig. 3. Finally, one can investigate the performance
of uncoordinated MAC by setting K in (6) to 1.

The success probability affects other KPIs like delay,
outage, experienced energy in communications, and battery
lifetime. The impact of Psuc on two later KPIs will be
investigated in the next subsection. The experienced delay in
data communications can be modeled as a function of Psuc as:

Dexp =

Kmax∑
k=0

[k(Du +Dbo) +Du]Psuc(1− Psuc)
k, (7)

where Kmax is the maximum number of transmissions, Dbo

Fig. 4: Power consumption of a sensor in one reporting period

is the time in the backoff mode after collision, and Du is the
time spent in a single transmission and listening to receive
ACK/NACK afterwards.

Also, considering that a packet is in outage after K
(re)transmissions (e.g. due to expiration of data or limited
number of retransmissions), the outage probability is derived
as:

Pout = 1−
∑K−1

k=0
Psuc(1− Psuc)

k. (8)

One sees that given a QoS constraint on delay perfor-
mance/outage probability (as well as battery lifetime as we
will see in the next subsection), we can find the minimum
Psuc, that the system can tolerate. Let us denote the required
success probability by the IoT application as Psuc. Then using
(5), the capacity constrained to the success probability of Psuc,
is approximated as:

Csys = 1 +
ln(1/Psuc)

2T̄Kmax(λ, ν)
. (9)

B. Battery lifetime

As illustrated in Fig. 4, a typical machine node may
have different energy consumption levels in different activity
modes, including data gathering, processing, transmission,
and sleeping. For most reporting IoT applications, the packet
generation process at each machine device can be modeled
as a Poisson process [9]. Then, the energy consumption of
each device can be seen as a semi-regenerative process where
the regeneration point is at the end of each successful data
transmission epoch. Let us denote the remaining energy of
a device as E0, and the average time between two data
transmissions as Tr. Now, we define the expected lifetime
for an IoT node at the regeneration point as the product
of reporting period and the ratio between remaining energy
and the average energy consumption per reporting period, as
follows:

Ls = E0/EPerCycleTr, (10)

where EPerCycle is the average consumed energy per cycle.
By ignoring energy consumption in the sleep mode, each
sensor consumes Esw joules in switching on/off operation,
Es = PcTp joules in data gathering/processing (used in
circuits, when radio is off), Elis = PcTlis in initial listening
to the gateway, 1/PsucEdt in data transmission to the gateway,
and 1/PsucPcTack in receiving acknowledgement from the



gateway. In these expressions, Edt is the consumed energy
in single-shot data transmission:

Edt = (Pc + αP st )(Du +Doh)/Rs, (11)

Pc is the circuit power, α is the inverse power amplifier
efficiency, andPsuc is the probability that data transmission is
successful, i.e. the received SINR is greater than the threshold.

C. Reliability-Delay Tradeoff in Coordination

As mentioned in section II.C, coordination offers a
reliability-delay tradeoff. In other words, increasing the trans-
mission delay reduces the number of contending nodes in
neighbor apartments that are reusing the same resource. Using
numerical analysis of (5)-ds, this delay-reliability tradeoff has
been depicted in Fig. 3. First-tier interfering neighbors of a
square apartment, i.e. 8 apartments consisting of 4 adjacent
and 4 diagonal neighbors called group 1 and 2 respectively,
are considered. i1 and i2 represent the minimum number of
concurrent transmissions from groups 1 and 2, respectively,
which result in collision at the gateway of interest. It is evident
that i1 and i2 depend on the tolerable interference level of the
gateway and the number and material of intermediate walls.
The other parameters used for this analysis can be found in
Table 1. In this Fig. 3, the x-axis represents the reuse factor,
i.e. K. When K = 1, there is no coordination in operations of
gateways. When K = 4, there are no interfering devices in tier
1. One sees that the experienced delay increases in K, which
is straightforward since nodes wait until the allocated time
slots start. On the other hand, the probability of successful
transmission may increase or decrease when K = 2, 3. For
example, when i1 = i2 = 1, and K = 2, the level of increased
probability of collision with nodes in the same group increases
further than the level of decreased interference from out-of-
group neighboring devices. Finally, one sees when K = 4,
the probability of unsuccessful transmission has been dropped
significantly. This figures out that coordination can improve
the reliability of the system at the cost of adding transmission
delay, as also shown in Fig 3.

V. PERFORMANCE ANALYSIS

In this section, we investigate the impact of system model,
MAC, and traffic parameters on the KPIs. Then, using an-
alytical and simulation results, we will answer the research
questions raised in section II. Simulation parameters and
values are introduced in Table 1.

A. Battery Lifetime Analysis

Here, we present analytical results for the battery lifetime
analysis. For a typical sensor with an AA battery with capacity
of E0 = 1000mAH = 3600J and reporting period of 5 min-
utes, Esw = 1mJ, P st = 10mW, Tdt = (Du +Do)/Rs = 1s,
Pc = 1mW, α = 3, Tp = 5s, Tlis = 10s, Tack = 5s, and
Psuc = 1, the expected battery lifetime is:

Ls =
3600 J

5 mJ + 1 mJ + 1/Psuc
(
36 mJ

) 5

24× 60
(days),

→ Ls =295 (days). (12)
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Fig. 5: Battery lifetime performance

TABLE I: Simulation parameters

Parameter Default value
Number of sensors per house 20-100
House radius 10 m
Interference threshold 5× 10−9 W
Reporting Time 15 min
Packet size 600 bits
Number of neighbors 8
Reuse factor for coordinated access (K) 9
Coordination scheme Centralized
Number of actuators per house 10
Number of gateways per house 1
Data rate of sensors 100 kbps
Loss due to house walls 20 dB
Loss due to room walls 10 dB
Maximum sensor transmit power 10 mW

If Psuc = 0.5, the resulting battery lifetime will be 160 days.
One sees the significant impact of success probability on the
battery lifetime. Fig. 5 represents the expected battery lifetime
of sensors versus the number of deployed sensors in each
apartment for two cases, i.e. the packet transmission time, T ,
of 0.25 and 0.5 seconds. As we expect, increasing number of
sensors has decreased the success probability. Then, one sees
that the battery lifetime also has been degraded by increasing
number of deployed sensors. Furthermore, by comparing the
two packet lengths in Fig. 5, it is evident that by an increase in
the traffic load, i.e. when the packet size increases, the impact
of number of nodes on the battery lifetime will be critical.

By proper time slot allocation within an apartment, we
are able to avoid collision due to the interference. For the
dedicated scenario, we have divided the total reporting interval
into some subintervals. Each house was given one subinterval
to avoid interference from other neighboring houses. It can be
seen that when we have less reporting interval, it is more likely
to have intra-house collisions, and consequently the packet
loss rate increases. Therefore, on the one hand, we prefer to
have more reporting intervals to decrease the rate of collision
within a house. While on the other hand, it can cause more
collision due to the interference from other houses. Therefore,
it is crucial to find the optimum transmission interval value.

In Fig. 6, we have investigated the impact of sensor data rate
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on the system performance for the two traffic load regimes, i.e.
M = 100 and M = 10, respectively, where M represents the
number of sensors in each apartment. One must note that due
to the fixed length of packets, the higher the transmission data
rate is, the shorter packet transmission time will be. Therefore,
as one observes from this figure, it is much more likely to
receive the packets without any collision with higher data
rates. Furthermore, one observes that the merits of coordinated
access increase by decreasing the packet transmission time.

In Fig. 7, we have investigated the sensitivity of gateways
to the interference. For the coordinated case, gateways do not
receive any interference from other apartment sensors and the
packet loss is only due to the intra-apartment packet collision,
and hence, they have a shorter window time to transmit. In this
case, gateways are insensitive to the interference. In contrast,
for the uncoordinated case, we have an effective region for the
interference threshold in which the performance of the system
is controlled by the interference. For instance, for the high
load case, if gateways are highly sensitive to the interference,
e.g. very low interference threshold, it is better to apply the
coordination scheme. Because almost every interfering packet
transmission causes collision while in the coordination case,
we do not experience the collision due to the interference.
Also, for the interference insensitive case, the collisions are
dominated by other parameters such as sensor density rather
than interference. The same analysis applies to the low-density
case.

In Fig. 8, we have depicted the impact of sensors density on
the packet loss ratio. For fixed packet loss ratio, the number of
connected devices could be increased by coordination between
gateways. e.g. for packet loss ratio 10−2, the number of
connected devices could be doubled (from 40 to about 80).
Also, when sensors send data with a low data rate, in the
congested case, one can not gain from coordination because
the collision is dominated by intra-house collisions. One sees
that the expected value from (9) matches well with the result
from simulations, and hence, the derived results in section IV
can figure out system behavior when it scales.

One must note that the scope of this work in performance
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The legend shows the choice of coordination, the rate traffic
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respectively), and the reporting time.

evaluation has been limited to the evaluation of performance
once the coordination is done, and comparison of it with the
case without coordination. On the other hand, the coordination
itself could be a subject of further research, as a distributed
approach for coordination like MAB could result in a different
grouping to another distributed approach without machine
learning, and for sure with the centralized approach. Then,
a more comprehensive study can shed light on the overall
performance, when the coordination and MAC are investigated
together.

VI. CONCLUSION

Providing low-cost scalable connectivity for things in indoor
environments is an important enabler of IoT. In this paper,
the performance of wireless sensor/actuator deployment in
an indoor environment composed of several apartments, each



equipped with a single gateway and tens of devices, has been
investigated. Centralized coordinated, distributed coordinated
by reinforcement learning, and uncoordinated gateway opera-
tion policies have been introduced, and capacity of the system,
constrained to a QoS requirement, as well as expected battery
lifetime of connected devices have been investigated using
closed-form analytical expressions and Matlab simulations.
The simulation results confirm the existence of a switchover
operation point where beyond that, coordinated protocol out-
performs the uncoordinated one. Also, the results confirm that
it is possible to increase system capacity by coordination, e.g.
for packet loss ratio of 1%, the number of connected devices
per apartment could be almost doubled, e.g. from 35 it could
be increased to 80.
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