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We investigate the effects of application of random time-shifts to the readouts of a reservoir computer in
terms of both accuracy (training error) and performance (testing error.) For different choices of the reservoir
parameters and different ‘tasks’, we observe a substantial improvement in both accuracy and performance. We
then develop a simple but effective technique to optimize the choice of the time-shifts, which we successfully
test in numerical experiments.

We study how the accuracy and performance
of a reservoir computer (RC) can be enhanced
by application of different time-shifts to the RC
readouts. Our numerical analysis shows an im-
provement for different parameters of the RC dy-
namics and for different ‘tasks’, such as recon-
structing the attractors of several chaotic dynam-
ical systems. For certain tasks, the attained im-
provement is of several orders of magnitude.

I. INTRODUCTION

A reservoir computer (RC) is a complex nonlinear dy-
namical system that is used for processing and analyz-
ing empirical data, see e.g.1–11, modeling of complex dy-
namical systems12, speech recognition13, learning of con-
text free and context sensitive languages14,15, the recon-
struction and prediction of chaotic attractors16–20, image
recognition21, control of robotic systems22–24, predicting
catastrophic critical transitions25 and amplitude death in
oscillating systems26. A typical RC consists of a set of
nodes coupled together to form a network. Each node
of the RC evolves in time in response to an input signal
that is fed into the reservoir. An output signal is then
generated from the time evolutions of the RC nodes. In
an RC, the output connections (those that connect the
RC nodes to the output) are trained to produce a best fit
between the output signal and a training signal related
to the original input signal. On the other hand, the con-
nections between the nodes of the reservoir are constant
parameters of the system. As a result, RCs are easier to
analyze than other machine learning tools for which all
the connections are typically trained.

The performance of an RC depends on variety of fac-
tors such as nonlinearity of the nodal dynamics27,28,
network topology, sparsity of the connections and the
presence of network symmetries29, input signal and the
dynamic range of the input signals30 and time-delay
structure of the RC5,8,11. Experimental realizations of
RCs have been proposed in6,9,11,31, among other pa-
pers. Recent work has analyzed linear RCs32,33 and
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pointed out a connection with the theory of dynamic
mode decomposition34.

A universal approximation theorem and its application
to reservoir computers with stochastic inputs has been
presented in35. In33,36 it has been shown that a reservoir
computer can perform as a universal representor of a dy-
namical system. Other papers have shown dramatic ef-
fects of tuning several parameters and hyper-parameters
of RCs, see e.g.,29,37,38. In particular, Ref.29 investigated
the effects of the sign of the weights associated with the
network edges as well as the symmetries of the network
topology and shown that network symmetries are usually
undesirable in terms of the performance of RCs.

In this paper, we focus on the effects of time-shifts
applied to the readouts of an RC. In the literature there
has been documented improvements in RC performance
by applying a single time-shift to all nodes39, however,
applying different time-shifts to individual nodes is new.
References5,11 focused on the case that the time evolution
of the RC obeys a delay differential equation. This is
different from what we do here where the RC dynamics
is described by an ordinary differential equation; once
the RC dynamics is computed, different time-shifts are
applied to the individual RC readouts.

In the first part of this paper, random time-shifts are
applied at the readout of each node of an RC, which
produces an improvement in both accuracy and perfor-
mance. In the second part of this paper, a simple opti-
mization technique is implemented to optimize the time-
shift at each node in order to further improve the accu-
racy and performance of an RC. Optimizing the hyper-
parameters of an RC is often done, but optimizing the
time-shift at each node of an RC is more difficult due
to the high-dimensional parameter space. Our numerical
analysis shows that for different parameters of the RC dy-
namics, and for different ‘tasks’, an RC with time-shifts
provides an increase in accuracy and performance.

II. METHODS

A. Reservoir Dynamics

We consider an RC modeled by the following nonlinear
dynamical equations in continuous time40,

ṙ(t) = γ [−r(t) + tanh(εAr(t) + s(t)w)] , (1)
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where r(t) is the N -dimensional state vector of the
reservoir and s(t) is the input signal, the N -dimensional
symmetric adjacency matrix A = {Aij} describes the
connectivity between the N nodes of the network and
the N -dimensional vector w are the weights by which
the input signal is multiplied. In what follows we refer
to the time evolutions r(t) as the readouts of the RC. In
this paper we set N = 100. The adjacency matrix A is
constructed such that it is symmetric and its off-diagonal
entries are uniformly drawn at random from the interval
[0, 1]. The entries on the main diagonal of the matrix
A are all set to be equal to β < 0, where the scalar β
is negative enough to ensure that all the eigenvalues of
the matrix A are less than 0. The variable parameter
ε is used to tune the spectral radius of the matrix A.
The entries of the vector w are all chosen to be 1. The
variable parameter γ > 0 determines the time-scale on
which the RC dynamics evolves.

The underlying process we want to model may evolve
in time based on a set of deterministic (chaotic) equa-
tions, such as the equations of the Lorenz chaotic system,
in the variables x(t), y(t), z(t) (See Eq. (16).) One task
that can be given to the RC is to reconstruct the time evo-
lution of the training signal, e.g. y(t) from knowledge of
the input signal, e.g., x(t). In this paper we will consider
several similar tasks for which the time series are gener-
ated by various chaotic systems. An example of chaotic
higher-dimensional system we will use in this paper is the
Lorenz96 system41. For this system, we see particularly
strong benefits of introducing the time-shifts.

B. Training and Testing Error of The Reservoir Computer

In order to examine the accuracy of the RC relative to
the dynamical system it is modeling, we need to quantify
how well the reservoir is able to reproduce the training
signal g(t) from knowledge of the input signals s(t). An
RC driven by the input signal has three phases: the tran-
sient phase which is from t0 = 0 to t1, the training phase
which is from t1 to t2, and the testing phase which is
from t2 to t3.

During the training phase [t1 t2] the readouts from
each node are recorded, discretized, and combined in a
T × (N + 1) matrix,

Ω =


r1(1) r2(1) ... rN (1) 1
r1(2) r2(2) ... rN (2) 1

...
...

...
...

...
r1(T ) r2(T ) ... rN (T ) 1

 (2)

Here, N is the number of nodes in the RC and T is the
number of time-steps recorded in the interval [t1 t2].
We add a column whose entries are all ones to account
for any constant offset. The fit h = [h(1), h(2), ..., h(T )]

to the training signal g = [g(1), g(2), ..., g(T )] is equal to,

h(t) =

N∑
i=1

κiri(t) + κN+1 (3)

(or, equivalently, in vectorial form h = Ωκκκ), where the
vector κκκ = [κ1, κ2, ..., κN+1], which contains a set of un-
known coefficients to be determined. The weight vector
κκκ is obtained by minimizing the linear least square fit
problem,

min
κκκ

||Ωκκκ− g||22. (4)

The analytic solution of the problem is given by,

κκκ =
(
ΩTΩ

)−1
ΩTg, (5)

When the matrix Ω is super-collinear (columns are highly
linearly dependent or T >> N), the inverse of the matrix
ΩTΩ is difficult to compute numerically. To avoid this,
we estimate the weight vector κκκ as a solution of the linear
least square fit problem with ridge regression,

min
κκκ

||Ωκκκ− g||22 + η||κκκ||22, (6)

where η > 0 is a small positive number. The solution of
the above problem can be computed as,

κκκridge =
(
ΩTΩ + ηI

)−1
ΩTg. (7)

Here I is the identity matrix of size N . From this, we
can compute the training error,

∆tr =
〈Ωκκκridge − g〉

〈g〉 , (8)

where the notation 〈X〉 =
√

1
T

∑T
i=1(X(i)− µ)2 for X

any T -dimensional vector and µ = 1
T

∑T
i=1X(i).

A fundamental measure of the performance of an RC
is the testing error. The testing error is defined as,

∆ts =
〈Ω̃κκκridge − g̃〉

〈g̃〉 , (9)

where g̃(t) is the testing signal we want to estimate, Ω̃
contains the time evolutions from the RC over the time
interval [t2 t3], and κκκridge is the same coefficient vector
we found in the training phase.

C. Initial setting of the reservoir parameters γ and ε

In Secs. III and IV we will consider the effects of ap-
plication of time shifts to a well performing Reservoir
Computer, meaning that the RC has been preliminar-
ily optimized based on current state-of-the-art practices.
However, we stress out that we have seen similar improve-
ments when the RC is not optimized.
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Our preliminary optimization consists of two steps: (i)
optimization in the coefficient γ and (ii) optimization in
the coefficient ε, see Eq. (1). We first discuss (i) and
then (ii). For each one of the tasks, in order to pick a
best value of γ, we set ε = 1 and compute the training
error ∆tr as a function of γ in the interval [0, 5]; we then
pick the value of γ that minimizes ∆tr. We keep γ at the
selected value and investigate the effect of varying ε. In
order to pick the best value of ε we compute the memory
capacity defined as follows42,

MC =

∞∑
τ=1

MCτ , (10)

where

MCτ =
cov2(x(t− τ), h(t))

var(x(t))var(h(t))
, τ ∈ N (11)

and select the value of ε that maximizes the MC.
This procedure (optimization in γ followed by opti-

mization in ε) is illustrated in Fig. 1 for the case of the
Lorenz96 system41, see also Eq. (15) below. From (A)
we see that the value of γ that minimizes the training
error is approximately equal to 0.9. We then fix γ = 0.9
and vary ε, which is shown in (C). For completeness, the
testing error is shown in (B). We see that the value of
ε that maximizes the memory capacity is approximately
equal to 0.8. Analogous procedures are implemented for
the cases of the Lorenz system and of the Hindmarsh-
Rose system, which we discuss later in Sec. III. For the
Lorenz system we obtain γ = 1.65 and ε = 1. For the
Hindmarsh-Rose system we obtain γ = 0.9 and ε = 0.8.
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FIG. 1. Lorenz96 attractor. (A) Plot of the training error ∆tr vs γ. The value of γ that minimizes the training error is
approximately equal to 0.9. (B) Testing error vs γ, with a trend similar to that seen in (A). (C) Memory Capacity vs ε with γ
set equal to 0.9. We find that the value of ε that maximizes the memory capacity is approximately equal to 0.8.

III. APPLICATION OF RANDOM TIME-SHIFTS

In this section we describe application of time-shifts to
the individual readouts of a RC. We will see that intro-
duction of these time-shifts is beneficial even when these
are randomly chosen. Optimized time-shifts are consid-
ered in Sec. IV. Here our choice of random time-shifts is
consistent with the choice of a random topology for the
connectivity of the RC network, which is commonly as-
sumed in the literature (see also our construction of the
adjacency matrix A in section II.) This is typically done
to show that RCs can be effective independent of the de-
tails of their implementation. We remove the assumption
of randomly chosen time-shifts in Sec. IV.

For each individual task, we compute the timescale τ̄
of each individual oscillator system, defined as the time
at which the system autocorrelation function decays to
one half of its value at time zero. For the Lorenz system
we find τ̄ = 0.3; for the Hindmarsh-Rose system we find
τ̄ = 0.46; and for the Lorenz96 system we find τ̄ = 0.19.

Subsequently, for each task, the individual time shifts τi
are taken to be uniformly distributed random numbers
in the interval [0, ατ̄ ], where α is a tunable parameter.

Finally, the reservoir readout at node i is shifted
ri 7→ ri(t−τi). The motivation for application of the time
shifts is the observation that under general conditions the
RC readouts r1(t), r2(t), ... appear to be ‘synchronized’43,
which significantly reduces the ability of fitting the train-
ing signal. By introducing time shifts, this synchroniza-
tion can be broken.

The fit signal h(t) is written as a linear combination
of the individual readouts,

h(t) = Ωdelayκκκridge (12)

where κκκridge in this case is computed as,

κκκridge =
(
ΩTdelayΩdelay + ηI

)−1
ΩTdelayg (13)
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and Ωdelay is computed as,

Ωdelay =


r1(1− τ1) r2(1− τ2) ... rN (1− τN ) 1
r1(2− τ1) r2(2− τ2) ... rN (2− τN ) 1

...
...

...
...

...
r1(T − τ1) r2(T − τ2) ... rN (T − τN ) 1


(14)

In the testing phase the same times-shifts used in the
training phase, are applied to compute Ω̃delay. Then the
training and testing errors are computed by using Eq. (8)
and (9), respectively.

In the rest of this section, we provide evidence of the
strong benefits of applying randomly chosen time shifts,
rather than presenting a principle way of selecting them.
In Section IV we present an optimization approach that
can be used to guide the selection of the time-shifts.
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FIG. 2. Lorenz96 system. The training error (A) and testing error (B) vs α. The parameter α controls the interval over which
the random time-shifts are taken [0, τ̄α], where τ̄ is the characteristic time-scale of the Lorenz task and was found to be 0.19.
Error bars indicate the standard deviation over 50 iterations where each iteration corresponds to a different selection of the
random time-shifts τi, γ = 0.9, ε = 0.8.
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FIG. 3. Lorenz attractor. The training error (A) and testing error (B) vs α. The parameter α controls the interval over which
the random time-shifts are taken [0, τ̄α], where τ̄ is the characteristic time-scale of the Lorenz task and was found to be 0.3.
Error bars indicate the standard deviation over 50 iterations where each iteration corresponds to a different selection of the
random time-shifts τi, γ = 1.3, ε = 2.
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FIG. 4. Hindmarsh-Rose attractor. The training error (A) and testing error (B) vs α. The parameter α controls the interval
over which the random time-shifts are taken [0, τ̄α], where τ̄ is the characteristic time-scale of the Lorenz task and was found to
be 0.46. Error bars indicate the standard deviation over 50 iterations where each iteration corresponds to a different selection
of the random time-shifts τi, γ = 1.65, ε = 1.

The advantage of introducing random time-shifts is
discussed in what follows for the case of three different
‘tasks’, which we simply refer to as the chaotic Lorenz
96 system, the Lorenz system, and the Hindmarsh-Rose

system.
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A. Lorenz96 System Task

The Lorenz96 chaotic system is modeled by the following
set of equations,

ẋi(t) = (xi+1 − xi−2)xi−1 − xi + F (15)

where i = 1, 2, ...,M for which we assume: x−1 =
xM−1, x0 = xM , xM+1 = x1, F = 8, M = 4.

We take the input signal s(t) = x1(t) and the train-
ing signal g(t) = x4(t). In the simulations the transient
phase takes place from 0 to t1 = 1000, the training phase
is from t1 = 1000 to t2 = 1100, and the testing phase is
from t2 = 1100 to t3 = 1200.
In Fig. 2, we plot the training (∆tr) and testing error
(∆ts) vs α. The figure shows a substantial improvement
in both ∆tr and ∆ts when α is increased from 0 to 5.
In particular, we see that the mere application of ran-
dom time shifts to the readouts of a nonlinear reservoir
computer leads to a reduction of both the training and
testing error of roughly two orders of magnitude.

B. Lorenz System Task

The Lorenz chaotic system is modeled by the following
set of equations,

ẋ(t) = c1(y(t)− x(t))

ẏ(t) = x(t)(c2 − z(t))− y(t)

ż(t) = x(t)y(t)− c3z(t)
(16)

with c1 = 10, c2 = 28 and c3 = 8/3.
For this task, the x(t) component is used as the input

signal s(t). The y(t) component is used as the training
signal. In simulation, the transient phase is set from 0 to
t1 = 600, the training phase from t1 = 600 to t2 = 610
and the testing phase from t2 = 610 to t3 = 615.
In Fig. 3, we plot the training (∆tr) and testing error
(∆ts) vs α. For all values of α > 0 we see a reduction
in both the training and testing errors compared to the
case that α = 0, which corresponds to the case in which
time-shifts are not applied. In particular, we see that
both the lowest training error and the lowest testing error
are achieved at intermediate values of α, with the best
reduction for α approximately equal to 0.2. For larger
values of α we see an increase of both the training and
the testing error.

C. Hindmarsh-Rose System Task

The Hindmarsh-Rose chaotic system is modeled by the
following equations,

ẋ(t) = y(t) + φ[x(t)]− z(t) + 1

ẏ(t) = ψ[x(t)]− y(t)

ż(t) = 5× 10−3(4(x(t) + 8/5)− z(t))
(17)

where,

φ[x(t)] = −x3 + 3x2

ψ[x(t)] = 1− 5x2.

For this task, the x(t) component is used as the input
signal s(t). The y(t) component is used as the training
signal. In these simulations the transient phase takes
place from 0 to t1 = 1000, the training phase from t1 =
1000 to t2 = 1010, and the testing phase from t2 = 1010
to t3 = 1015.
In Fig. 4, we plot the training (∆tr) and testing error
(∆ts) vs α. For this case we see a substantial reduction
in both the training error and testing error as we increase
α. The improvement seen in both ∆tr and ∆ts when
α is increased from 0 to 3 is roughly of one order of
magnitude.

IV. OPTIMIZATION OF TIME-SHIFTS

In this section, we describe a method to select the time-
shifts that minimizes the training error. This method re-
quires calculation of the time derivative of the reservoir
response. We proceed under the assumption that all the
time shifts are small. This assumption may be confirmed
or not after computation of the optimized time-shifts.
However, we decide to retain this assumption for the fol-
lowing two reasons: (i) it allows a simple solution to the
optimization problem and (ii) even if the assumption is
not verified by the optimized solution, we still hope that
it will improve the RC performance with respect to ei-
ther the case of no time-shifts or random time-shifts. In
what follows, we will test (ii) numerically for different
choices of tasks and RC parameters. We will see that
often times our strategy to optimize the time shifts over-
performs random time shifts.

After applying small time-shifts to the individual read-
outs of the RC, a first order Taylor expansion yields,

ri(t− τi) ≈ ri(t)− τiṙi(t). (18)

Now the fit signal h(t) in Eq. (12) can be written as,

h(t) =

N∑
i=1

κiri(t) + κN+1 +
∑
i

λiṙi(t), (19)

where λi = −κiτi. In other words,

h = [Ωr Ωṙ]

[
κκκ
λλλ

]
= Ωopt

[
κκκ
λλλ

]
, (20)

where Ωr ≡ Ω, λλλ = [λ1, λ2, · · · , λN ] and

Ωṙ =


ṙ1(1) ṙ2(1) ... ṙN (1)
ṙ1(2) ṙ2(2) ... ṙN (2)

...
...

...
...

ṙ1(T ) ṙ2(T ) ... ṙN (T )

 . (21)
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The optimal coefficient vector can be found by solving
the linear square fit with ridge regression,[

κκκ∗

λλλ∗

]
=
(
ΩToptΩopt + ηI

)−1
ΩToptg (22)

with optimized time-shifts given by,

τ∗i = −λ∗i /κ∗i , for i = 1, 2, · · · , N. (23)

The fit signal with respect to the optimized time-shifts
is,

h∗ = Ω∗shiftκκκ
∗, (24)

where Ω∗shift is obtained by replacing τi by τ∗i in Eq. (14)
and the training error is computed by Eq. (8). The op-
timized time-shifts τττ∗ and κκκ∗ are then used to compute
Ω̃∗shift and the testing error. In all of our simulation in
this article we set the ridge regression parameter η to
10−6.

As we will see, though the optimization method is
based on a first order approximation, it presents the main
advantages that it is simple to compute numerically and
it improves the accuracy and performance of the RC,
compared to the case that no shifts are applied.

A. Lorenz96 System Task

Hereafter, we obtain the optimized time-shifts by the op-
timization method discussed in this section. The opti-
mized time-shifts are applied to the individual nodes of
the RC and the training and testing errors are computed.

Our best results are obtained for the case of the
Lorenz96 System. A comparison between application
of random time-shifts and optimized time-shifts is pre-
sented in Fig. 5. In this case, optimized time-shifts per-
form much better than random time-shifts. In particular,
for low values of γ we see an improvement of many or-
ders of magnitude, and a strong advantage of optimized
time shifts is seen for all value of γ. Note also that ran-
dom time-shifts still present a substantial improvement
with respect to the case in which time-shifts are not used
(compare Fig. 2 and Fig. 5.)

B. Lorenz System Task

In Fig. 6, we plot the training error (∆tr) and the
testing error (∆ts) vs γ for different RC configurations.
For γ > 3 we see that the training error for the case
of optimized time-shifts is lower by roughly one order of
magnitude. However, in terms of testing error we do not
see a benefit of using optimized time-shifts. We wish to
emphasize that both random and optimized time-shifts
present a substantial improvement with respect to the
case in which time-shifts are not used (compare Fig. 3
and Fig. 6.)

C. Hindmarsh-Rose System Task

A comparison between application of random time-shifts
and optimized time-shifts is presented in Fig. 7 for the
case of the Hindmarsh-Rose system. Fig. 7 (A) is a plot of
the training error (∆tr) vs γ, showing that for most values
of γ the RC accuracy is improved with optimized time-
shifts. Fig. 7 (B) is a plot of the testing error (∆ts) vs γ,
showing that for most values of γ in the range 1 < γ < 3
the RC performance is improved with optimized time-
shifts.

V. CONCLUSION

This paper discussed the benefits associated with ap-
plication of time shifts to the readouts of a reservoir com-
puter. In all of our numerical experiments, we prelimi-
narily optimize the RC parameters so to ensure we are
working with a well performing reservoir. However, our
results hold for generic RCs.

For different ‘tasks’, we observe that application of ran-
domly chosen time shifts to the reservoir readouts leads
to a substantial improvement in both accuracy (training
error) and performance (testing error) compared to the
case in which time shifts are not used. The choice of
random time shifts is consistent with the choice of a ran-
dom topology for the connectivity of the RC network,
which is commonly assumed in the literature. We see
that the improvement observed is achieved independent
of the particular selection of the time shifts. A further
reduction in accuracy and performance is obtained when
the time-shifts are computed by using a simple optimiza-
tion approach. A case for which application of random
and optimized time-shifts was particularly beneficial is
that of the Lorenz96 system (see Figs. 2 and 5.)

The method we use to optimize the time-shifts is
very simple and at the same time, effective. Opti-
mization methods such as Particle Swarm44, Simulated
Annealing45, etc could be used to compute better ap-
proximations to the optimal time-shifts but these other
optimization methods typically require much higher com-
putational complexity due to the large parameter space
(in our case, a total of 100 time-shifts). On the other
hand, the method we presented in this paper is easily
scalable.

Our work may point out to a deeper connection
with Taken’s Embedding Theorem46, which states that
a chaotic attractor can be reconstructed from a single
’readout’ function of the underlying dynamical system
and linearly spaced delayed observations of this only
readout function. Here we are using N readouts and ap-
plying a different delay to each one of them. Exploring in
more detail applications of Taken’s Embedding Theorem
to reservoir computers provides a promising direction for
future investigation.
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FIG. 5. Lorenz96 system. The training error (A) and testing error (B) vs γ for both the cases of: randomly drawn time shifts
and optimized time shifts. Here ε = 0.8 and α = 4.
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FIG. 6. Lorenz attractor. The training error (A) and testing error (B) vs γ are shown for the cases of randomly drawn
times-shifts and optimized time-shifts. Here ε = 2 and α = 0.25.
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FIG. 7. Hindmarsh-Rose attractor. The training error (A) and testing error (B) vs γ for both the cases of randomly drawn
times-shifts and optimized time-shifts. Here ε = 1 and α = 2.5.
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