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Mean-Square Input-Output Stability and

Stabilizability of a Networked Control System

with Random Channel Induced Delays

Weizhou Su∗ Junhui Li∗ Jieying Lu∗

Abstract

This work mainly investigates the mean-square input-output stabil-
ity and stabilizability for a single-input single-output (SISO) networked
linear feedback system. The control signal in the networked system is
transmitted over an unreliable channel. In this unreliable channel, the
data transmission times, referred to as channel induced delays, are ran-
dom values and the transmitted data could also be dropout with certain
probability. The channel induced delays and packet dropout are modeled
by an independent and identically distributed (i.i.d.) stochastic process
with a fixed probability mass function (PMF). It is assumed that the
transmitted data are with time stamps. At the channel terminal, a linear
combination of data received at one sampling time is applied to the plant
of the networked feedback system as a new control signal. To describe
the uncertainty in the channel, a concept so called frequency response of

variation is introduced for the unreliable channel. With the given linear
receiving strategy, a mean-square input-output stability criterion is es-
tablished in terms of the frequency response of variation of the unreliable
channel for the networked feedback system. It is shown by this criterion
that the mean-square input-output stability is determined by the interac-
tion between the frequency response of variation and the nominal feedback
system. In the mean-square input-output stability of the system, the role
played by the random channel induced delays is the same as that played by
a colored additive noise in an additive noise channel with a signal-to-noise
ratio constraint. Moreover, the mean-square input-output stabilizability
via output feedback is studied for the networked system. When the plant
in the networked feedback system is minimum phase, an analytic neces-
sary and sufficient condition is presented for its mean-square input-output
stabilizability. It turns out that the stabilizability is only determined by
the interaction between the frequency response of variation of the channel
and unstable poles of the plant. Finally, numerical examples are given to
illustrate our results.

1 Introduction

Networked feedback control systems are known as spatially distributed control
systems in which signals are exchanged over communication network [1]. In the
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past few decades, a huge amount of research interests has been attracted on
the analysis and design of these systems due to great advantages in networked
control systems, such as ease for installation and maintenance, reduced system
wiring, and resources sharing etc. Typical application examples of networked
control systems can be found in a broad range of areas such as: automotive
industry [2], autonomous underwater vehicles and unmanned air vehicles [3, 4],
and even remote surgery [5] and big data [6]. Despite of the advantages, net-
worked control systems also pose challenging problems arising from unreliability
in data transmission, caused by channel induced delays (i.e., data transmission
times), packet dropout, coding error etc. Due to the fact that data are transmit-
ted in network by data packet, channel induced delays and data packet dropout
that occur in data exchanging between components of feedback systems over
network are the most common phenomena in networked systems. The channel
induced delays and packet dropout could seriously degrade performance of feed-
back control systems, and even destabilize feedback systems when these issues
are not carefully considered in system design (see, e.g., [7, 8] and [9]). To cope
with channel induced delays, great efforts have been made in modeling, stability
analysis, and controller design of networked feedback systems (for example see
[7, 8] and the references therein).

Channel induced delays in networked systems could be constant, time-varying,
and random delays, which are basically dependent on network protocol, chan-
nel quality etc. In [10, 11, 12], the authors studied the asymptotic stability of
networked linear feedback systems in which message is transmitted over net-
work with a constant transmission time (i.e. a constant channel induced delay).
The networked systems were modeled as discrete-time linear systems augmented
from discretized plants, delay channel models and control laws. In particular,
the channel induced delay was modeled as a parameter of the augmented linear
systems’ matrices. Stability criteria were obtained for the networked systems
in terms of the discrete-time linear system models. These augmented models
were also used to study the asymptotic stability and stabilization design for
networked feedback systems with time-varying delays. Several stability crite-
ria and stabilization design results were obtained by using switch system ap-
proaches (see for example [13, 14, 15, 16]). Alternatively, time-varying channel
induced delays were modeled as continuous-time plants’ input delays (see e.g.,
[17, 18, 19]). Lyapunov-Krasovskii functionals were used in stability analysis
and stabilization design for networked feedback systems. Various linear matrix
inequality (LMI) based methods were developed. Moreover, to cope with data
disorder occurred in transmission, time-stamp scheme and logic zero-order hold
were developed for the networked feedback systems [20, 21]. In general, the
aims of aforementioned papers are to find criteria that networked feedback sys-
tems are stable when channel induced delays belong to given regions, or to find
upper bounds of channel induced delays under which the stability of the net-
worked feedback systems are preserved. This leads to certain conservativeness
in stability analyses and stabilization design for networked feedback systems
with random channel induced delays.

Since channel induced delays and packet dropouts usually exhibit random
characteristics, random channel induced delay and packet dropout models are
widely used in stability analysis and control design for networked feedback
systems (see for example [22, 20, 23, 24, 25]). In [24, 25], applying Markov
chains, the authors modeled networked systems with random delays and packet
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dropouts as discrete-time Markov jump linear systems. Necessary and sufficient
conditions were obtained for the mean-square stability of the networked feed-
back systems. Then, the mean-square stabilization was studied for these systems
and LMI based control design approaches were developed. It turned out that
this stabilization problem is a non-convex problem. Certain conservativeness
may not be avoidable in this type of results. On the other hand, channel in-
duced delays were modeled as random input delays of plant/controllers, and the
sequences of the input delays were assumed to be independent and identically
distributed (i.i.d.) random processes in [22, 20]. It was assumed in these works
that the probability density functions of the random channel induced delays are
known and all the channel induced delays in networked feedback systems are
smaller than the systems’ sampling intervals. A suboptimal linear controller was
designed for a networked feedback system with a fixed sampling interval in [20].
The reference [22] studied a networked system with a time-varying sampling
interval. LMI based sufficient conditions were presented for the mean-square
stability of the system. However, for the case when channel induced delays are
longer than the systems’ sampling intervals, the channel induced delays may
not exactly be input delays of plants since more than one data may be re-
ceived simultaneously or none data could be received at one sampling instant.
In [26, 23, 27, 28], channel induced delays (or data transmission times) which
are longer than the systems’ sampling intervals were modeled as an i.i.d. ran-
dom process with a known probability mass function (PMF). State estimation
problem was studied for these networked systems and optimal state estimation
algorithms were developed in [27, 28]. The stabilization problem was studied for
a nonlinear networked feedback system and a sufficient condition was obtained
for the stability of the networked feedback system in [23].

In this work, we focus on a single-input single-output linear time-invariant
(LTI) networked feedback system in which the control signal is transmitted over
a communication channel with random channel induced delays. The networked
feedback system is a discrete-time system with a fixed sampling interval and
channel induced delays are integral multiples of this sampling interval. Our
goal is to fully understand how the interaction between stochastic features of
the random delays and characteristics of the networked feedback system affects
the system’s stability and limits the stabilizability of the system. With these
purposes, we adopt the random process model studied in [26, 23, 27, 28] to
describe the random channel induced delays. At the channel terminal, a linear
receiving strategy which is a linear combination with given weights of data re-
ceived at one sampling time is adopted. The new signal generated by the linear
receiving strategy is applied to the plant of the networked feedback system as
a control signal. Then, the channel uncertainty caused by the random channel
induced delays is defined by the random impulse response of the communication
channel and the first-order statistics of the impulse response. The input-output
relation of the channel uncertainty is established in terms of the spectral density
of the uncertainty’s impulse response. To give a precise description for a chan-
nel relative deviation induced by the channel uncertainty, a concept of so-called
frequency response of variation is introduced in frequency domain. A necessary
and sufficient condition is presented for the mean-square input-output stability
of the networked feedback system. It is a new version of the small gain theorem
for networked feedback systems with random channel induced delays. It is also
found that for the mean-square input-output stability and stabilizability prob-
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lems, the channel uncertainty caused by the random channel induced delays is
equivalent to an additive noise in an additive noise channel with a signal-to-noise
ratio constraint (see [29] and [30] for more details in the mean-square stability of
networked feedback systems over additive noise channels with a signal-to-noise
ratio constraint). After then, the mean-square input-output stabilizability via
output feedback is studied for the networked feedback system. In particular,
a necessary and sufficient condition is found for the mean-square input-output
stabilizability of the system when its plant is minimum phase. It precisely
describes the connection between the mean-square input-output stabilizability,
the frequency response of variation and the unstable poles of the plant in the
feedback system. Furthermore, it turns out that the interaction between the
frequency response of variation and the unstable poles plays a critical role to
the mean-square stabilizability of the networked feedback system.

The remainder of this paper is organized as follows. In Section 2, the ran-
dom channel induced delays and related channel uncertainty are modeled by
using the PMF of the delays. The impulse responses of the channel and chan-
nel uncertainty are given. The problems under study are formulated. Section
3 presents the input-output relation of the channel uncertainty based on the
spectral density of its impulse response. A necessary and sufficient condition of
the mean-square input-output stability is obtained for the networked feedback
system. In Section 4, the mean-square input-output stabilizability is studied for
the networked feedback system when its plant is minimum phase. An analytic
expression is obtained for the necessary and sufficient condition of the mean-
square input-output stabilizability. The connection between the result in this
work and the existing results is discussed. Section 5 illustrates some numerical
examples and Section 6 concludes the paper.

The notations used in this paper is mostly standard. The complex con-
jugate transpose of any matrix A is denoted by A∗. When A is square and
invertible, its inverse and inverse conjugate transpose are denoted by A−1 and
A−∗, respectively. For any transfer function G(z), we represent a state-space

realization of G(z) by G(z) =

[

A B
C D

]

. Let the open unit disc be denoted by

D := {z ∈ C : |z| < 1}, the closed unit disc by D̄ := {z ∈ C̄ : |z| ≤ 1}, the unit
circle by ∂D, and the complements of D and D̄ by Dc and D̄c, respectively. In
this work, the Hardy space H2 consists of scalar-valued analytic function F in
D̄c such that

‖F‖2 =
(

sup
r>1

1

2π

∫ π

−π

F ∗(rejθ)F (rejθ)dθ
)

1

2

< ∞.

The orthogonal complement of H2 is given by

H⊥
2 :=

{

F : F (z) analytic in D, F (0) = 0,

‖F‖2 =
(

sup
r<1

1

2π

∫ π

−π

F ∗(rejθ)F (rejθ)dθ
)

1

2

< ∞
}

.

Define also the space RH∞ as the set of all proper stable rational transfer
functions. Furthermore, E{·} denotes the expectation operator of a random
variable. The set of real numbers is denoted by R.
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2 Problem Formulation

Consider a canonical structure of a discrete-time LTI networked feedback system
as depicted in Fig. 1. Here, the plant P is an LTI system and its transfer
function P (z) is assumed to be strictly proper. The controller K is an LTI
controller.

❤ ✲ P
y

✲ K

✛u
Channel

ηud
Receiver ✛

✻+

✲v

Figure 1: Networked feedback system over an unreliable communication channel

The signal y(k) ∈ R is the measurement of the plant P , u(k) ∈ R is the
control signal generated by the linear controller K, and v(k) is the external
input. An unreliable communication channel is placed in the path from the
controller to the receiver. Here, the unreliable features under study are random
channel induced delays and packet dropout. Denote the channel induced delay
for the control signal u(k) (i.e., the transmission time spent on transmitting
u(k) over the communication channel) by τk. Thus, the signal u(k) sent at
the time k arrives at its destination at the time k + τk. The channel induced
delay τk is assumed to be a random variable with nonnegative integer values
from a bounded set D = {0, 1, 2, · · · , τ̄ − 1, τ̄}. All transmitted data are with
time stamps. The data whose channel induced delays are greater than τ̄ are
discarded at the receiver. η(k) is a collection of data, which has τ̄ + 1 entries
and includes all data received at time k. Now, we use Kronecker delta function
δ(k) to characterize all entries belonging to η(k),

δ(k) =

{

1, k = 0;
0, k 6= 0.

Let η(k) = {η0(k), η1(k), · · · , ητ̄ (k)} and ηi(k) = δ(τk−i − i)u(k − i), i ∈ D.
The function δ(τk−i − i) = 1 indicates that the signal u(k − i) arrives at its
destination through the channel at time k and ηi(k) = u(k − i), otherwise it
means that u(k − i) is not received at time k and ηi(k) = 0. It is assumed that
the receiver at the terminal of the channel has limited computation capability.
This capability allows the receiver to generate the signal ud(k) ∈ R as its output
based on the received data and the time stamps associated with the data. A
linear combination of the received data {η0(k), · · · , ητ̄ (k)} can be taken as the
output of the receiver:

ud(k) =

τ̄
∑

i=0

αiηi(k) =

τ̄
∑

i=0

αiδ(τk−i − i)u(k − i) (1)

where the weights α0, α1, . . . , ατ̄ are assigned to the received data, respectively,
according to the delay steps of the data. We refer to the receiver given by (1) as
linear receiver or linear receiving strategy. Note that the linear receiving strategy
is a general case of the zero-input strategy [31]. Without loss of generality, we
assume that the initial time is at k = 0 and the system is at rest at initial time.
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Remark 1. For any given k and a realization of τk, the indicator δ(τk − i)
guarantees that the control signal u(k) could only appear in one element of the
sequence {η(0), η(1), η(2), · · · }. Being consistent with η(k), the data u(k) ap-
pears in the sequence {ud(0), ud(1), ud(2), · · · } once at most. Moreover, to drop
data with a channel induced delay greater than τ̄ − 1 and model data dropout,
the weight ατ̄ is set to be zero. That is, a zero-input strategy is adopted.

According to the discussion above, the networked feedback system in Fig.
1 with the linear receiver is re-diagrammed as that shown in Fig. 2, wherein
q−1 is the unit delay operator. One can see from this block-diagram that the

❤✲v(k) ✲ P (z) ✲y(k) K(z) u(k)

...

ud(k)

✛

✛

✛

δ(τk)
η0(k)✛α0

❄
q−1✛δ(τk−1 − 1)

η1(k)✛α1✛❢

q−τ̄✛δ(τk−τ̄ − τ̄)
ητ̄ (k)✛ατ̄

...
✻+

✻
Channel with random delaysReceiver

Figure 2: Networked feedback system with a random delay channel

block cascaded by the channel and the receiver, referred to as a transmission
block, is a linear system with a random finite impulse response. Its input-output
relation is given by (1). Since the initial time is assumed to be zero, without loss
generality, we consider the random impulse response h(k, n) of the transmission
block to a unit impulse input applied to the channel at any time n ≥ 0, which
is given by

h(k, n) =







0, −∞ < k < n,
αiδ(τn − i), k = n+ i, i ∈ D,
0, k > n+ τ̄ .

(2)

One can see from (2) that the random impulse response h(k, n) is determined by
the instant n and the random sequence {α0δ(τn), α1δ(τn−1), · · · , ατ̄ δ(τn− τ̄)}.
For a given realization of τn, at most one entry is not equal to zero in the random
sequence. The input-output relation of the transmission block is rewritten as

ud(k) =

τ̄
∑

i=0

h(k, k − i)u(k − i).

We impose the following assumptions throughout the paper.

Assumption 1. The random delay process {τk : k = 0, 1, 2, · · · } is an i.i.d.
process, and τk takes values in D according to a common PMF that

pi = Pr {τk = i} , i ∈ D (3)

with pi ∈ [0, 1] and
∑

i∈D pi = 1.
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Assumption 2. The external input sequence {v(0), v(1), v(2), · · · } is indepen-
dent of the channel induced delay process {τ0, τ1, τ2, · · · }.

Since the random sequence {α0δ(τn), α1δ(τn−1), · · · , ατ̄ δ(τn− τ̄)} is depen-
dent on the random variable τn which is an entry of an i.i.d. process, the mean
of each entry in this sequence is obtained from the PMF of τn, i.e.,

E{δ(τn − i)} = pi, i ∈ D. (4)

Define the mean channel as

H(z) =
τ̄
∑

i=0

αiE{δ(τn − i)}z−i.

Thus, it holds that

H(z) =

τ̄
∑

i=0

αipiz
−i. (5)

Subsequently, the transmission block is divided into two parts: One is the
mean channel H(z) and the other is a zero-mean channel uncertainty denoted
by Ω. Denote the response of the latter part by ω(k, n) to the unit impulse
input applied to the channel at time n ≥ 0. This impulse response is given as
below:

ω(k, n) =







0, k < n,
αi[δ(τn − i)− pi], k = n+ i, i ∈ D,
0, k > n+ τ̄ .

(6)

Accordingly, the receiver output ud(k) is the summation of the outputs of H
and Ω when considering u(k) as their inputs, i.e.,

ud(k) = ū(k) + d(k) (7)

where

ū(k) =

τ̄
∑

i=0

αipiu(k − i), (8)

d(k) =
τ̄
∑

i=0

ω(k, k − i)u(k − i). (9)

As a result, the system in Fig. 2 can be re-diagramed as a stochastic sys-
tem shown in Fig. 3. The structure of this system is similar to that studied
in literatures for networked feedback systems over fading channels (see for ex-
ample [32] and [33]). In the literatures, the channel uncertainties under study
are white noise processes, thus the mean channels are constants and the chan-
nel uncertainties are zero-mean white noise processes. But, in this work, the
mean channel H(z) and channel uncertainty Ω are linear systems with the
time-invariant finite impulse response {α0p0, · · · , ατ̄pτ̄} and the random finite
impulse response {ω(n, n), · · · , ω(n+ τ̄ , n)}, respectively.

In Fig. 3, denote the system from d to u without considering the channel
uncertainty Ω by G(z), referred to as the nominal system, which is given by

G(z) = K(z)P (z)[1−H(z)K(z)P (z)]−1. (10)
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❤✲v ✲ ❤ ✲ P (z) ✲ K(z)

G

✛H(z)

✻+
ū

✛ u
Ω

d

✻+

Figure 3: The stochastic system interconnected by a nominal system and a
channel uncertainty

v e✲ ❤ ✲ G ✲u

✛Ω

d
✻

Figure 4: Equivalent interconnection of a networked feedback system in presence
of random channel induced delays.

Then the whole system is an interconnection of the nominal system G(z) and
the channel uncertainty Ω, as shown in Fig. 4.

It is well-known that there exists a controller K to internally stabilize the
nominal feedback system G for any stabilizable and detectable LTI plant P if
and only if there is not unstable pole-zero cancelation between the mean channel
H and the plant P . That is, the following assumption is necessary.

Assumption 3. The plant P of the networked feedback system is stabilizable
and detectable. There is not unstable pole-zero cancelation between the mean
channel H and the plant P .

To avoid any possible unstable pole-zero cancelation, the weights α0, α1,
· · · , ατ̄ in the linear receiving strategy can also be selected so that the mean
channel H is minimum phase. A numerical example is presented in Section
5. Since the controller-receiver co-design is a very difficult task in general, a
common setup in most of literatures is that the controller is designed based on
a given receiving strategy, e.g., zero-input strategy or hold-input strategy for
packet dropout problem [32, 31]. In this work, we restrict ourselves to the fixed
weights {α0, · · · , ατ̄} of the linear receiving strategy such that H is minimum
phase. Throughout this paper, we concentrate on the mean-square input-output
stability and stabilizability defined next.

Definition 1. The channel induced delay process {τk, k = 0, 1, 2, · · · } satis-
fies Assumption 1. The networked feedback system with a given linear receiving
strategy shown in Fig. 2 is mean-square input-output stable if the linear con-
troller K(z) internally stabilizes G(z) and the signal sequence {u(k)} is with
bounded variances for any i.i.d. input process {v(k)} with a bounded variance
and independent of the channel induced delay process.

8



Let the set of all proper controllers internally stabilizing G(z) be K.

Definition 2. The networked feedback system with a given linear receiving strat-
egy shown in Fig. 2 is said to be mean-square input-output stabilizable via output
feedback if there exists a feedback controller K ∈ K such that the closed-loop sys-
tem is mean-square input-output stable.

Remark 2. For a memoryless channel with a memoryless uncertainty, the
channel model is given by

ud(k) = (µ+∆k)u(k) (11)

where µ is the mean of the channel gain and {∆k}∞k=0 is an i.i.d. process with
zero mean and finite variance σ2. It is well-known (for example see [32, 34])
that the networked feedback system over an unreliable channel modeled by (11)
is mean-square (input-output) stable if and only if KP (1−µKP )−1 is internally
stable and

∥

∥

∥

σ

µ
[µKP (1− µKP )−1]

∥

∥

∥

2

2
< 1, (12)

where σ/µ is referred to as the relative standard deviation or coefficient of
variation (see for example [35]) of the random variable µ+∆k. It is a measure
to the variation of the uncertain channel’s gain. In this paper, since the channel
uncertainty under study is with memory, it is much more complicated than that
induced by an i.i.d multiplicative noise. A generalized version of the mean-square
input-output stability criterion is studied for the networked feedback system.

3 Mean-square Input-output Stability

In this section, we study the criterion of mean-square input-output stability for
the networked feedback system with a given output feedback controller K ∈ K.
The frequency variable z will be omitted whenever no confusion is caused.

It is shown in preceding section that a networked feedback system with a
random channel induced delay and a linear receiver is modeled as a stochastic
system shown in Fig. 3. Intuitively, the mean-square input-output stability
of the system is determined by the interaction between the nominal feedback
system G and the zero-mean channel uncertainty Ω. To study the interaction
between G and Ω, the stochastic properties of the channel uncertainty Ω whose
impulse response is given in (6) are studied.

Lemma 1. Suppose that the random delay process {τk : k = 0, 1, 2, · · · } satisfies
Assumption 1. Then it holds to the impulse response of the channel uncertainty
Ω that

1. for i ∈ D and k = 0, 1, 2, · · · ,

E{ω(k, k − i)} = 0;

2. for i ∈ D, k1, k2 = 0, 1, 2, · · · ,

E {ω(k1, k1 − i)ω(k2, k2 − i)} = δ(k1 − k2)α
2
i pi(1 − pi);

9



3. for i1 6= i2, i1, i2 ∈ D, k1, k2 = 0, 1, 2, · · · ,

E {ω(k1, k1 − i1)ω(k2, k2 − i2)} = −δ(k1 − i1 − k2 + i2)αi1αi2pi1pi2 .

Proof. It straightforwardly follows from the impulse response of Ω in (6) that
Lemma 1.1 holds.

From Assumption 1, τk1−i is independent of τk2−i for any k1 6= k2. Thus, it
holds that

E {ω(k1, k1 − i)ω(k2, k2 − i)} = E {ω(k1, k1 − i)}E {ω(k2, k2 − i)} = 0.

According to the PMF of τk1−i in (3), it holds for any k1 = k2 that

E {ω(k1, k1 − i)ω(k2, k2 − i)} = α2
i [(1− pi)

2pi + p2i (1− pi)] = α2
i pi(1− pi).

Hence, Lemma 1.2 holds.
Now consider Lemma 1.3. It also follows from Assumption 1 that for any

k1 − i1 6= k2 − i2, τk1−i1 is independent of τk2−i2 . It yields that

E {ω(k1, k1 − i1)ω(k2, k2 − i2)} = E {ω(k1, k1 − i1)}E {ω(k2, k2 − i2)} = 0.

In the case k1 − i1 = k2 − i2, according to the PMF of τk1−i1 in (3), we have
that

E {ω(k1, k1 − i1)ω(k2, k2 − i2)}
=αi1αi2 [(1 − pi1)(−pi2)pi1 − pi1(1− pi2)pi2 + pi1pi2(1− pi1 − pi2)]

=− αi1αi2pi1pi2 .

This completes the proof.

Remark 3. According to the definition of ω(k, n) in (6), it holds that ω(k, n) ≡
0 for k < n and k > n + τ̄ , i.e., there are only (1 + τ̄) non-zero elements
in the response {ω(k, n) : −∞ < k < ∞} of Ω to the impulse input δ(k − n).
Thus, {ω(k, k − i) : k ≥ 0, i ∈ D} is the collection of all non-zero elements in
the sequence {ω(k, n) : −∞ < k < ∞, n ≥ −τ̄}. Furthermore, it holds that

{ω(k, k − i) : k ≥ 0, i ∈ D} = {ω(n+ i, n) : n ≥ −τ̄ , i ∈ D} .

Lemma 1 shows that for any given n ≥ −τ̄ , the first- and second-order statistics
of all elements in the non-zero subsequence {ω(n+ i, n) : i ∈ D} are determined
by the PMF of the transmission time τn and independent of n. For n1 6= n2

(n1, n2 ≥ −τ̄), the subsequences {ω(k, n1)} and {ω(k, n2)} are mutually inde-
pendent. From the proof of this lemma, it can be verified that these stochastic
properties holds for all −∞ < n < ∞.

Now the second order stochastic properties of Ω are studied. For any given
instant n ≥ −τ̄ , let the autocorrelation of the subsequence {ω(k, n) : −∞ <
k < ∞} be given by

r(l) = E

{

∞
∑

k=−∞

ω(k, n)ω(k + l, n)

}

, −∞ < l < ∞. (13)
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Note the fact that ω(k, n) ≡ 0 for k < n and k > n+ τ̄ . For the case l = 0,
only the terms with n ≤ k ≤ n+ τ̄ in the summation of (13) may not be equal
to zero. By letting k1 = k2 = k, i = k − n and applying Lemma 1.2 into (13),
we obtain that

r(0) =

τ̄
∑

i=0

α2
i pi(1 − pi). (14)

According to Lemma 1.3 and (13), letting k1 = k, k2 = k+ l, i1 = k−n and
i2 = k + l − n yields

r(l) = −
τ̄−l
∑

i=0

αi αi+l pi pi+l, 0 < l ≤ τ̄ . (15)

It holds for l > τ̄ that ω(k, n)ω(k + l, n) ≡ 0. Hence, r(l) ≡ 0 for l > τ̄ .
In the case when l < 0, note the fact that ω(k + l, n) ≡ 0 for any k + l < n.

It is verified by (13) that r(l) = r(−l).
Subsequently, define the energy spectral density of the channel uncertainty

Ω as follows:

SΩ(z) =

∞
∑

l=−∞

r(l)z−l. (16)

Lemma 2. The energy spectral density SΩ(z) of the channel uncertainty Ω can
be written as

SΩ =
1

2

τ̄
∑

i1,i2=0

(αi1z
i1 − αi2z

i2)(αi1z
−i1 − αi2z

−i2)pi1pi2 . (17)

Proof. Note the fact that any |l| > τ̄ , r(l) ≡ 0. It holds that

SΩ(z) =

τ̄
∑

l=−τ̄

r(l)z−l.

It follows from the definition (16) of SΩ(z), r(0) and r(l) given in (14) and
(15), respectively, that

SΩ(z) =

τ̄
∑

i=0

α2
i pi(1 − pi)−

τ̄
∑

i1,i2=0
i1 6=i2

αi1αi2pi1pi2z
i1−i2 . (18)

Note the fact that

τ̄
∑

i=0

pi = 1. It holds that

τ̄
∑

i=0

α2
i pi(1 − pi) =

τ̄
∑

i1=0

α2
i1
pi1

τ̄
∑

i2=0

pi2 −
τ̄
∑

i=0

α2
i p

2
i

=
1

2

τ̄
∑

i1=0

τ̄
∑

i2=0

(α2
i1
+ α2

i2
)pi1pi2 −

τ̄
∑

i=0

α2
i p

2
i

(19)
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and

τ̄
∑

i1,i2=0
i1 6=i2

αi1αi2pi1pi2z
i1−i2 =

τ̄
∑

i1,i2=0

αi1αi2pi1pi2z
i1−i2 −

τ̄
∑

i=0

α2
i p

2
i . (20)

Substituting (19) and (20) into (18) leads to (17).

Remark 4. Note, from (14)-(15), that the autocorrelation r(l) of the subse-
quence {ω(k, n) : −∞ < k < ∞} is only dependent on the parameters of the
transmission block (i.e., the PMF of the delay and the given weights in the re-
ceiving strategy) but independent of n, so is the corresponding energy spectral
density function SΩ given by (16). This allows us to establish the input-output
relation of the channel uncertainty Ω.

Lemma 3. Suppose that Assumptions 1 and 2 hold for the channel induced
delay process and the external input sequence of the system. Then for any n1 ≥
n2 ≥ 0, τn1

is independent of the channel input u(n1) and u(n2) in the system.

Proof. Since the plant P is assumed to be strictly proper, the controller output
u(n) only depends on the past inputs of P , which is determined by {v(0), · · · , v(n−
1)} and {τ0, · · · , τn−1}, provided that P and K are relaxed at n = 0. Then by
Assumptions 1 and 2, the current channel transmission time τn is independent
of the current and past channel inputs, which completes the proof.

Define the autocorrelation of the sequence {d(0), d(1), · · · } by

rd(l) =



























lim
k̄→∞

1

k̄ + 1

k̄
∑

k=0

E{d(k)d(k + l)}, 0 ≤ l < ∞

lim
k̄→∞

1

k̄ + 1

k̄−l
∑

k=−l

E{d(k)d(k + l)}, −∞ < l < 0

(21)

It follows from (21) that

rd(l) = rd(−l), l = −1,−2, · · · . (22)

The power spectral density of d(k) is as follows:

Sd(z) =

∞
∑

l=−∞

rd(l)z
−l. (23)

Denote the ith-component of d(k) in (9) by di(k), i ∈ D, i.e.,

di(k) = ω(k, k − i)u(k − i), i ∈ D.

Lemma 4. Suppose that Assumptions 1 and 2 hold for the channel induced
delay process and the external input sequence of the system. It holds for k1,
k2 = 0, 1, 2, · · · that

1. for i ∈ D,

E {di(k1)di(k2)} = δ(k1 − k2)α
2
i pi(1− pi)E

{

u2(k1 − i)
}

; (24)
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2. for i1 6= i2, i1, i2 ∈ D,

E {di1(k1)di2(k2)} (25)

= −δ(k1 − i1 − k2 + i2)αi1αi2pi1pi2 E
{

u2(k1 − i1)
}

.

Proof. From Assumption 1 and 2, for any k1 6= k2 ≥ 0 and any i ≥ 0, ω(k1, k1−i)
is independent of ω(k2, k2 − i) and u(k1 − i). Without loss of generality, assume
k1 > k2. Then ω(k1, k1 − i) is independent of u(k2 − i). This leads to

E {di(k1)di(k2)}
=E {ω(k1, k1 − i)}E {u(k1 − i)ω(k2, k2 − i)u(k2 − i)}
=0.

On the other hand, it holds that

E {di(k1)di(k1)} = E
{

ω2(k1, k1 − i)
}

E
{

u2(k1 − i)
}

.

Consequently, from Lemma 1.2, Lemma 4.1 holds.
Now, we prove Lemma 4.2. Note that ω(k1, k1 − i1) is independent of

ω(k2, k2 − i2) for k1 − i1 6= k2 − i2. So, it holds that

E {di1(k1)di2(k2)} = 0.

For the case k1 − i1 = k2 − i2, ω(k1, k1 − i1) and ω(k2, k2 − i2) are independent
of u(k1 − i1), so we have that

E {di1(k1)di2 (k2)} = E {ω(k1, k1 − i1)ω(k2, k1 − i1)}E
{

u2(k1 − i1)
}

. (26)

Applying Lemma 1.3 to (26) leads to (25). Proof is completed.

For any stochastic sequence {u(0), u(1), u(2), · · · }, denote its averaged power
by ‖u‖P ,

‖u‖2P = lim
k̄→∞

1

k̄ + 1

k̄
∑

k=0

E{u2(k)}.

Lemma 5. Suppose that Assumptions 1 and 2 hold for the channel induced delay
process and the external input sequence of the system. The power spectral density
Sd(z) of the channel uncertainty Ω’s output {d(0), d(1), d(2), · · · } is given by

Sd(z) = SΩ(z)‖u‖2P . (27)

Proof. The autocorrelation of d(k) is determined by the autocorrelations of its
components di(k). It follows from (9) that

E{d2(k)} =

τ̄
∑

i1=0

τ̄
∑

i2=0

E{di1(k)di2 (k)} (28)

=
τ̄
∑

i1=0

E{d2i1(k)} +
τ̄

∑

i1,i2=0
i1 6=i2

E{di1(k)di2 (k)}.
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Applying Lemma 4 to (28) leads to

E{d2(k)} =

τ̄
∑

i1=0

E{d2i1(k)} (29)

=
l

∑

i=0

α2
i pi(1 − pi)E{u2(k − i)}.

For 1 ≤ l ≤ τ̄ , it holds that

E{d(k)d(k + l)} =

τ̄
∑

i1=0

τ̄
∑

i2=0

E{di1(k)di2(k + l)} (30)

=
τ̄
∑

i=0

E{di(k)di(k + l)}+
τ̄
∑

i1,i2=0
i1 6=i2

i2 6=i1+l

E{di1(k)di2 (k + l)}

+

τ̄
∑

i1,i2=0
i1=i2+l

E{di1(k)di2(k + l)}

According to Lemma 4, we write (30) as

E{d(k)d(k + l)} = −
τ̄−l
∑

i=0

αi αi+l pi pi+l E
{

u2(k − i)
}

. (31)

Moreover, for any l > τ̄ and i1, i2 ∈ D, ω(k + l, k + l − i2) is independent of
ω(k, k − i1). It leads to

E{d(k)d(k + l)} = 0. (32)

Substituting (29), (31) and (32) into (21), respectively, we obtain that

rd(0) =
τ̄

∑

i=0

α2
i pi(1− pi) lim

k̄→∞

1

k̄ + 1

k̄
∑

k=0

E{u2(k − i)}, (33)

rd(l) = −
τ̄
∑

i=0

αi αi+l pi pi+l lim
k̄→∞

1

k̄ + 1

k̄
∑

k=0

E{u2(k − i)}, 1 ≤ l ≤ τ̄ , (34)

and

rd(l) = 0, l > τ̄ . (35)

For any bounded sequence {E{u2(k − i)}, k = 0, 1, 2, · · · , }, i ∈ D, it holds
that

lim
k̄→∞

1

k̄ + 1

k̄
∑

k=0

E{u2(k − i)} = ‖u‖2P . (36)
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Taking account to (36), (14) and (15), we rewrite (33) and (34) as follows:

rd(0) = ‖u‖2P
τ̄

∑

i=0

α2
i pi(1− pi) = ‖u‖2Pr(0), (37)

and

rd(l) = −‖u‖2P
τ̄

∑

i=0

αi αi+l pi pi+l = ‖u‖2Pr(l), 1 ≤ l ≤ τ̄ , (38)

respectively.
Substituting (37), (38) and (35) into (23) results in

Sd(z) = ‖u‖2P
τ̄

∑

l=−τ̄

r(l)z−l. (39)

Applying (16) into (39) leads to (27).

Remark 5. As mentioned in the preceding section, an unreliable channel with
random packet dropout can be modeled by a multiplicative white noise process
with variance σ2, and the variance σ2 is determined by the packet dropout prob-
ability (see [32, 33, 36, 37] and references therein). According to our frame-
work, it holds for this case that τ̄ = 1, the mean channel H is a constant
determined by the packet dropout probability and the spectral density SΩ of the
channel uncertainty is σ2. For this white noise channel uncertainty, it holds
that Sd(z) = ‖d‖2P . It follows from Lemma 5 that

‖d‖2P = σ2‖u‖2P . (40)

Moreover, it is not hard to verify that (40) holds for all channel uncertainties
modeled by multiplicative white noises with zero mean and variance σ2.

It is well-known that for spectral density SΩ, there exists a minimum phase
polynomial Φ(z) of z−1 with degree τ̄ and real coefficients satisfying

SΩ(z) = Φ(z−1)Φ(z). (41)

It is referred to as the spectral factorization of SΩ(z) in literatures (see for
example [38, 39]).

Notice the fact that Φ(z) and H(z) are real polynomials of z−1 with degree
τ̄ . The function

W (z) := Φ(z)H−1(z) (42)

is, therefore, proper and real-rational. The complementary sensitivity function
in the nominal system G shown in Fig. 3 is given by

T (z) = H(z)K(z)P (z)[1−H(z)K(z)P (z)]
−1

. (43)

The next theorem establishes a new small gain theorem for mean-square input-
output stability of the networked feedback system shown in Fig. 2.
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Theorem 1. Under Assumptions 1, 2, and 3, the networked feedback system
with a given linear receiving strategy and a controller K ∈ K is mean-square
input-output stable if and only if

‖W (z)T (z)‖22 < 1. (44)

Proof. Consider the system in Fig. 4. Denote the power spectral densities of
the signals u, e, d and v by Su(z), Se(z), Sd(z) and Sv(z), respectively. Denote
the autocorrelation of u by ru(l), l = 0,±1,±2, · · · . It holds for the averaged
power and power spectral density of the signal u that

‖u‖2P = ru(0) (45)

and

ru(0) =
1

2π

∫ π

−π

Su(e
jθ)dθ. (46)

It is well-known that for the linear system G, the power spectral densities of its
input signal e and output signal u satisfy

Su(e
jθ) = G(ejθ)Se(e

jθ)G∗(ejθ). (47)

Hence, we obtain that

‖u‖2P =
1

2π

∫ π

−π

G(ejθ)Se(e
jθ)G∗(ejθ)dθ. (48)

Since the input sequence {v(n), n = 0, 1, 2, · · · } is independent of {τn, n =
0, 1, 2, · · · }, for any k1, k2 and i, v(k1) and ω(k2, k2 − i) are mutually inde-
pendent, ω(k2, k2 − i) is independent of u(k2 − i). This leads to that

E {v(k1)d(k2)} =

τ̄
∑

i=0

E {v(k1)ω(k2, k2 − i)u(k2 − i)} = 0. (49)

Consequently, we obtain that

Se(e
jθ) = Sv(e

jθ) + Sd(e
jθ). (50)

Applying Lemma 5, we write (50) as

Se(e
jθ) = Sv(e

jθ) + SΩ(e
jθ)‖u‖2P . (51)

Substituting (51) into (48) leads to

‖u‖2P =
1

2π

∫ π

−π

G(ejθ)SΩ(e
jθ)G∗(ejθ)dθ‖u‖2P (52)

+
1

2π

∫ π

−π

G(ejθ)Sv(e
jθ)G∗(ejθ)dθ.

Taking account to the spectral factorization (41), we have that

‖u‖2P =‖G(z)Φ(z)‖22‖u‖2P +
1

2π

∫ π

−π

G(ejθ)Sv(e
jθ)G∗(ejθ)dθ. (53)

The power ‖u‖P exists if and only if ‖G(z)Φ(z)‖22 < 1.
Note that

G(z)Φ(z) = W (z)T (z).

This theorem holds.
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Remark 6. In literatures (see for example [32] and references therein), there is
a classical version of the mean-square small gain theorem for a networked feed-
back system over unreliable channel of which the channel uncertainty is modeled
as a multiplicative white noise process. As shown by (12), the mean-square
(input-output) stability of the system is determined by the interaction between
the coefficient of variation of the unreliable channel’s gain and the complemen-
tary sensitivity function of the nominal system. Theorem 1 is a generalized
version of this mean-square input-output stability criterion for the networked
system with a random channel induced delay. As shown by the inequality (44),
the mean-square input-output stability of the networked system is determined by
the interaction between the factor W and the complementary sensitivity function
of the nominal system. In fact, W (ejθ) = Φ(ejθ)/H(ejθ) is the coefficient of
variation of the channel gain at the given frequency θ. Here, W is referred to
as the frequency response of variation of the channel.

To understand the role played by W in data transmission, we consider the
channel with a random channel induced delay shown in Fig. 3 where H and Ω
are the mean channel and the channel uncertainty, respectively. Since the mean
channel H is a linear time-invariant system, the power spectral density Sū of
its output ū satisfies that

Sū(e
jθ) = H(ejθ)Su(e

jθ)H∗(ejθ).

The power spectral density Sd(e
jθ) of the output of Ω is given by Lemma 5.

Thus, we obtain that

Sū(e
jθ)

Sd(ejθ)
=

H(ejθ)H∗(ejθ)

SΩ(ejθ)

Su(e
jθ)

‖u‖2P
=

1

W (ejθ)W ∗(ejθ)

Su(e
jθ)

‖u‖2P
. (54)

Note from the structure of the channel (or (7)) that the ratio
Sū(e

jθ)

Sd(ejθ)
is the

signal-to-noise ratio (SNR) of the channel at the frequency θ and
Su(e

jθ)

‖u‖2P
is the

normalized power spectral density of the channel input u. From (54), we can
see that increasing the power ‖u‖P of the input signal could not yield a greater
SNR. For a channel input with a given normalized power spectral density, the
SNR of the channel and the frequency response of variation of the channel are
inversely proportional at any given frequency θ.

Remark 7. In [40], it is shown that for the mean-square (input-output) sta-
bility of a networked feedback system, there is an equivalence between a fading
channel and an additive white noise channel with a signal-to-noise ratio con-
straint. Comparing Theorem 1 with the inequality (15) of Theorem 1 in [29] and
the mean-square stabilizability condition (3) in [30], we can see that there is a
similar equivalence between a channel with random data transmission delays and
an additive colored noise channel with a signal-to-noise ratio constraint. More
precisely, for the mean-square input-output stability of the networked feedback
system, the channel uncertainty of which the frequency response of variation is
given by W is equivalent to an additive colored noise in an additive noise chan-
nel with a signal-to-noise ratio constraint, where the power spectral density of
the noise is given by W ∗(ejθ)W (θjθ) and the upper bound of the signal-to-noise
ratio of the channel is given by ‖W‖−2

2 .
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4 Frequency Response of Variation vs. Unsta-

ble Poles in the Mean-square Input-output

Stabilizability

In this part, a criterion of the mean-square input-output stabilizability via out-
put feedback is studied for the networked feedback system. We attempt to pre-
cisely explain the inherent connection between the mean-square input-output
stabilizability of the system, the frequency response of variation W of the un-
reliable channel and the unstable poles of the plant P . To seek a simplicity, it
is assumed that the plant is minimum-phase and with a relative degree τ > 0.

From the stability criterion (44), the mean-square input-output stabilizabil-
ity condition of the networked feedback system is straightforwardly obtained.

Lemma 6. Under Assumptions 1, 2, and 3, the networked feedback system with
a random channel induced delay and a given linear receiving strategy, as shown
in Fig. 2, is mean-square input-output stabilizable if and only if

inf
K∈K

‖W (z)T (z)‖22 < 1. (55)

Proof. See [34, Lemma 2].

Let a coprime factorization of the SISO plant transfer function H(z)P (z) be
given by

H(z)P (z) = NM−1,

where N,M ∈ RH∞ satisfy the Bézout’s identity

MX +NY = 1, (56)

for some X,Y ∈ RH∞. It is well-known that the set of all stabilizing feedback
controllers to H(z)P (z) is parameterized as (see [38, 39])

K =
{

K = −(Y +MQ)(X −NQ)−1
∣

∣Q ∈ RH∞

}

. (57)

Applying a stabilizing controller from the set K to the networked feedback sys-
tem, we have that

W (z)T (z) = −W (Y +MQ)N. (58)

In light of Lemma 6, the following condition for the mean-square input-output
stabilizability of the system is immediate.

Lemma 7. Under Assumptions 1, 2, and 3, the networked feedback system with
a random channel induced delay and a given linear receiving strategy, as shown
in Fig. 2, is mean-square input-output stabilizable if and only if

inf
Q∈RH∞

‖W (Y +MQ)N‖22 < 1. (59)

Proof. Substituting (58) into Lemma 6 completes the proof.

As we can see in Lemma 7, the solution to the minimization problem in
(59) requires synthesizing an optimal Q ∈ RH∞. To this end, an inner-outer
factorization of M(z) is considered. Suppose that λ1, · · · , λn ∈ D̄c are all
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unstable poles of P (z), i,e, these are zeros of M(z). An inner-outer factorization
of M(z) is given by

M(z) = Min(z)Mout(z) (60)

where

Min =

n
∏

i=1

Min,i, Min,i =
z − λi

1− λ∗
i z

. (61)

For any scalar real parameter inner Min(z), let M
∼
in = Min(z

−1). It holds that
M∼

inMin = 1.

Lemma 8. For the inner Min given in (61), there exists a balanced realization

of Min =

[

Ain Bin

Cin Din

]

such that

[

Ain Bin

Cin Din

] [

A∗
in C∗

in

B∗
in D∗

in

]

=

[

I 0
0 1

]

. (62)

Proof. See [39, Corollary 21.16].

Lemma 9. For any LTI system G =

[

A B
C D

]

with invertible D, its inverse

is given by

G−1 =

[

A−BD−1C −BD−1

D−1C D−1

]

. (63)

Proof. See [39, Lemma 3.15].

Applying Lemmas 8 and 9 results in

M−1
in =

[

A−∗
in −BinD

−1
in

D−1
in Cin D−1

in

]

. (64)

Now, we are ready to present the mean-square input-output stabilizability
criterion for the networked feedback system in terms of the interaction between
unstable poles λ1, · · · , λn of the plant and the frequency response of variation
W .

Theorem 2. Suppose that the plant P (z) of the networked feedback system with
a random channel induced delay and a given linear receiving strategy shown in
Fig. 2 is with a relative degree τ > 0 and satisfies Assumption 3, the unreli-
able channel with a random channel delay satisfies Assumptions 1 and 2. Let

λi ∈ D̄
c, i = 1, · · · , n be unstable poles of P (z) and Min =

[

Ain Bin

Cin Din

]

be

the associated balanced realization. Then the networked system is mean-square
input-output stabilizable if and only if

D−1
in CinA

−∗
in

τ−1
W (A−∗

in )W (A−1
in )A

−(τ−1)
in C∗

inD
−∗
in < 1. (65)
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Proof. It follows from Lemma 7 that the key in the proof is to find the optimal
solution to the minimization problem inf

Q∈RH∞

‖W (Y +MQ)N‖22.
With this purpose, we apply the inter-outer factorization (60) into (56) and

obtain that

MoutX = M−1
in (1−NY ). (66)

Let the impulse responses of the functionsM−1
in andMoutX be {m̂in(0), m̂in(1), · · · }

and {m̂outX(0), m̂outX(1), · · · }, respectively, i.e.,

M−1
in = m̂in(0) + m̂in(1)z

−1 + m̂in(2)z
−2 + · · ·

MoutX = m̂outX(0) + m̂outX(1)z−1 + m̂outX(2)z−2+· · · .

Note the fact that the relative degrees of M−1
in and MoutX are zero and the

relative degree of N is τ . It follows from (66) that

m̂in(k) = m̂outX(k), k = 0, 1, · · · τ − 1. (67)

Let

M̂in,τ = m̂in(0) + m̂in(1)z
−1 + · · ·+ m̂in(τ − 1)z−τ+1. (68)

Applying (56) and identity z−τzτ = 1, we have that

‖W (Y +MQ)N‖22 = ‖W (1−MX +MQN)zτ‖22 . (69)

Due to the identity M∼
inMin = 1, it holds that

‖W (1−MX +MQN)zτ‖22 (70)

=
∥

∥W (M−1
in −MoutX +MoutQN)zτ

∥

∥

2

2

=
∥

∥

∥
W (M−1

in − M̂in,τ )z
τ +W (M̂in,τ −MoutX +MoutQN)zτ

∥

∥

∥

2

2
.

From (67), one can see that M̂in,τ −MoutX is with relative degree τ and

(M̂in,τ −MoutX)zτ ∈ RH2. (71)

On the other hand, W (M−1
in − M̂in,τ )z

τ can be decomposed as a summation

of two functions Z1, Z2 from RH2 and RH⊥
2 , respectively, i.e.

W (M−1
in − M̂in,τ )z

τ = Z1 + Z2, Z1 ∈ RH2, Z2 ∈ RH⊥
2 . (72)

Hence, (70) is written as

‖W (1−MX +MQN)zτ‖22 (73)

= ‖Z2‖22 +
∥

∥

∥
Z1 +W (M̂in,τ −MoutX +MoutQN)zτ

∥

∥

∥

2

2
.

Since N has no non-minimum phase zeros and relative degree τ , selecting a
proper Q ∈ RH∞ leads to

∥

∥

∥
Z1 +W (M̂in,τ −MoutX +MoutQN)zτ

∥

∥

∥

2

2
= 0. (74)
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Thus, it holds that

inf
Q∈RH∞

‖W (Y +MQ)N‖22 = ‖Z2‖22 .

To obtain the expression of Z2, let the impulse response ofW be {w(0), w(1), · · · },
i.e.,

W = w(0) + w(1)z−1 + w(2)z−2 + · · · . (75)

From the state-space model of M−1
in in (64), it holds that

M−1
in = D−1

in +D−1
in CinA

∗
inBinD

−1
in (76)

+D−1
in CinA

∗
in

2BinD
−1
in z +D−1

in CinA
∗
in

3BinD
−1
in z2 + · · ·

and

M̂in,τ = D−1
in −D−1

in CinBinD
−1
in z−1 (77)

−D−1
in CinA

−∗
in BinD

−1
in z−2 − · · · −D−1

in CinA
−∗
in

τ−2
BinD

−1
in z−τ+1.

Following (76) and (77), we obtain that

(M−1
in − M̂in,τ )z

τ = D−1
in CinA

∗
in

−τ+2BinD
−1
in z + · · ·+D−1

in CinBinD
−1
in zτ−1

(78)

+D−1
in CinA

∗
inBinD

−1
in zτ +D−1

in CinA
∗
in

2BinD
−1
in zτ+1

+D−1
in CinA

∗
in

3BinD
−1
in zτ+2 + · · · .

Since Z2 ∈ RH⊥
2 , it holds that

Z2 =
∞
∑

k=1

z2(k)z
k (79)

where

z2(k) =
1

2π

∮

∂D

z−k−1W (M−1
in − M̂in,τ )z

τdz. (80)

Applying (75) and (78) to (80) yields that

z2(k) =

∞
∑

i=0

D−1
in CinA

−∗
in

τ−1−k−i
BinD

−1
in w(i) (81)

= D−1
in CinW (A−∗

in )A−∗
in

τ−1−k
BinD

−1
in .

Consequently, it holds that

‖Z2‖22 =

∞
∑

k=1

{

D−1
in CinW (A−∗

in )A−∗
in

τ−1−k
BinD

−1
in (82)

×D−∗
in B∗

inA
−1
in

τ−1−k
W (A−1

in )C∗
inD

−∗
in

}

.
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On the other hand, it follows from (62) that

A∗
inBinD

−1
in = −C∗

in, C∗
inCin = I −A∗

inAin.

Thus, we have

A∗
inBinD

−1
in D−∗

in B∗
inAin = I −A∗

inAin. (83)

Substituting (83) into (82)

inf
Q∈RH∞

‖W (Y +MQ)N‖22 =D−1
in CinW (A−∗

in )A−∗
in

τ−1
A

−(τ−1)
in W (A−1

in )C∗
inD

−∗
in .

The proof is completed by using Lemma 7.

Remark 8. The controller which solves the minimization problem in Lemma
4.2 can be obtained from (57) with Q being such that (74) holds. Thus, if the
networked system is stabilizable, i.e., (65) holds, then a stabilizing controller is
straightforward.

Now, several special cases of this theorem are discussed.

Corrollary 1. Suppose that the relative degree τ of the plant P is one and the
channel uncertainty is induced by random packet dropout with a given rate p.
Then, the frequency response of variation W of the channel is a constant. The
networked system is mean-square input-output stabilizable if and only if

1

2
log

(

1 +
1

W 2

)

>

n
∑

i=1

log |λi|

or

p <

n
∏

i=1

|λi|−2.

Proof. Since the channel uncertainty is induced by random packet drop only,
it holds for the channel model shown in Fig. 2 that τ̄ = 1 and α1 = 0.
Subsequently, we have H = α0 (1 − p) and SΩ = α2

0 p (1 − p). This leads to

W =

√

p

1− p
.

Notice that W (A−∗
in ) = WI, where I is an identity matrix, since the fre-

quency response of variation W is a scalar constant. In this case, the inequality
(65) is written as

D−1
in CinC

∗
inD

−∗
in <

1

W 2
. (84)

Following Lemma 8, we have

CinC
∗
in +DinD

∗
in = 1. (85)

Substituting (85) into (84) leads to

D−1
in D−∗

in − 1 <
1

W 2
.
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Moreover, it follows from (61) that

Din = Min(∞) =

n
∏

i=1

(−λ−∗
i ).

Consequently, according to Theorem 2, the networked system is mean-square
input-output stabilizable if and only if it holds that

n
∏

i=1

|λi|2 < 1 +
1

W 2
.

Thus, this corollary holds.

Corrollary 2. Suppose that the plant P has only one unstable pole λ and is
with the relative degree one, i.e., τ = 1. The networked system with a random
channel induced delay and a given linear receiving strategy is mean-square input-
output stabilizable if and only if

1

2
log

(

1 +
1

W 2(λ)

)

> log |λ|. (86)

Proof. Since P has only one unstable pole λ, the inner of Min =
z − λ

1− λ∗z
is

given by

Min =







1

λ∗

√
λλ∗ − 1

λ∗√
λλ∗ − 1

λ∗
− 1

λ∗






. (87)

Noting the facts that τ = 1 and λ is a real number, we have that

D−1
in CinA

−∗
in

τ−1
W (A−∗

in )W (A−1
in )A

−(τ−1)
in C∗

inD
−∗
in = (λ2 − 1)W 2(λ).

From Theorem 2, the networked system is mean-square input-output stabilizable
if and only if the inequality (86) holds.

5 Numerical Examples

In this section, we illustrate the reason that weights should be assigned to the
received signals and verify the stabilizability criterion given in Theorem 2 by
numerical examples.

5.1 Weighting the received signals

Consider a discrete-time LTI plant

P =
z + 0.9

(z + 1.2)(z − 1.1)
(88)
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connected with a one-step random delay channel. The PMF of the random

delay is p0 =
5

11
and p1 =

6

11
. Without assigning any weights to the received

data, the mean channel would be

H(z) =
5

11
+

6

11
z−1 =

5z + 6

11z
,

which has a non-minimum phase zero, z0 = −1.2, coincided with one of the un-
stable poles of the plant. Therefore, there occurs unstable pole-zero cancelation
in the nominal closed-loop system G. Consequently, it holds for any controller
K that

G(z) = KP (1−HKP )−1

=
zK(z) (z + 0.9)

(z + 1.2) [z (z − 1.1)− 0.45K(z) (z + 0.9)]

where the unstable pole at z = −1.2 can not be changed by designing a proper
controller. The closed-loop system is not stabilizable.

To avoid the unstable pole-zero cancelation, we assign a set of weights, say
α0 = 0.8 and α1 = 0.2, to the received data. Then the mean channel becomes

H(z) =
40z + 12

110z
. This prevents the cancelation between the zero of H(z)

and the unstable pole of the plant (88) and makes it possible to stabilize the
networked feedback system.

5.2 Mean-square stabilizability index

Consider a networked feedback system whose plant is a discrete-time LTI min-
imum phase system

P =
z − 0.2

zr(z − 1.1)(z − 1.2)
, r ≥ 0 (89)

The relative degree of the plant is τ = r + 1. In the networked system, the
channel induced delay is characterized by τ̄ = 2 with delay probabilities p0 =
0.6, p1 = 0.3 and packet loss probability p2 = 0.1. The weights to the received
data are set as α0 = 0.6, α1 = 0.4, α2 = 0. Under this setting, the mean
channel H(z) is minimum phase and the frequency response of variation, which
only depends on the channel and receiver, is given by

W (z) =
0.3188− 0.1355z−1 + 0z−2

0.36 + 0.12z−1 + 0z−2
=

0.8856(z − 0.425)

z + 0.3333

Let the coprime factorization HP = NM−1 be

N =
0.12(3z + 1)(z − 0.2)

zr+1(1− 1.1z)(1− 1.2z)
, M =

(z − 1.1)(z − 1.2)

(1 − 1.1z)(1− 1.2z)

It is verified that M is inner, i.e.,

Min =
(z − 1.1)(z − 1.2)

(1− 1.1z)(1− 1.2z)
.
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The balance realization of Min is

Ain =

[

0.7500 −0.1144
0.1159 0.9924

]

, Bin =

[

−0.6515
−0.0408

]

,

Cin =
[

0.6512 −0.0449
]

, Din = 0.7576,

which obviously satisfies (62).
According to Theorem 2, the term on the left hand side of (65) indicates the

mean-square input-output stabilizability of a networked feedback system. Once
it is greater than one, no controller can stabilize the system in mean-square
sense, i.e., the system is not mean-square input-output stabilizable. Here, we
use this term as a mean-square stabilizability index for the system. For the plant
with r = 0, namely τ = 1, this mean-square stabilizability index is given by

D−1
in CinW (A−∗

in )W (A−1
in )C∗

inD
−∗
in = 0.1728,

which implies that the networked system can be stabilized by some controller
in the mean-square sense. As shown by (65), the mean-square stabilizability
index is also related to the relative degree τ of the plant P . Since all the
eigenvalues of A−1

in are outside the unit disk, the mean-square stabilizability
index in exponentially increases with respect to the relative degree. In this
example, the stabilizability index with respect to the relative degree τ is shown
in Fig. 5. When the relative degree τ grows to 5, the mean-square stabilizability
index is greater than one and the system is not mean-square stabilizable.

0.1728

0.2953

0.4959

0.8190

1.3316

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5: Relative degree vs. stabilizability index

To verify Theorem 1, we also take r = 0 in the plant (89) as an example.
Since the mean-square input-output stability of the system means the bounded-
ness of the average power ‖u‖2P of the control signal u, it would be suitable to use

the graph of ‖u‖2P against ‖WT ‖22 to visualize the stability or instability of the
closed-loop system. Noticing that the networked system is mean-square input-
output stabilizable, from Remark 8, a straightforward stabilizing controller of
the networked system should be that in (57) with Q = Qopt where Qopt is the
solution to the equation (74). In this case, ‖WT ‖22 achieves its minimum, i.e.,
the stabilizability index, 0.1728. Now let the controller K be in K of (57) with
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Q = Qopt + κQ̃ where Q̃ ∈ RH∞ and κ is a real nonnegative number. It turns

out that, for a given Q̃, by varying κ from 0 to some sufficiently large number
(dependent on Q̃), ‖WT ‖22 would range from the stabilizability index to 1 such
that the system is eventually unstable. For seeing this, three different Q̃’s are
taken into consideration, as shown in Fig. 6. By the Monte-Carlo method, the
graphs of the theoretical and simulated average powers ‖u‖2P against ‖WT ‖22
associated with the Q̃’s are also illustrated in Fig. 6, provided that the exter-
nal input of the closed-loop system is a zero-mean Gaussian white noise with
unit-variance. All average powers of the control signals would tend to infinity
as ‖WT ‖22 approaches 1. This confirms Theorem 1 and implies that improper
controller design would destabilize the closed-loop system.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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700

800

0.1728 0.3 0.4
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10

15

Figure 6: Average powers of the control signals vs. ‖WT ‖22

6 Conclusion

In this paper, we have studied the mean-square input-output stability and stabi-
lizability for a discrete-time LTI networked feedback system over an unreliable
channel with random channel induced delays and packet dropout. Under a
given linear receiving strategy, the models of the unreliable channel and related
channel uncertainty are presented in time domain and frequency domain, respec-
tively. In particular, frequency response of variation is introduced to describe
the relative derivation of the unreliable channel. Applying these models, the
mean-square input-output stability criterion is obtained for the networked feed-
back system. This is a general version of the mean-square small gain theorem
for discrete-time LTI systems with i.i.d. stochastic multiplicative uncertainties.
After then, the mean-square stabilizability is studied for the networked feedback
system when its plant is minimum phase. A necessary and sufficient condition is
found for the mean-square stabilizability of the networked feedback system via
output feedback. This result shows the inherent connection between the mean-
square stabilizability, the plant’s unstable poles and the frequency response of
variation of the channel in the system.

It is straightforward to apply the proposed stability results to the so-called
two-side networked control systems, i.e., systems with signal transmission via
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networks on both sensor and actuating channels. However, it can be shown that
the stabilizability problem would become a decentralized control problem with
information constraints, which precludes the convexity of the problem. Thus,
exploring the stabilizability criteria for this type of systems will be focus of
future research. It is also natural to consider the stability of the networked
feedback system over the unreliable channel with deterministic constraints from
the plant or/and the channel, which may turn out to be a mixed problem.
Moreover, future work should include the stabilizability problems in a general
setup of designable linear receiving strategy.
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