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Abstract

In the present paper we construct explicitly the intertwining differential oper-
ators for the Jacobi algebra Gs. For the construction we use the singular vectors
of the Verma modules over G, which we have constructued earlier. We construct
the function spaces on which the operators act. We find two versions of the left
(representation) action and the right action. These actions are combined with the
singular vectors to provide the intertwining differential operators.

1 Introduction

Consider a Lie group G, e.g., the Lorentz, Poincaré, conformal groups, and differential
equations
If = j (1.1)

which are G-invariant. These play a very important role in the description of physical
symmetries - recall, e.g., the early examples of Dirac, Maxwell, d’Allembert, equations
and nowadays the latest applications of (super-)differential operators in conformal field
theory, supergravity, string theory, see e.g. [I]. Naturally, it is important to construct
systematically such invariant equations and operators.

To recall the notions, consider a Lie group G and two representations 7', 7" acting in
the representation spaces C,C’, which may be Hilbert, Fréchet, etc. An invariant (or
intertwining) operator I for these two representations is a continuous linear map

Z:C—C (1.2)

such that
T'(9)oZ = ZoT(g), VYgeG. (1.3)

Then we say that the equation (1)) is a G - invariant equation. Note that ker Z, imZ are
invariant subspaces of C, C’, resp.
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If G is semisimple then there exist canonical ways for the construction of the inter-
twining differential operators, cf., e.g., [2, 3]. In this method there is a correspondence
between invariant differential operators and singular vectors of Verma modules over the
(complexified) Lie algebra in consideration.

The procedure may be applied for more general classes of Lie groups. For instance, it
was applied to the Schrodinger group [, [5] in, e.g., [0, [7].

This is what we try to do in the present paper for the case of Gs.

2 Preliminaries

The procedure that we shall follow requires first that we find the singular vectors of the
Verma modules over G,. This task was fulfilled in [§]. Furthermore there are given all
necessary details, and thus, we can present the preliminaries in a shorter fashion.

The Jacobi algebra is the semi-direct sum G,, := H,, ® sp(n,R)¢ [9, [10]. The Heisen-
berg algebra H,, is generated by the boson creation (respectively, annihilation) opera-

tors a) (a; ), 4,7 =1,...,n, which verify the canonical commutation relations
[a;,a;’] = b la; ,a;] = [aj,aﬂ =0. (2.1)
H, is an ideal in G,, ie., [H,,G,] = H,, determined by the commutation relations

(following the notation of [L1]):

i, K] = lay , K35) = 0, (2.2a)
a7, K5 = 36mal + Soiaf,  [Ky,af] = 30ma; + 3050, (2.2b)
(K35, af ] = 30ma, [ay, Kij] = 50ika; . (2.2¢)

Kij;’O are the generators of the S, = sp(n,R)¢ algebra:

(K, Kol = K5 Kf] =0, 2[K;, K| = K; 6k + K0k, (2.3a)

2K, K] = Kkjal,. + K,jak,. + K015 + K0y, (2.3b)

2[K), KRy = =K — K}ou, 2[K}, K] = Kok — Kj015. (2.3¢)
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First, for simplicity, we introduce the following notations for the basis of S :

St by = Kb, i=12; ¢ = K,, df =K}, (2.4a)
S by = K, , i=1,2 ¢ =K, d =K (2.4b)
K : hi = K, i=1,2. (2.4c)

We need also the triangular decomposition of G, :

Gy =Lls{a, bf, ¢ d"}, i=1,2,
Gy =Lls{a;, b ,c,d },i=1,2,
ng = IS{ hi, 1 }, 1= 1,2 (25)



Clearly, the Abelian subalgebra I is a Cartan subalgebra of S;. Furthermore, K plays
the role of Cartan subalgebra for the whole algebra. Thus, we may treat the elements of
G as root subspaces w.r.t. K. This may be explicated by the eigenvalues w.r.t. (hi, h)
as follows:

af © £(3.0), a3 : £(0,3), (2.6)
L,

by + £(1,0), by £(0,1), ¢ £(5,5), & £ (5 —3)
We may also introduce the analogs of simple roots «j,as which would correspond here
to the generators d',ayj, resp. Then the correspondence generators <— roots would be:

(b7, b3, ¢ db af,af) «— (2(a1 + a2), 200, a1 + 209, a1, 0 + Qg, 2) (2.7)

We consider the lowest weight Verma modules over G, and found a complete list of
singular vectors. There are five types of singular vectors and they exist in Verma modules
with a particular value of the lowest weight. Explicit formula of them is found in §4.1 of

8.

For the explicit construction of the intertwining differential operators we need a pa-
rameter space. That would be some coset space of the Jacobi group G as generated by G,.
Then we need its triangular decomposition G = GTKG~ and Borel subgroup B = KG~.

Now we can define the space of the right covariant functions:
Cr={F € Cx(Q)| Flgkg™) =D F(g) } (2.8)

where g € G, k=e € K, g~ € G-, H € K, A € K*. Thus the functions of Cy are
actually functions on G/ B, or locally on G™.

Correspondingly we define the right action of Gy on Cy:

d
(mr(X)F)(9) = - Flgexp(tX))| , X €@, gel (2.9)
t=0
and the left action of G,
d
(m(X)F)(g) = - Flexp(=tX)g)| . X €Ggel (2.10)
t=0

In the next section we present these construction in explicit detail.

3 Right and left actions on G

3.1 Right action

For the elements g™ of Gt we write:

g7 =exp (xlai + @aé) exp (y1b] + yaby + zc™ +wd™). (3.1)
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It is important that there are only three non-vanishing relations among the generators of

Gy

1 1
o d =", [af.d=—za], [cd]=—5b]. (3.2)
Using these relations, it is easy to compute the right action of G :

0 (CLD Ory

T (CLJ;) a552 _'_ 89017

wr(b}) = Oy,

f w? w
7TR(b) 0y2+248 +§8z,
WR(CT) = 0Z + Zﬁyl,
1 Yow Y2
WR(dT) = 8w - Z (Z + T) 8y1 - 582 (33)

As an example, we show the computation of 7TR(CL2) First, noting (3.2) one may have

! A ta2 e ta26B

g 6ta2 —ele ta2

e

t
= exp(A + tah) exp (B + ?waD

= exp (A +t(a) + %ai)) exp(B) (3.4)

where A = xlai + ang, B = y1b] + yoby + zct +wd™. Tt follows that

+ d + ta;
(mr(ad) F)(g") = ZF(gre)

- (axz + %axl)f(gﬂ. (3.5)

t=0
3.2 Left action

The left action is computed by using the Baker-Campbell-Hausdorff formula:

IneXe” :X+Y+1[X, Y]+ ! —((adX)*(Y) + (adY)*(X))

2 12
1 1 4 4
= o5V PO YT = 5 (@dV)(X) + (dX)'(YV)) 4o+ (3.6)

where ad X (Y') := [X,Y]. We here present the final results and omit the computational
details.



Left action of G :

WL(aD = _89017
7T-L(a;) = _aﬂcz’
WL(bD = _8917
w? w
7T-L(b;) = ayz ﬂam + 582,
mu(eh) = =0, + 70y,
N o T2 L/ ypw Yo
mu(d) = =0y = 50 4( 6>ay1 2
Left action of K :
T z w
7TL(h'l) - ?a"ﬂ1 - ylayl - 58,2 - 5810 - A(h1>7
w1 (he) = %a@ — 2Dy, — gaz + %aw — A(hs),
7TL(1) = —A

where A is the value of the central element of the Heisenberg algebra:

(3.7)



Left action of G, :

x? . w? w w
A= (- ) a0 - 5 (5 225 Adn),

24 2 2
wz
mu(by) = wami(3) = 220, — 3 0y,
O X W G z
2 (4 220) 0. - (- 22) ou + 2R - 25 A(ha),
X T
me) = 527@(@1_) + 717@(@2_)

1 Yow\ | Yow yow? Yo Yyow

T <y1<Z_T) o (v g) ) o = 5 ()
1 wz 5y2w2) 22 wz  yow?

-5 — P az - - aw
2<y2<y1+ T Tu )T N TS

n 1T § % (Z yzw> A(hy) — 1 <2—|— 3y22w> Alhy),

2 2

=505 (=)o -4+ 5.

<y1+y“f;’ )az+ Lo+ (A(hl) A(hy)).

(3.9)

It has been verified by direct computation (with MAPLE) that the left action given above

is compatible with the defining commutation relations of G,.

4 Invariant differential operators: first version

First we give the list of singular vectors that were found in [§]. We denote the lowest
weight vector of the Verma module by |0) and the lowest weight by Ay = A(hg). The
parameters p* and ¢ take a positive integer and the weight of the singular vector is

denoted by A’.
(i) A=Ay =3(1-p")

ol ) = (@ 0y, N = At p!(6 - 8).

(ii) for all Ay, Ay =3 — %

oY = GV 10y N = At 2,
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(i) A= =30"— ') A= —34" 07 £ 40" #20)
3

(a) p* < ¢’

pP—a® -k [P%/2]  p3_ok
Ué\,> - C(k7n)}k7q3_k_n7n,p3—2]€—n>
k=0 n=0 k=p3—q¢3+1 n=0
(4.4)
(c) 2¢> <p
@ ¢*—k
v£l>: c(k,n) |k, ¢* —k —n,n,p’ — 2k —n) (4.5)
k=0 n=0
where A’ and ¢(k,n) are common for (a) (b) (c¢) and given by
N =A+p°6 + (2¢° - p3)62, (4.6)
31,3
c(k,n) = r (4.7)

4 EInl(p? — 2k —n)!(¢®* — k —n)!

k=0 n=0
(4.8)
41 [(2A; +p* —
c(k,n) = b LA p ) (4.9)
Ak EInl(p* — 2k —n)IT(2A +p* — 2 — k —n)
(v) Ay =32 forall A,
p° P’k
v§’> - (k,n) [k, p° — k —n,n, 2p° — 2k —n), AN = A+2p°5, (4.10)
k=0 n=0
—1)n 5 ['(2Ay — p° — 3 + 2k
elh,m) = =Y P (24: —p 2+3+”). (4.11)
AR EIn! (p> — k —n)! [(2A; —p° —3)
Note that there is a change of basis w.r.t. [§], namely:
[k, €,y m) = (b)"(63) ()" (%)™ 0) (4.12)



and

- 1 1
bl =0b — i(a;ﬂ cti=ct — §afa§’. (4.13)

Then using the right action obtained in §3] we have using (Z.13):

- 1

ma(bt) = Oy = 302,
. 2 1 2

mr(b3) = 0,, + %ayl + %az = (&m n %axl) , (4.14)
i) = wy _ 1 W a2

TR(E) = 0+ L0y — (axlaxz +3 %) .

Thus the invariant differential operators are given by substituting the above right
action in the singular vectors given above:

(i) Av— Ay =35(1—p")

3 1 Yo 2, \"
Dy = (8“, 1 (z +5 ) Oy, 5 82) (4.15)
(i) for all Ay, Ap =32 -2

~ w? w 1 w 2\ P

(i) A =32 =50" =), Mo =3 =3¢ (° # 0" #2¢°)

(a) p* < ¢

b(iii,a) = Z Z C(ka n) P(pga qu ka n) (417)

75(2-2-2-,6): ZZ+ Z Z c(k,n) P(p*, ¢ k,n) (4.18)

D(iii,c) = C(k> n) P(pga q3> k> n) (419)



where P(p3, ¢®, k,n) and c¢(k,n) are common for (a) (b) (c) and given by

Pt k) = (0, — 22 ) (o, + %, 0~ (0 + Yan) e
p.,q,k,n)= v~ 5% v2 T o z T2 *1

2 2 2
X <8Z—|—%8y1— (a Oy, + Qagl))n
p

1 Yow g o \P TR
31,3
p q
elk,m) = A EInl(p3 — 2k — n)!(¢3 — k —n)!’ (421)

(iv) Ay + Ay =22
|p1/2] pt—ok

Z Z T(2A; +p* —3)
= 4FkInl(p* — Qk —n)! F(2A1 +pt—3—k—n)

k w o\ Pr—k—n
X <ay1 - 5@31) (aw + a + 50— (a axl) )
X (az v %ayl . (am&m 5 ))

1 Yow o \P

()" PPt TRA—p° =3 +2k+n)
L L gl (P — k=)l D(28, — pd — 3)

k 2
Lo w* wy 1 wo o\
(ayl 281‘1) (ayz + ayl + az 2 (am + 2 aﬂcl) )
Wy 2\
x (az+ 0 (a 0y, + 2%))

1 Yaw Y2 2°=Zk—n
Dy — ( + T) 9, — 5@) (4.23)

pP—k—n

= |



5 Final expressions for the intertwining differential

operators

To simplify our results we make the following change of parameters:
(fﬁl, T2,Y1,Y2, 2, ’LU) — (517 527 m, 12, C? w)v namely:

w

51:931—5@, §2 = T,
+ : =
m=u E?ﬂ 4 T2 = Y2, =2 5?/2, W =w.
Inverse transform is given by
w
:§1+—§2, Ty = &,

Cw Mow? B . B

y1—771+4+ YR Y2 = 72, z=0+— 5 w=w.

It follows that

arl = 8517 8902 = a§2 - ga§17

w w

2
Oy, = Oy, Oyy = O, + w_28771 - §8C7 0. =0, — 187717
Oy =0y — — <C - M) mo %aC g2851

Then, the right action becomes:

WR(ak) afm (b+) amw WR(C+) = (94,

€2

wa(d) = B — S, —md — 20,

The left action is also simplified and now reads as follows:

mr(af) = =0k, m(ay) = =0, + 3517

2
WL(b;—) = =0, 7TL<b;) = —0p, — Zam + wd,

71-L(C )= —0c + 87717 7TL(d-i_) = =0,

Tu(n) = =0, — 0y, — 50 = 50, — A(h),
u(la) = =206 — 0y — 50; + 50— Alh),
7TL(1) = —[\,
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mr(ay) = (771 + w ) Oy — (C + 1w) O, — (51 + 527&;) A,

71-L(a2_) = _%afl - 772852 - §2j\

2,,2
m) = (6 B2) matar) + &2 (m + 52 ) 00 - (- 2 ) 0,

-k mPo, = (m+ ) (0wt = 20()

e (51 ; f—‘”) A= 2(C+ mw)A (ko)

2
mo(by) = Emplay) + §2<a& S =0, — 1130, — GO, + 5—5[\ — 2\ (hy),
mu(e) = Smyar) + (gl ; %) mila7) + (nl " C;") (520& aw)
£ 420, L), + M) - o
L& <§1 + %") A-— %A(hl),

1
mild) = “’&a& 5 (645 ) 0+ 0, - 5(C+amo,

—771(9<+ 0 + 5 (( 1) = A(hs)). (5.7)

7r(by ), mr(c¢™), m(d™) have the following simpler expressions:

2
w1 7) = Eamalar) = S (a3) +wm(e) - Loma05)
2 2
— 7]18,71 — C 7]14—8@ + 5 A — 27]1A(h1)

4
7TL(62_) = _527728& + <_8771 - 28772 - Caw - €2A 2772A(h2>

) = Smaler) + 5 (6 - 52 ) matag) + mts)

2
2
52’71 Sl g nga S0 —mo + % _ g(A(hl) + A(h),
2
WL(d_) = —%(WL(hl) — WL(hg)) - 518& C& Mm2 7]18@‘ - %&U (58)
Finally, we pass to the "hat” basis:
. 1 1
Tr(bY) = Oy, — 5(‘%, mr(¢T) = 0; - 5% 0%, (5.9)

Then the final expressions for the invariant differential operators are:
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1

p
D(z) = <8 62 851 — %8771 — 7]28<>

( ) for all Al, A2

Lo

T2
2

1.5\
Dy = (8772 - 5852)

(i) A =35 —300°—¢%), Ma=2—30% (° # &0 #20°)

|_p3/2J 3_9k 3'

lg°!
DZZZ[I
( Z nz AFnl(pP — 2k — )_<q3 yT—Y (3171

1 9 —k—n 1 n
X\ O = 5852 O — 5060k,

p3—2k—n
X (8 62851 - Ca e — ﬁzﬁc)

(b) ¢ <p* <24

pP—q® P~k |p*/2]  p3_ok

Diiipy = + Z P(p*, ¢ k,n)

k=0 n=0 k=p3—g3+1 n=0

(c) 2¢° <p’

w
w
=

Diie)y = P, ¢ k,n)
k=0 n=0

where the summand P(p?, ¢3, k,n) for (b) (c) is same as (a).

(iv) A1+A2:2—%4

Lp /2J 42k F(2A1 +p4 B %)

(5.10)

(5.11)

k
_ 132
2 &1

(5.12)

(5.13)

(5.14)

DZU -
@=L X TGl T - - k)

) k 1 ) p4—k—n 1 n
X 8171 - 58& 8172 - 5852 8< — 58& 8&

pt—2k—n

X (a 52 agl ga m ’)7284—)
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(v) Ay =2 — 2 forall Ay

T i

pS ps_k

Dy = 3 % (=) P T@A—p° — 2+ 2k+n)
VT LS T —k—n)l TR - p - )

2

1 ) k 1 ) p°—k—n 1 n
X 8,71 — 58& 8,72 — 5852 8< — 58&18&

52 C 2p°—2k—n
X <8w — 58& — 58771 — 77284) (516)

6 Conclusions and Outlook

In this paper we have presented explicit expressions for the intertwining differential oper-
ators related to the Jacobi algebra G,. These results are the first explicit example for G,
with n > 2 and elucidate that there are more variety of intertwining differential operators
than G; [6]. It is, therefore, natural to extend the present and that of [§] to G, with
n > 3. However, recall that the theory of parabolic Verma modules for non-semisimple
Lie algebras is not developed yet. This implies that the search for intertwining differential
operators for G, even for n = 2, is a highly non-trivial problem.

The results of this paper would be useful to anyone who would like to study the
explicit implications of Gy invariance. Naturally, the first possible applications would be
to find explicit solutions of the equations DF = 0, where D would be any of the new
explicit operators from Section Bl Next, following the applications of the conformal and
Schrodinger groups one may look for explicit expressions of correlation functions invariant
under G,. Altogether, there are many possible applications.
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