
ar
X

iv
:2

10
8.

12
88

8v
5 

 [
m

at
h.

O
C

] 
 1

8 
M

ay
 2

02
3

Continuous Differentiability of the Value Function of Semilinear

Parabolic Infinite Time Horizon Optimal Control Problems on

L2(Ω) under Control Constraints ∗

Karl Kunisch † Buddhika Priyasad ‡

May 19, 2023

Abstract

An abstract framework guaranteeing the local continuous differentiability of the value function
associated with optimal stabilization problems subject to abstract semilinear parabolic equa-
tions subject to a norm constraint on the controls is established. It guarantees that the value
function satisfies the associated Hamilton-Jacobi-Bellman equation in the classical sense. The
applicability of the developed framework is demonstrated for specific semilinear parabolic equa-
tions.

1 Introduction.

Continuous differentiability of the value function with respect to the initial datum is an important
problem in optimal feedback control theory. Indeed, if the value function is C1 then it is the
solution of a Hamilton Jacobi Bellman (HJB) equation and its negative gradient can be used to
define on optimal state feedback law. The subject matter of this paper addresses local continuous
differentiability of the value function V for infinite horizon optimal control problems subject to
semilinear parabolic control problems and norm constraints on the control. Such problems are
intimately related to stabilization problems which are often cast as infinite horizon optimal control
problems. Investigating infinite horizon problems constitutes one of the specificities of this paper.
Another one is the fact that we focus on the differentiability of V on (subsets of) L2(Ω). Thus
we need to consider the semilinear equations with initial data y0 ∈ L2(Ω). As a consequence the
solutions of the semilinear equations only enjoy low Sobolev-space regularity. This restricts the
class of nonlinearities, compared to those which are admissible if the states are in L∞((0,∞)×Ω),
which is the situation typically addressed in the literature on optimal control [Cas] and [Tro2].
The latter necessitates to take the initial conditions in spaces strictly smaller than L2(Ω). Here we
consider L2(Ω), first due to intrinsic interest, secondly because ultimately the HJB equation should
be solved numerically, which is easier in an L2(Ω) setting than in other topologies, like H1(Ω). Let
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us also recall that one of the approaches to solve the HJB equation is given by the policy iteration.
It assumes that the value function is C1.

The underlying analysis demands stability and sensitivity analysis of infinite dimensional op-
timal control problems subject to nonlinear equations. For this purpose we utilize the theory of
generalized equations as established by [Don] and [Rob]. It involves first order approximations of
the state and adjoint equations, which lead to restrictions on the class of nonlinearities which can
be admitted. We refer to the section on examples in this respect.

The current investigations are to some degree a continuation of work the first author’s work
on optimal feedback control for infinite dimensional systems. In [BKP1, BKP2, BKP3] Taylor
approximations of the value function for problems with a concrete structure, namely, bilinear
control systems, and the Navier Stokes equations were investigated and differentiability of the
value function was obtained as a by product. In these investigations norm constraints were not
considered. Here we admit norm constraints and we focus on semilinear equations. Let us also
notice that the systems investigated in [BKP1, BKP2, BKP3] share the property that the second
derivatives with respect to the state variable of the nonlinearity in the state equation do not depend
on the state itself anymore.

Let us also compare our work to the developments in the field of parametric sensitivity analysis
of semilinear parabolic equations under control constraints. There are many papers focusing on
stability and sensitivity analysis of finite time horizon problems along with pointwise control con-
straints, see e.g. [BM, GHH, Gri, GV, Mal, MT, Tro1, Wac], and the literature there. First, of these
papers, except for [GV, Tro1], consider the case with initial data in H1(Ω) or C(Ω̄). In [GV] again
the third derivative of the nonlinearity is zero. Secondly, all of them consider the finite horizon
case. Since we treat infinite horizon problems we have to guarantee stabilizability (for small initial
data) under control constraints. Then we use a fixed point argument to obtain well-posedness of
the system. Well-posedness and stability with respect to parameters of the adjoint equation is sig-
nificantly more involved for infinite horizon problems than for finite horizon problems. It requires
techniques, differently from those used in the finite horizon case. Another aspect is the proper
characterization of the adjoint state at t =∞.

In the finite dimensional case, there is, of course a tremendous amount of work on the treatment
of the value function if it is not C1. Fewer papers concentrate on the case where the value function
enjoys smoothness properties. We mention [Goe] and [CF] in this respect.

In order to achieve the goal we desire, we lay out the following setup. In Section 2, we con-
sider an abstract parametric optimization problem with an equality constraint and another convex
constraint. Existence of an optimal solution, of a multiplier associate to the equality constraint,
and Lipschitz stability of the component of the state variable which lies in the complement of the
kernel of the linearized constraint will be established. This result is necessary but not sufficient
for the further developments, since stability is obtained in a norm which is too weak and since the
stability estimate does not involve the component in the kernel of the linearized constraint and
the multiplier, i.e. the adjoint states, yet. At the level of Section 2 this remains as Assumption
(H7). In Section 3 we specify the concrete optimal stabilization problem and a set of conditions,
most importantly on the nonlinearity of the state equation, under which Assumption (H7) can be
established, for initial data y0 ∈ L2(Ω). Section 3 also contains a summary of the main results
of this paper. They are stated as theorems with a little stronger assumptions than eventually
necessary, for the saker of easing the presentation. Section 4 is dedicated to the proof of verifying
the assumptions of the general setup of Section 2 for the concrete optimal control problem stated
in Section 3. As conclusion we obtain the Lipschitz continuity in the appropriate norms of the all
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variables appearing in the optimality system with respect to the parameter of interest, which is the
initial condition y0, in our case. Since our analysis is a local one involving second order optimality
conditions, solutions to the optimality system are related to local solutions to the optimal control
problem. As a corollary to these results we obtain that the local value function is Fréchet differ-
entiable. In Section 5, we show that in the neighborhood of global solutions the value function
V satisfies the Hamilton-Jacobi-Bellman (HJB) equation in the strong sense. Finally, Section 6 is
devoted to demonstrating that the developed framework is applicable for some concrete examples,
namely for linear systems, Fisher’s equations, and parabolic equations with global Lipschitz non-
linearities. All our results require a smallness assumption on the initial conditions y0. Two aspects
need to be taken into consideration in this respect. First y0 has to be sufficiently small so that
the controlled system is stable. Secondly a second order optimality condition is needed. For this
to hold a sufficient condition is provided by smallness of the adjoint state, which in turn can be
implied by smallness of y0. We stress that these two issues are of related, but independent nature.

2 Lipschitz stability for an abstract optimization problem.

Here we present a stability result for an abstract, infinite dimensional optimization problem which
will be the building block for the results below. This result is geared towards exploiting the specific
nature of optimization problem with differential equations as constraints. First existence of a dual
variable will result from a regular point condition. Subsequently the Lipschitz stability result is
obtained in two steps. In the first one, we rely on the relationship between the linearized optimality
conditions and an associated linear-quadratic optimal optimization problem, with an extra convex
constraint. This approach is useful since it provides the existence of solutions to the linearized
system on the basis of variational techniques. However it dictates a certain norms for the involved
quantities. These norms are too weak for our goal of obtaining Lipschitz continuity of the adjoint
variables in such a manner that differentiability of the cost with respect to the initial conditions can
be argued. Therefore, in a second step we exploit the specific structure of the optimality systems,
using the fact that it is related to a parabolic optimal control problem, to obtain the Lipschitz
continuity in the stronger norms. This two step approach is also present in some of the earlier
work on stability and sensitivity analysis which was quoted in the introduction. But due to that
fact these papers considered finite horizon problems it came as a byproduct which improved the
regularity of the adjoints. In our work it is essential to reach our goal. This is why we decided to
formalize this two step approach which was not done in earlier work.

Concretely, we consider the optimization problem
{
min f(x),

e(x, q) = 0, x ∈ C.
(Pq)

with a parameter dependent equality constraint, and a general constraint described by x ∈ C,
where C is a closed convex subset of a real Hilbert space X. Further, W is a real Hilbert space and
P is a normed linear space. In the application that we have in mind, the parameter q will appear
as the initial condition in the dynamical system. The following Assumption (H1) is assumed to
hold throughout.

Assumption H1.
q0 ∈ P is a nominal reference parameter,
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x0 is a local solution (Pq0),
f : X −→ R

+ is twice continuously differentiable in a neighborhood of x0,
e : X×P −→W is continuous, and twice continuously differentiable w.r.t. x, with first and second
derivative Lipschitz continuous in a neighborhood of (x0, q0).

The derivatives with respect to x will be denoted by primes and the derivatives w.r.t. y and u later
on, are denoted by subscripts. They are all considered in the sense of Lebesgue derivatives.

We introduce the Lagrangian L : X × P ×W ∗ −→ R associated to (Pq) by

L(x, q, λ) = f(x) + 〈λ, e(x, q)〉W ∗,W . (2.1)

Next further relevant assumptions are introduced:

Assumption H2 (regular point condition).

0 ∈ int e′(x0, q0)(C − x0),

where int denotes the interior in the W topology. This regularity condition implies the existence
of a Lagrange multiplier λ0 ∈W ∗, see e.g. [MZ] such that the following first order condition holds:

{
〈L′(x0, q0, λ0), c− x0〉X∗,X ≥ 0, ∀c ∈ C,

e(x0, q0) = 0.
(2.2)

It is equivalent to {
0 ∈ L′(x0, q0, λ0) + ∂IC(x0), in X∗,

e(x0, q0) = 0, in W,
(2.3)

where ∂IC(x) denotes the subdifferential of the indicator function of the set C at x ∈ X.
Let A ∈ L(X,X∗) denote the operator representation of L′′(x0, q0, λ0), i.e.

〈Ax1, x2〉X∗,X = L′′(x0, q0, λ0)(x1, x2) (2.4)

and define
E = e′(x0, q0) ∈ L(X,W ). (2.5)

We further require

Assumption H3 (positive definiteness).

∃κ > 0 : 〈Ax, x〉X∗,X ≥ κ ‖x‖2X , ∀x ∈ ker E.

Condition (H3) is a bit stronger than a second order sufficient optimality condition, since it does
not take into consideration the activity or inactivity of the constraints. Such weaker second order
conditions typically allow to derive quadratic positive definite lower bounds on the cost and Hölder
continuity with respect to perturbations. For Lipschitz continuity and differentiability stronger
assumptions, such as (H3) are typically assumed. We refer exemplarily to [Gri, GHH, GV, Wac],
and [IK, Section 2.3]. The constraints in these references, however, are not identical with those of
the present paper.
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The stability result of (x0, λ0) with respect to perturbation of q at q0 will be based on Robinson’s
strong regularity condition which involves the following linearized form of the optimality condition,

{
0 ∈ L′(x0, q0, λ0) +A(x− x0) + E∗(λ− λ0) + ∂IC(x) in X∗,

0 = e(x0, q0) + E(x− x0) in W.
(2.6)

We define a multivalued operator T : X ×W ∗ −→ X∗ ×W by

T
(
x
λ

)
=

(
A E∗

E 0

)(
x
λ

)
+

(
f ′(x0)−Ax0
−Ex0

)
+

(
∂IC(x)

0

)
, (2.7)

and observe that (2.6) is equivalent to

0 ∈ T
(
x
λ

)
.

Here it is understood that T is evaluated at (x0, q0, λ0) ∈ X × P ×W ∗. But T is not yet the
mapping for which we need to verify the Robinson-Dontchev strong regularity condition in our
context. It relates to the fact that we must to treat the multiplier λ in smaller space than W ∗.
Before we can properly specify this condition some additional preparation is necessary. We first
introduce Banach spaces:

X ⊂ X, W ∗ ⊂W ∗, X∗ ⊂ X∗, (2.8)

with continuous injections. We emphasize that X∗ should not be confused with (X)∗. A restriction
of T will be defined as multivalued operator T : X × W ∗ → X∗ ×W . Indeed, in applications
to optimal control problems extra regularity of multipliers can be obtained by investigating the
solutions (2.3), see e.g. Section 3. In the context of optimal stabilization problems this structural
property will become transparent in Proposition 4.1 and Proposition 4.2, see also [BKP3, Proposi-
tion 15]. It will turn out to be essential for our purposes. But this situation where the multiplier
has extra regularity is also of abstract interest. When studying stability in this setting this means
that the second coordinate of the domain of T needs to be changed from W ∗ to W ∗. This entails
that the range space of T has to be modified appropriately, in order to obtain stability of the
λ coordinate. For this purpose we introduce X∗ ⊂ X∗. The reason for further restricting X to
X will become evident in the proof of Proposition 4.2. It is related to the fact that we consider
infinite horizon problems. A concrete use of these space is elaborated in detailed in subsection 3.2.2.

Now we adapt the conditions on f and e to the choice of the spaces in (2.8).

Assumption H4.
There exists a neighborhood Ũ1 × Ũ2 ⊂ X × P of (x0, q0) such that

(i) the restriction of x 7→ f ′(x) to X defines a mapping f ′(x) from Ũ1 ⊂ X to X∗,

(ii) the restriction e′(x, q)∗ ∈ L(W ∗,X∗) to W ∗ defines operators e′(x, q)∗ ∈ L(W ∗,X∗) for every

(x, q) ∈ Ũ1 × Ũ2.

With these assumption holding we define the restricted linearized Lagrangian

L′ : Ũ1 × Ũ2 ×W ∗ ⊂ X × P ×W ∗ −→ X∗ by L′(x, q, λ) = f ′(x) + e′(x, q)∗λ. (2.9)
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Next we adapt ∂IC ⊂ X∗ to the situation of (2.8) and define for x ∈ X the set valued mapping

∂IC(x) = {y ∈ X∗ : 〈y, v − x〉X∗,X ≤ 0, ∀v ∈ C ∩X} ⊂ X∗. (2.10)

We henceforth assume that (x0, λ0) ∈ X ×W ∗, it will also follow as a special case of (H7) below.
The following assumption will guarantee that the restriction T of T is well-defined as operator
from X ×W ∗ to X∗ ×W , and the one beyond is needed for Lipschitz continuous dependence of
local solutions to (Pq) with respect to q.

Assumption H5.
L′ : Ũ1 × Ũ2 ×W ∗ ⊂ X × P ×W ∗ −→ X∗ is Fréchet differentiable with respect to x, and (L′)′, as
a mapping (x, q, λ) 7→ (L′)′(x, q, λ), is continuous at (x0, q0, λ0) ∈ X × P ×W ∗.

Assumption H6. There exists ν > 0 such that:

‖e(x, q1)− e(x, q2)‖W ≤ ν ‖q1 − q2‖P , ∀(x, q1) and (x, q2) ∈ Ũ1 × Ũ2, (2.11a)∥∥∥e′(x, q1)∗ − e′(x, q2)
∗
∥∥∥
L(W ∗,X∗)

≤ ν ‖q1 − q2‖P , ∀(x, q1) and (x, q2) ∈ Ũ1 × Ũ2. (2.11b)

Let us further set

E∗ = e′(x0, q0)
∗ ∈ L(W ∗,X∗) and A = (L′(x0, q0, λ0))

′ ∈ L(X,X∗).

With Assumptions (H1)-(H5) holding (2.3) can be expressed as
{
0 ∈ L′(x0, q0, λ0) + ∂IC(x0), in X∗,

e(x0, q0) = 0, in W.
(2.12)

Moreover (2.6) restricted to X ×X∗ result in:

0 ∈
{
L′(x0, q0, λ0) +A(x− x0) + E∗(λ− λ0) + ∂IC(x) in X∗,

e(x0, q0) + E(x− x0) in W,
(2.13)

and the multivalued operator T : X ×W ∗ −→ X∗ ×W related to (2.7) is defined as

T
(
x
λ

)
=

(
A E∗

E 0

)(
x
λ

)
+

(
f ′(x0)−Ax0
−Ex0

)
+

(
∂IC(x)

0

)
. (2.14)

Observe that (2.13) is equivalent to

0 ∈ T
(
x
λ

)
.

Existence and Lipschitz continuity of solutions in a neighborhood (x0, q0, λ0) will follow from the
strong regularity assumption which requires us to show that there exist neighborhoods V̂ ⊂ X∗×W
of 0 and Û = Û1×Û2 ⊂ X×W ∗ of (x0, q0) such that T −1 has the properties that T −1(V̂ )∩Û is single-
valued and that it is Lipschitz continuous from V̂ to Û , see [Don], (and also [Rob], [IK, Definition
2.2, p 31], in case X = X, W ∗ = W ∗, X∗ = X∗). We approach the strong regularity assumption in
two steps. In the first one we argue invertibility of T and Lipschitz continuity of the variable x in
X. For this purpose we exploit the symmetry of T and consider an associated variational problem.
In our specific situation the inverse of T - and consequently of T - is single-valued and thus the
restriction to the neighborhood Û is not needed. Existence and Lipschitz continuity of λ as well
as Lipschitz continuity of x in the small space X ×W ∗ remains an assumption in the generality
of problem (Pq). It will be verified in a second step for the optimal stabilization problems in the
following sections.
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Assumption H7. For (β1, β2) ∈ V̂ ⊂ X∗ ×W , the solution
(
x(β1,β2), λ(β1,β2)

)
to T

(
x
λ

)
=

(
β1
β2

)

lies in X ×W ∗. Moreover there exists a constant k > 0 such that

∥∥∥x(β1,β2) − x(β̂1,β̂2)

∥∥∥
X
+
∥∥∥λ(β1,β2) − λ(β̂1,β̂2)

∥∥∥
W ∗
≤ k

[∥∥∥(β1, β2)− (β̂1, β̂2)
∥∥∥
X∗×W

+
∥∥∥x(β1,β2) − x(β̂1,β̂2)

∥∥∥
X

]

for all (β1, β2) ∈ V̂ , (β̂1, β̂2) ∈ V̂ .

This condition is used after the existence of xβ = x(β1,β2) was already established. Note that

for (β1, β2)
T = 0 we have (x(0,0), λ(0,0)) = (x0, λ0) and hence (H7) in particular implies that

(x0, λ0) ∈ X ×W ∗. We arrive at the announced stability result.

Theorem 2.1. Assume that (H1)-(H7) hold at a local solution x0 of (Pq0). Then there exist a
neighborhood U = U(x0, λ0) ⊂ X ×W ∗, a neighborhood N = N(q0) ⊂ P , and a constant µ such
that for all q ∈ N there exists a unique (x(q), λ(q)) ∈ U satisfying

0 ∈
{
L′(x(q), q, λ(q)) + ∂IC(x(q)), in X∗,

e(x(q), q), in W,
(2.15)

and
‖(x(q1), λ(q1))− (x(q2), λ(q2))‖X×W ∗ ≤ µ ‖q1 − q2‖P , ∀q1, q2 ∈ N. (2.16)

In addition there exists a nontrivial neighborhood Ñ ⊂ N of q0 such that x(q) is a local solution of
(Pq) for q ∈ Ñ .

For the proof we shall employ the following lemma in which A ∈ L(X,X∗) and E ∈ L(X,W )
denote generic operators. For the sake of completeness we also include its proof.

Lemma 2.1. Let (ã, b̃) ∈ X∗ ×W , assume that A ∈ L(X,X∗) is self-adjoint and satisfies (H3),
and that the set S(b̃) = {x ∈ C : Ex = b̃} is nonempty. Then the problem

{
minx∈C J̃(x) = minx∈C

1
2〈Ax, x〉X∗ ,X + 〈ã, x〉X∗,X ,

Ex = b̃,
(2.17)

admits a unique solution x = x(ã, b̃) satisfying

〈Ax+ ã, v − x〉X∗,X ≥ 0, for all v ∈ S(b̃). (2.18)

If moreover the regular point condition 0 ∈ int E(C − x(ã, b̃)) holds, then there exists λ = λ(ã, b̃) ∈
W ∗ such that

0 ∈
{(

A E∗

E 0

)(
x

λ

)
+

(
ã

−b̃

)
+

(
∂IC(x)

0

)
. (2.19)

Proof. Since C is a closed and convex, S(b̃) is closed and convex. By assumption S(b̃) is nonempty.
Hence there exists an x ∈ C such that Ex = b̃. Note that each such x can be uniquely decomposed
as x = w + y, with y ∈ kerE, w ∈ kerE⊥ and Ew = b̃. By (H3) the functional J̃ is bounded
from below and coercive on S(b̃). Hence there exists a minimizing sequence {xn} in S(b̃) such
that lim

n→∞
J̃(xn) = inf

x∈S(b̃)
J̃(x). Each xn can be decomposed as xn = w + yn, with yn ∈ kerE.

7



By (H3) the sequences {yn}∞n=1 and hence {xn}∞n=1 are bounded. Thus there exists a subsequence
{xnk

} with weak limit x = x(ã, b̃) in S(b̃). Since J̃ weakly lower semi-continuous, we have that
J̃(x) ≤ lim inf

k→∞
J̃(xnk

) and x minimizes J̃ over S(b̃). This further implies that 〈Ax+ã, v−x〉X∗,X ≥ 0

for all v ∈ S(b̃). Uniqueness of x follows from (H3).
The regular point condition implies the existence of a multiplier λ = λ(ã, b̃) ∈W ∗ such that (2.19)
holds. See e.g. [IK, Theorem 1.6]

Proof of the Theorem 2.1.

(i) The proof of the first assertion of the Theorem 2.1 is based on the implicit function theorem
of Dontchev for generalized equations, see [Don, Theorem 2.4, Remark 2.5]. We introduce the
mapping F : X × P ×W ∗ −→ X∗ ×W given by

F(x, q, λ) =
(
L′(x, q, λ)
e(x, q)

)
,

and observe that Assumption (H6) implies that for all (x, q1, λ), and (x, q2, λ) ∈ Ũ1× Ũ2×W ∗

‖F(x, q1, λ)−F(x, q2, λ)‖X∗×W ≤ ν
(
1 + ‖λ‖W ∗

)
‖q1 − q2‖P . (2.20)

By (H1) and (H5), and using the integral mean value theorem it can be argued that

(
x
λ

)
→
(
A E∗

E 0

)(
x
λ

)
+

(
f ′(x0)−Ax0
−Ex0

)

strongly approximates F at (x0, q0, λ0), in the sense of Dontchev, [Don]. In the next two steps
the strong regularity condition for T will be verified.

(ii) (Existence). Let, at first, (β1, β2) ∈ X∗×W and consider T
(
x
λ

)
=

(
β1
β2

)
which is equivalent

to,

0 ∈
(

a
−b

)
+

(
A E∗

E 0

)(
x
λ

)
+

(
∂IC(x)

0

)
, (2.21)

with a = f ′(x0) − Ax0 − β1, b = Ex0 + β2, and A,E defined in (2.4), (2.5). To solve (2.21)
we consider, {

minx∈C 1
2〈Ax, x〉X∗,X + 〈a, x〉X∗ ,X ,

Ex = b.
(2.22)

This corresponds to (2.17) with ã = a, b̃ = b and feasible set S(β2) = {x ∈ C : Ex = b}.
Clearly x0 ∈ S(0) = {x ∈ C : Ex = Ex0}. By (H2) and [IK, Theorem I.2.8], there exists a
neighborhood of the origin Ṽ ⊂ X∗×W such that S(β2) is not empty for all (β1, β2) ∈ Ṽ . Thus
by Lemma 2.1 there exists a unique solution x = x(β1, β2) to (2.22) for each (β1, β2) ∈ Ṽ . By
[IK, Theorem I.2.11, I.2.12, I.2.15], possibly after reducing Ṽ , these solutions depend Hölder
continuously on (β1, β2) ∈ Ṽ ⊂ X∗ ×W , with exponent 1

2 . The regular point condition for
the solution x(β1, β2) is

0 ∈ int E(C − x(β1, β2)) = int E(C − x0)− β2,
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which is satisfied due to (H2), possibly after again shrinking Ṽ . Hence there exists a La-
grange multiplier λ = λ(β1, β2) associated to Ex = b, and (2.21) admits a unique solution
(x(β1, β2), λ(β1, β2)) since it is the first order optimality condition for (2.17).

(iii) (Uniqueness and Lipschitz continuity) Let (β1, β2) ∈ Ṽ and (β̂1, β̂2) ∈ Ṽ with corresponding
solutions (x, λ) ∈ X ×W ∗ and (x̂, λ̂) ∈ X ×W ∗. This implies that

{
〈a+Ax+ E∗λ, c− x〉X∗,X ≥ 0, ∀c ∈ C,

Ex = b, with a = f ′(x0)−Ax0 − β1, b = Ex0 + β2,
(2.23)

and {
〈â+Ax̂+ E∗λ̂, c− x̂〉X∗,X ≥ 0, ∀c ∈ C,

Ex̂ = b̂,with â = f ′(x0)−Ax0 − β̂1, b̂ = Ex0 + β̂2.
(2.24)

By the first equations in (2.23) and (2.24) we obtain that

〈a+Ax+E∗λ, x̂− x〉X∗,X ≥ 0, 〈â+Ax̂+ E∗λ̂, x− x̂〉X∗,X ≥ 0, x, x̂ ∈ C. (2.25)

Combining these inequalities, we have that

〈a− â+A(x− x̂) + E∗(λ− λ̂), x− x̂〉X∗,X ≤ 0. (2.26)

The second equalities in (2.23) and (2.24) imply that

E(x− x̂) = b− b̂. (2.27)

Let us set
δx = x̂− x, δλ = λ̂− λ, δa = â− a, δb = b̂− b.

Then δβ1 = −(β̂1 − β1) and δβ2 = β̂2 − β2, and (2.26), (2.27) result in

〈δx,Aδx〉X,X∗ + 〈δλ,Eδx〉W ∗ ,W − 〈δβ1, δx〉X∗,X ≤ 0, (2.28)

and
Eδx = δb. (2.29)

By (H2) the operator E is surjective. Hence by the closed range theorem expressing δx =
δv + δw ∈ ker E + range E∗ implies that Eδx = Eδw = δβ2. Again by the closed range
theorem there exists k1 > 0:

‖δw‖X ≤ k1 ‖δβ2‖W . (2.30)

From the first equation in (2.21) we have

Ax+ E∗λ−Ax0 + f ′(x0)− β1 ∈ −∂IC(x).

Next we restrict the perturbation parameters to satisfy (β1, β2) ∈ (X∗ ×W ) ∩ Ṽ . Due to
Assumptions (H4) and (H7) we have (x, λ) ∈ X ×W ∗,

Ax+ E∗λ−Ax0 + f ′(x0)− β1 ∈ X∗

and hence
Ax+ E∗λ−Ax0 + f ′(x0)− β1 ∈ −∂IC(x).
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The analogous equation holds with (x, λ, β1) replaced by (x̂, λ̂, β̂1).
By (H3), (2.28) and Assumption (H7) we find

κ ‖δv‖2 ≤ 〈δv,Aδv〉X,X∗ = 〈δx,Aδx〉X,X∗ − 2〈δv,Aδw〉X,X∗ − 〈δw,Aδw〉X,X∗ (2.31)

≤ −〈δλ,Eδx〉W ∗ ,W + 〈δβ1, δx〉X,X∗ − 2〈δv,Aδw〉X,X∗ − 〈δw,Aδw〉X,X∗

≤ k̃ ‖δλ‖W∗ ‖δβ2‖W + ‖δβ1‖X∗ ‖δx‖X + ‖A‖ ‖δw‖X (2 ‖δv‖X + ‖δw‖X)

≤ k̃k(‖δw‖X + ‖δv‖X + ‖δβ‖X∗×W ) ‖δβ2‖W + (‖δβ1‖X∗ + 2 ‖A‖ ‖δw‖X)(‖δv‖X + ‖δw‖X),

where k̃ denotes the embedding constant of W ∗ into W ∗. Using (2.30) and rearranging terms
there exists a constant k2 > 0 such that

‖δv‖X ≤ k2

(
‖δβ1‖X∗ + ‖δβ2‖W

)
. (2.32)

Applying (2.30) again this implies the existence of k3 such that

‖δx‖X ≤ k3

(
‖δβ1‖X∗ + ‖δβ2‖W

)
for all (β1, β2) ∈ (X∗ ×W ) ∩ Ṽ . (2.33)

Another application of (H7) and (2.33) imply the existence of a constant k4 and a neigh-
borhood V̂ of the origin in X∗ × W such that the desired Lipschitz stability estimate for
(T )−1

‖δx‖X + ‖δλ‖W ∗ ≤ k4

(
‖δβ1‖X∗ + ‖δβ2‖W

)
for all (β1, β2) ∈ V̂ ⊂ X∗ ×W (2.34)

holds.

(iv) As a consequence of the previous two steps T is strongly regular at (x0, q0, λ0). Together with
step (i), Dontchev’s theorem is applicable [Don, Theorem 2.4, Remark 2.5], and (2.15), and
(2.16) follow.

(v) (Local solution to (Pq)) Now we show that there exists a neighborhood Ñ of q0 such that for
q ∈ Ñ the second order sufficient optimality condition is satisfied at x(q), so that x(q) is a
local solution of (Pq) by eg. [IK, Theorem 2.12, p42]. Due to (H3) and regularity of f, e we
obtain

L′′(x(q), q, λ(q))(h, h) ≥ κ

2
‖h‖2 , for all h ∈ ker E, if q ∈ N(q0). (2.35)

Let us define Eq = (ey(x(q), q)) for q ∈ N(q0). By the surjectivity of Eq0 and regularity of
e there exists a neighborhood Ñ ⊂ N(q0) such that Eq is surjective for all q ∈ Ñ . Here we
also use continuity of q 7→ ey(x(q), q) from P → W at q0, which follows from (H1) and the
continuity of q → x(q) at q0. Consequently exist δ0, γ > 0 such that

L′′(x(q), q, λ(q))(h + z, h + z) ≥ δ0 ‖h+ z‖2 , for all h ∈ ker E, z ∈ X (2.36)

satisfying ‖z‖ ≤ γ ‖h‖ by [IK, Lemma 2.13, p43]. Let us define the orthogonal projection onto
ker Eq given by Pker Eq

= I − E∗
q (EqE

∗
q )

−1Eq. We choose Ñ so that

∥∥E∗
q (EqE

∗
q )

−1Eq − E∗
q0(Eq0E

∗
q0)

−1Eq0

∥∥ ≤ γ

1 + γ
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for all q ∈ Ñ . For x ∈ ker Eq, we have x = h + z for h ∈ ker E, z ∈ (ker E)⊥ and
‖x‖2 = ‖h‖2 + ‖z‖2. Thus,

‖z‖ ≤
∥∥E∗

q (EqE
∗
q )

−1Eqx− E∗
q0(Eq0E

∗
q0)

−1Eq0x
∥∥ ≤ γ

1 + γ

(
‖h‖+ ‖z‖

)

and hence ‖z‖ ≤ γ ‖h‖. From (2.35) this implies

L′′(x(q), q, λ(q)) ≥ δ0 ‖x‖2 , for all x ∈ ker E.

This concludes the proof.

3 Differentiability of value function for optimal stabilization sub-
ject to semi-linear parabolic equations.

Here we describe the optimal control problems which we shall analyze and state the main results.

3.1 Notation

Let Ω be an open connected bounded subset of Rd with dimension d, and a Lipschitz continuous
boundary Γ. The associated space-time cylinder is denoted by Q = Ω× (0,∞) and the associated
lateral boundary by Σ = Γ× (0,∞). We define the Hilbert spaces

Y = L2(Ω), V = H1
0 (Ω), and U = L2(0,∞; U),

where U is a Hilbert space which will be identified with its dual. Observe that the embedding
V ⊂ Y is dense and compact. Further V ⊂ Y ⊂ V ∗, is a Gelfand triple. Here V ∗ denotes the
topological dual of V with respect to the pivot space Y . For any T ∈ (0,∞) we define the space

W (0, T ) =

{
y ∈ L2(0, T ;V );

dy

dt
∈ L2(0, T ;V ∗)

}
,

endowed with the norm

‖y‖W (0,T ) =

(
‖y‖2L2(0,T ;V ) +

∥∥∥∥
dy

dt

∥∥∥∥
2

L2(0,T ;V ∗)

)1/2

.

For T =∞, we write W∞ and I = (0,∞). We further set W 0
∞ = {y ∈W∞ : y(0) = 0}. We also set

W (T,∞) =

{
y ∈ L2(T,∞;V );

dy

dt
∈ L2(T,∞;V ∗)

}
.

We shall frequently use that W∞ embeds continuously into C([0,∞), Y ), see e.g. [LM, Theorem
4.2] and that lim

t→∞
y(t) = 0, for y ∈W∞, see e.g. [CK]. The set of admissible controls Uad is chosen

to be
Uad ⊂ {u ∈ U : ‖u(t)‖U ≤ η, for a.e. t > 0}, (3.1)

where η is a positive constant. We further set Uad = {v ∈ U : ‖v‖U ≤ η} and denote by PUad

the projection of U on Uad. For this choice of admissible controls, the dynamical system can be
stabilized for all sufficiently small initial conditions in Y , see Corollary 4.3 and Remark 4.1.

For δ > 0 and ȳ ∈ Y , we define the open neighborhoods BY (δ) = {y ∈ Y : ‖y‖Y < δ} , and
BY (ȳ, δ) = {y ∈ Y : ‖y − ȳ‖Y < δ}.
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3.2 Problem formulation and assumptions.

We focus on the stabilization problem for an abstract semi-linear parabolic equation formulated as
infinite horizon optimal control problem under control constraints:

(P) V(y0) = min
(y,u)∈W∞×Uad

J(y, u) = min
(y,u)∈W∞×Uad

1

2

∫ ∞

0
‖y(t)‖2Y dt+

α

2

∫ ∞

0
‖u(t)‖2U dt,

(3.2a)

subject to the semilinear parabolic equation

yt = Ay + F(y) +Bu in L2(I;V ∗), (3.2b)

y(x, 0) = y0 in Y. (3.2c)

Throughout F is the substitution operator associated to a mapping f : R → R so that (Fy)(t) =
f(y(t)). Sufficient conditions which guarantee the existence of solutions to (3.2b), (3.2c), as well as
solutions (ȳ, ū) to (P), for y0 ∈ Y sufficiently small, will be given below. We shall also make use of
the adjoint equation associated to an optimal state ȳ, given by

− pt −A∗p−F ′(ȳ)∗p = −ȳ in L2(I;V ∗). (3.2d)

Its adjoint state p which will be considered in L2(I;V ) or in W∞. The following assumption will
be essential.

3.2.1 Assumptions A.

A1 The operator A with domain D(A) ⊂ Y and range in Y , generates a strongly continuous
analytic semigroup eAt on Y and can be extended to A ∈ L(V, V ∗).

A2 B ∈ L(U , Y ) and there exists a stabilizing feedback operator K ∈ L(Y,U) such that the
semigroup e(A−BK)t is exponentially stable on Y .

A3 The nonlinearity F : W∞ → L2(I;V ∗) is twice continuously Fréchet differentiable, with
second Fréchet derivative F ′′ bounded on bounded subsets of W∞, and F(0) = 0.

A4 F : W (0, T ) → L1(0, T ;H∗) is weak-to-weak continuous for every T > 0, for some Hilbert
space H which embeds densely in V .

Note that
(
L1(0, T ;H∗)

)∗
= L∞(0, T ;H), see [Emm, Theorem 7.1.23(iv), p 164]. Moreover,

L∞(0, T ;H) is dense in L2(0, T ;V ), see [MS, Lemma A.1, p 2231].

A5 F ′(ȳ) ∈ L(L2(I;V ), L2(I;V ∗)).

Remark 3.1. The requirement that F(0) = 0 in (A2) is consistent with the fact that we focus on
the stabilization problem with 0 as steady state for (3.2b). Without loss of generality we further
assume that

F ′(0) = 0, (3.3)

which can always be achieved by making F ′(0) to be perturbation of A.

12



Remark 3.2. Let us assume that (A3) holds. Then in view of the fact that F is a substitution
operator we have [F ′(y)v](t) = f′(y(t))v(t) for y and v in W∞, and F ′(y) ∈ L(W∞, L2(I;V ∗)). Its
adjoint [F ′(y)∗v](t) = f′(y(t))v(t), for v ∈ L2(I;V ), satisfying F ′(y)∗ ∈ L(L2(I;V ),W ∗

∞). It has a
natural restriction to an operator F ′(y)∗ ∈ L(W∞, L2(I;V ∗)). With (A3) holding it is differentiable

and [F ′(y)∗]′ is a bilinear form on W∞×W∞ with values in L2(I;V ∗). - For examples of functions
F which satisfy (A4) we refer to see Section 6.

3.2.2 Abstract setup.

Here we relate problem (P) to the abstract problem (Pq), which is used with the following spaces:

X = W∞ × U, W = L2(I;V ∗)× Y, P = Y, C = Uad, X
∗ = W ∗

∞ × U, W ∗ = L2(I;V )× Y,

X = W∞ × (U ∩ C(Ī;U)), X∗ = L2(I;V ∗)× (U ∩ C(Ī;U)), W ∗ = W̃∞,
(3.4)

where I = (0,∞), and W̃ = {(ϕ,ϕ(0)) : ϕ ∈ W∞}, endowed with the norm of W∞. At times we

identify W̃ with W∞. We recall that the dual space of W∞ = L2(I;V ) ∩W 1,2(I;V ∗) is W ∗
∞ =

L2(I;V ∗)+ (W 1,2(I;V ∗))∗, endowed with the norm ‖z‖W ∗
∞

= inf
z=z1+z2

‖z1‖L2(I;V ∗)+‖z2‖W 1,2(I;V ∗)∗ ,

where z1 ∈ L2(I;V ∗), z2 ∈ (W 1,2(I;V ∗))∗.

To express (Pq) for the present case, we set x = (y, u) ∈ W∞ × U , and the parameter q becomes
the initial condition y0 ∈ Y . Further f : W∞ × U −→ R is given by

f(y, u) =
1

2

∫ ∞

0
‖y(t)‖2Y dt+

α

2

∫ ∞

0
‖u(t)‖2U dt, (3.5)

and e(x, q) = e(y, u, y0) is

e(y, u, y0) =

(
yt −Ay −F(y)−Bu

y(0) − y0

)
: W∞ × U × Y −→ L2(I;V ∗)× Y. (3.6)

By (A3) the mapping e is Fréchet differentiable with respect to x = (y, u) ∈W∞ × U and thus for
(y, u, y0) ∈W∞ × U × Y we have

e′(y, u, y0)(v,w) =

(
vt −Av −F ′(y)v −Bw

v(0, ·)

)
: W∞ × U −→ L2(I;V ∗)× Y. (3.7)

The Lagrange functional L : W∞ × U × Y × L2(I;V ) × Y −→ R corresponding to our optimal
control problem is given by

L(y, u, y0, p, p1) = J(y, u) +

∫ ∞

0
〈p, yt −Ay −F(y)−Bu〉V,V ∗dt+ (p1, y(0)− y0)Y ,

where (p, p1) ∈ L2(I;V )× Y corresponds to the abstract Lagrange multiplier λ ∈W ∗.

In the remainder of this subsection we specify the mappings T and T for problem (P). This will
facilitate the proofs of the main results further below.

13



At first we take a closer look to the adjoint Ẽ∗ := e′(y, u, y0)
∗ ∈ L(L2(I;V ) × Y,W ∗

∞ × U) at a
generic element (y, u, y0) ∈ W∞ × U × Y . It is characterized by the property that for all (v,w) ∈
W∞ × U, (p, p1) ∈ L2(I;V )× Y we have

〈Ẽ(v,w), (p, p1)〉L2(I;V ∗)×Y,L2(I;V )×Y = 〈v, Ẽ∗
1 (p, p1)〉W∞,W ∗

∞
+ (w, Ẽ∗

2 (p, p1))U ,

where
〈v, Ẽ∗

1 (p, p1)〉W∞,W ∗
∞

= 〈vt −Av −F ′(y)v, p〉L2(I;V ∗),L2(I;V ) + (v(0), p1)Y ,

and
(w, Ẽ∗

2 (p, p0))U = −(w,B∗p)U .

If for some β̃1 ∈ L2(I;V ∗) the pair (p, p1) ∈ L2(I;V ) × Y is a solution to Ẽ∗
1(p, p1) = β̃1 then for

all v ∈W∞:

〈vt −Av −F ′(y)v, p〉L2(V ∗),L2(V ) + (v(0), p1)Y − (w,B∗p)U = 〈β̃1, v〉L2(I;V ∗),L2(I;V ). (3.8)

Now we assume that F ′(y) is not only an element of L(W∞, L2(I;V ∗)) but rather that it can be
extended to an operator F ′(y) ∈ L(L2(I;V ), L2(I;V ∗)). This is guaranteed by (A5) at minimizers
ȳ. Then (3.8) implies that p ∈W∞, and hence p1 ∈ C(I;Y ) and p1 = p(0), see Proposition 4.1. In

particular (p, p1) = (p, p(0)) ∈ W̃∞, and (3.8) can equivalently be expressed as

〈v, Ẽ∗
1 (p, p1)〉L2(I;V ),L2(I;V ∗) = 〈vt −Av −F ′(y)v, p〉L2(I;V ∗),L2(I;V ) = 〈v, β̃1〉L2(I;V ),L2(I;V ∗), (3.9)

for all v ∈ L2(I;V ), where we assumed that β̃1 ∈ L2(I;V ∗). Conversely, of course, if p ∈ W̃∞, then
Ẽ∗

1(p, p(0)) = −pt −A∗p−F ′(y)∗p ∈ L2(I;V ∗).

From now on, let q0 = ȳ0 denote a reference (or nominal) parameter with associated solution
x0 = (ȳ, ū). In Proposition 4.1 we shall argue that the regular point condition Assumption (H2)
is satisfied and that consequently there exists a Lagrange multiplier (p̄, p̄1) such that the pair
(x0, λ0) = (ȳ, ū, p̄, p̄1) satisfies (2.3). Moreover, it will turn out that p̄ ∈ W∞, p̄1 = p(0), and that
ū ∈ U ∩ C(I;U). For convenience let us present (2.3) for the present case

0 ∈





ȳ + E∗
1(p̄, p̄(0)),

αū−B∗p̄+ ∂IUad
(ū),

ȳt −Aȳ −F(ȳ)−Bū,

ȳ(0)− y0,

(3.10)

where E =

(
E1

E2

)
= e′(ȳ, ū, ȳ0). We stress that while the Lagrange multiplier p̄ belongs to W∞,

the operator E∗
1 in (3.9) is still considered as an element of L(L2(I;V )× Y,W ∗

∞).

We are now prepared to specify the multivalued operators

T :W∞ × U × L2(I;V )× Y −→W ∗
∞ × U × L2(I;V ∗)× Y, and (3.11)

T :W∞ × (U ∩ C(I;U))× W̃∞ −→ L2(I;V ∗)× (U ∩ C(I;U))× L2(I;V ∗)× Y, (3.12)
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corresponding to (2.7) and (2.14) by

T




y
u
p
p1


 =




E∗
1(p, p1) + y − [F ′(ȳ)∗p̄]′(y − ȳ)

αu−B∗p
yt −Ay −Bu−F ′(ȳ)(y − ȳ)−F(ȳ)

y(0)− ȳ0


+




0
∂IUad

(u)
0
0


 , (3.13)

and

T




y
u
p

p(0)


 =




−p
t
−A∗p−F ′(ȳ)∗ p+ y − [F ′(ȳ)∗ p̄]′(y − ȳ)

αu−B∗p
yt −Ay −Bu−F ′(ȳ)(y − ȳ)−F(ȳ)

y(0)− ȳ0


+




0
∂IUad

(u)

0
0


 , (3.14)

where
∂IUad

(u) = {ũ ∈ U ∩ C(I;U) : (ũ(t), v − u(t))U ≤ 0, ∀t ∈ I, v ∈ Bη(0)} , (3.15)

with Bη(0) = {v ∈ U ; ‖v‖U ≤ η}. In (3.14), we underline the elements which are taken from differ-
ent domains when compared to (3.13). The range of the first two coordinates of T is smaller than
that of T . Accordingly we can make use of (3.9) when moving from the first row of (3.13) to the
first row of (3.14).

For convenience of the subsequent work, we recall that the strong regularity condition intro-
duced below (2.14) requires us to find neighborhoods of 0 and (ȳ, ū, p̄, p̄(0)) of the form V̂ ⊂
L2(I;V ∗) × (U ∩ C(I;U)) × L2(I;V ∗) × Y and Û ⊂ W∞ × (U ∩ C(I;U)) × W̃∞, such that for all
β = (β1, β2, β3, β4) ∈ V̂ the equation

T
(
y, u, p, p(0)

)T
= (β1, β2, β3, β4)

T , (3.16)

admits a unique solution (y, u, p, p(0)) ∈ Û depending Lipschitz-continuously on β.

Remark 3.3. We observe that as a consequence of (A3) and Remark 3.2 the operator T is con-
tinuous.

Subsequently we shall frequently refrain from the underline-notation since the meaning should be
clear from the context.

3.3 Main Theorems.

In this subsection, we present the main theorems of this paper. The first theorem asserts local
continuous differentiability of the value function V w.r.t. y0, with y0 small enough. The second
theorem establishes that V satisfies the HJB equation in the classical sense. The proof of the first
theorem is based on Theorem 2.1. It will be given in Section 4 below. For this purpose it will be
shown that assumptions A imply (H1)-(H7). Moreover we need to assert the underlying assumption
that problem (P) is well-posed. This will lead to a smallness assumption on the initial states y0.
Consequently it would suffice to assume that (A3) and (A4) only hold locally in the neighborhood
of the origin. Concerning (A5) observe that it is not implied by (A3). It is vacuously satisfied for
ȳ = 0, which is the case for y0 = 0, since then F ′(0) = 0, see (3.3).
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We invoke Theorem 2.1 to assert the Lipschitz continuity of the state, the adjoint state, and the
control with respect to the initial condition y0 ∈ Y in the neighborhood of a locally optimal
solution (ȳ, ū) corresponding to a sufficiently small reference initial state ȳ0. This will imply the
differentiability of the value function associated to local minima. We shall refer to the value function
associated to local minima as ’local value function’.

Theorem 3.1. Let the assumptions (A) hold. Then associated to each local solution (ȳ(y0), ū(y0))
of (P) there exists a neighborhood of U(y0) such that the local value function V : U(y0) ⊂ Y → R

is continuously differentiable, provided that y0 is sufficiently close to the origin in Y .

To obtain a HJB equation we require additionally that t→ (F(ȳ))(t) is continuous with values in Y
for global solutions (ȳ, ū) to (P), with y0 ∈ D(A). In view of the fact that for y0 ∈ V we can typically
expect that the solutions of semilinear parabolic equations satisfy y ∈ L2(I;D(A)) ∩W 1,2(I;Y ) ⊂
C([0,∞), V ) this is not a restrictive assumption beyond that what is already assumed in (A3).

Theorem 3.2. Let the assumptions (A) hold, and let (ȳ(y0), ū(y0)) denote a global solution of
(P), for y0 ∈ D(A) with sufficiently small norm in Y . Assume that there exists Ty0 > 0 such that
F(ȳ) ∈ C([0, Ty0);Y ). Then the following Hamilton-Jacobi-Bellman equation holds at y0:

V ′(y)(Ay + F(y)) + 1

2
‖y‖2Y +

α

2

∥∥∥∥PUad

(
1

α
B∗V ′(y)

)∥∥∥∥
2

Y

+

〈
B∗V ′(y),PUad

(
1

α
B∗V ′(y)

)〉

Y

= 0.

(3.17)
Moreover the optimal feedback law is given by

ū(0) = PUad

(
1

α
B∗V ′(ȳ(0))

)
. (3.18)

The condition on the smallness of y0 will be discussed in Remark 4.2 below. Roughly it involves
well-posedness of the optimality system and second order sufficient optimality at local solutions. A
more detailed, respectively stronger statement of Theorem 3.1 and Theorem 3.2, will be given in
Theorem 4.1 and Theorem 5.1 below. The regularity assumptions F(ȳ) ∈ C([0, Ty0);Y ) of Theorem
3.2 will be addressed in Section 6.

4 Proof of Theorem 3.1.

In this section we give the proof for Theorem 3.1. Many of the technical difficulties arise from the
fact that we are working with an infinite horizon optimal control problem. In this respect we can
profit from techniques which were developed in [BKP3], which, however, do not include the case of
constraints on the norm. Throughout we assume that assumptions (A1) - (A4) hold.

4.1 Well-posedness of problem (P).
Here we prove well-posedness for (P) with small initial data. First, we recall two consequences of
the assumption that A is the generator of an analytic semigroup.

Consequence 1. Since A generates a strongly continuous analytic semigroup on Y , there exist
ρ ≥ 0 and θ > 0 such that

〈(ρI −A)v, v〉V ∗,V ≥ θ ‖v‖2V
See [BPDM, Part II, Chaptor 1, p 115], [Paz, Theorem 4.2, p14].
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Consequence 2. For all y0 ∈ Y, f ∈ L2(0, T ;V ∗), and T > 0, there exists a unique solution
y ∈W (0, T ) to

ẏ = Ay + f, y(0) = y0. (4.1)

Furthermore, y satisfies

‖y‖W (0,T ) ≤ c(T )
(
‖y0‖Y + ‖f‖L2(0,T ;V ∗)

)
, (4.2)

for a continuous function c. Assuming that y ∈ L2(0,∞;Y ), consider the equation

ẏ = (A− ρI)y︸ ︷︷ ︸
Aρ

+ ρy + f︸ ︷︷ ︸
fρ

, y(0) = y0,

where fρ ∈ L2(I;V ∗). Then the operator Aρ generates a strongly continuous analytic semigroup on
Y which is exponentially stable, see [BPDM, p 115, Theorem II.1.2.12]. It follows that y ∈ W∞,
that there exists Mρ such that

‖y‖W∞
≤Mρ

(
‖y0‖Y + ‖fρ‖L2(I;V ∗)

)
, (4.3)

and that y is the unique solution to (4.1) in W∞, see [BKP3, Section 2.2] .

Lemma 4.1. There exists a constant C > 0, such that for all δ < (0, 1] and for all y1 and y2 in
W∞ with ‖y1‖W∞

≤ δ and ‖y2‖W∞
≤ δ, it holds that

‖F(y1)−F(y2)‖L2(I;V ∗) ≤ δC ‖y1 − y2‖W∞
. (4.4)

Proof. Let y1, y2 be as in the statement of the lemma. Using (A3) and Remark 3.1 we obtain the
estimate

‖F(y1)−F(y2)‖L2(I,V ∗) ≤
∫ 1

0

∥∥F ′(y1 + t(y2 − y1))−F ′(0)
∥∥
L(W∞,L2(I,V ∗))

dt ‖y2 − y1‖W∞
,

≤
∫ 1

0

∫ 1

0

∥∥F ′′(s(y1 + t(y2 − y1)))(ty2 + (1− t)y1)
∥∥
L(W∞,L2(I,V ∗))

dsdt ‖y2 − y1‖W∞
.

Now the claim follows by assumption (A3).

Lemma 4.2. Let As be the generator of an exponentially stable analytic semigroup eAst on Y . Let
C denote the constant from Lemma 4.1. Then there exists a constant Ms such that for all y0 ∈ Y
and f ∈ L2(I;V ∗) with

γ̃ = ‖y0‖Y + ‖f‖L2(I;V ∗) ≤
1

4CM2
s

,

the system
yt = Asy + F(y) + f, y(0) = y0, (4.5)

has a unique solution y ∈W∞, which satisfies

‖y‖W∞
≤ 2Msγ̃.
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With Lemma 4.1 holding, this lemma can be verified in the same manner as [BKP3, Lemma 5,
p 6]. In the following corollary we shall use Lemma 4.2 with As = A − BK, and the constant
corresponding to Ms will be denoted by MK . Further ‖I‖ denotes the norm of the embedding
constant of W∞ into C(I;Y ), ‖i‖ is the norm of the embedding V into Y , and we recall the
constant η from (3.1).

Corollary 4.3. For all y0 ∈ Y with

‖y0‖Y ≤ min

{
1

4CM2
K

,
η

2MK ‖K‖L(Y ) ‖I‖

}
,

there exists a control u ∈ Uad such that the system

yt = Ay + F(y) +Bu, y(0) = y0, (4.6)

has a unique solution y ∈W∞ satisfying

‖y‖W∞
≤ 2MK‖y0‖Y , and ‖u‖U ≤ ‖K‖L(Y,U)‖I‖‖y‖W∞

≤ 2MK‖y0‖Y ‖K‖L(Y,U)‖I‖. (4.7)

Proof. By Assumption (A2), there exists K such that A − BK generates an exponentially stable
analytic semigroup on Y . Taking u = −Ky, equation (4.6) becomes

yt = (A−BK)y + F(y), y(0) = y0. (4.8)

Then by Lemma 4.2 with γ̃ = ‖y0‖Y there exists MK such that (4.8) has a solution y ∈ W∞
satisfying

‖y‖W∞
≤ 2MK‖y0‖Y ,

and thus the first inequality in (4.7) holds. For every t ∈ I we have

‖u‖U = ‖Ky‖U ≤ ‖K‖L(Y,U)‖y‖Y ≤ ‖K‖L(Y,U)‖I‖‖y‖W∞
≤ 2MK‖y0‖Y ‖K‖L(Y,U)‖I‖, (4.9)

and thus the second inequality in (4.7) holds.We still need to assert that u ∈ Uad. This follows
from the second smallness condition on ‖y0‖Y and (4.9).

Remark 4.1. In the above proof stabilization was achieved by the feedback control u = −Ky. For
this u to be admissible it is needed that Uad has nonempty interior. The upper bound η could be
allowed to be time dependent as long as it satisfies inf

t≥0
|η(t)| > 0.

Corollary 4.4. Let y0 ∈ Y and let u ∈ Uad be such that the system

yt = Ay + F(y) +Bu, y(0) = y0, (4.10)

has a unique solution y ∈ L2(I;Y ). If

γ := ‖y0‖Y + ‖ρy +Bu‖L2(I;V ∗) ≤ min

{
1

4CM2
ρ

,
η

2Mρ ‖K‖L(Y ) ‖I‖

}
,

then y ∈W∞ and it holds that
‖y‖W∞

≤ 2Mργ.
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Proof. Since y ∈ L2(I;Y ), we can apply Lemma 4.2 to the equivalent system

yt = (A− ρI)y + F(y) + f̃ ,

where f̃ = ρy +Bu. This proves the assertion.

Lemma 4.5. There exists δ1 > 0 such that for all y0 ∈ BY (δ1), problem (P) possesses a solution
(ȳ, ū) ∈W∞ × Uad. Moreover, there exists a constant M > 0 independent of y0 such that

max
{
‖ȳ‖W∞

, ‖ū‖U
}
≤M ‖y0‖Y . (4.11)

Proof. The proof of this lemma follows with analogous argumentation as provided in [BKP3, Lemma

8]. Let us choose, δ1 ≤ min
{

1
4CM2

K

, η
2MK‖K‖

L(Y )‖I‖

}
, where C as in Lemma 4.1 and MK denotes

the constant from the Corollary 4.3. We obtain that for each y0 ∈ BY (δ1), there exists a control
u ∈ Uad with associated state y satisfying

max
{
‖u‖U , ‖y‖W∞

}
≤ M̃ ‖y0‖Y , (4.12)

where M̃ = 2MK max
(
1, ‖i‖ ‖K‖L(Y,U)

)
. We can thus consider a minimizing sequence (yn, un)n∈N ∈

W∞ × Uad with J(yn, un) ≤
1

2
M2 ‖y0‖2Y (1 + α). For all n ∈ N that

‖yn‖L2(I;Y ) ≤ M̃ ‖y0‖Y
√
1 + α and ‖un‖L2(I;U) ≤ M̃ ‖y0‖Y

√
1 + α

α
. (4.13)

We set η(α, M̃ ) =
[
1+M̃‖i‖

√
(1 + α)

(
ρ+

‖B‖
L(U,Y )√
α

)]
. Then we have ‖y0‖+‖ρyn +Bun‖L2(I;V ∗) ≤

η(α, M̃ ) ‖y0‖Y . After further reduction of δ1, we obtain with Mρ from Corollary 4.4:

‖y0‖+ ‖ρyn +Bun‖L2(I;V ∗) ≤
1

4CM2
ρ

.

It follows from this corollary that the sequence {yn}n∈N is bounded in W∞ with

sup
n∈N
‖yn‖W∞

≤ 2Mρ(1 + η(α, M̃ )) ‖y0‖Y . (4.14)

Extracting if necessary a subsequence, there exists (ȳ, ū) ∈ W∞ × U such that (yn, un) ⇀ (ȳ, ū) ∈
W∞ × U , and (ȳ, ū) satisfies (4.12).

Let us prove that (ȳ, ū) is feasible and optimal. Since Uad is weakly sequentially closed and un ∈ Uad,
we find ū ∈ Uad. For each fixed T > 0 and arbitrary z ∈ L∞(0;T ;H) ⊂ L2(0, T ;V ), see (A4), we
have for all n ∈ N that

∫ T

0
〈ẏn(t), z(t)〉V ∗,V dt =

∫ T

0
〈Ayn(t) + F(yn(t)) +Bun(t), z(t)〉V ∗,V dt. (4.15)

Since ẏn ⇀ ẏ in L2(0, T ;V ∗), we can pass to the limit in the l.h.s. of the above equality. Moreover,
since Ayn ⇀ Ay in L2(0, T ;V ∗),

∫ T

0
〈Ayn(t), z(t)〉V ∗,V dt −−−→

n→∞

∫ T

0
〈Aȳ(t), z(t)〉V ∗,V dt.
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Analogously, we obtain that

∫ T

0
〈Bun(t), z(t)〉V ∗,V dt −−−→

n→∞

∫ T

0
〈Bū(t), z(t)〉V ∗,V dt.

If moreover z ∈ L∞(0, T ;H) ⊂ L2(0, T ;V ), we use (A4) to assert

∫ T

0
〈F(yn(t))−F(ȳ(t)), z(t)〉V ∗,V dt =

∫ T

0
〈F(yn(t))−F(ȳ(t)), z(t)〉H∗ ,Hdt −−−→

n→∞
0.

Thus we have for all z ∈ L∞(0, T ;H)
∫ T

0
〈ẏ(t)−Ay(t)−Bu(t), z(t)〉V ∗,V dt =

∫ T

0
〈F(y(t)), z(t)〉V ∗,V dt. (4.16)

Since ẏ −Ay −Bu ∈ L2(0, T ;V ∗) and L∞(0, T ;H) is dense in L2(0, T ;V ) we conclude that (4.16)
holds for all z ∈ L2(0, T ;V ) and T > 0. This yields e(ȳ, ū) = (0, 0), and thus (ȳ, ū) is feasible.
By weak lower semicontinuity of norms it follows that J(ȳ, ū) ≤ lim inf

n→∞
J(ȳn, ūn), which proves the

optimality of (ȳ, ū), and (4.11) follows from (4.13).

For the derivation of the optimality system for (P), we need the following lemma which is taken
from [BKP1, Lemma 2.5].

Lemma 4.6. Let G ∈ L(W∞, L2(I;V ∗)) such that ‖G‖ < 1

MK
, where ‖G‖ denotes the operator

norm of G. Then for all f ∈ L2(I;V ∗) and y0 ∈ Y , there exists a unique solution to the problem:

yt = (A−BK)y(t) + (Gy)(t) + f(t), y = y0.

Moreover,

‖y‖W∞
≤ MK

1−MK‖G‖
(
‖f‖L2(I;V ∗) + ‖y0‖Y

)
.

We close this section by deriving the optimality conditions for (P).

Proposition 4.1. Let the assumptions (A1) - (A4) hold. Then there exists δ2 ∈ (0, δ1] such that
each local solution (ȳ, ū) with y0 ∈ BY (δ2) is a regular point, i.e. (2.3) is satisfied, and there exists
an adjoint state (p̄, p̄1) ∈ L2(I;V )× Y satisfying

〈vt −Av −F ′(ȳ)v, p̄〉L2(I;V ∗),L2(I;V ) + (v(0), p̄1)Y + (ȳ, p̄)L2(I;V ) = 0, for all v ∈W∞, (4.17)

〈αū−B∗p̄, u− ū〉U ≥ 0, for all u ∈ Uad. (4.18)

If the assumption (A5) is satisfied, then

−p̄t −A∗p̄−F ′(ȳ)∗p̄ = −ȳ, in L2(I;V ∗),

and hence p̄ ∈W∞ and
lim
t→∞

p̄(t) = 0. (4.19)

Moreover, there exists M̃ > 0, independent of y0 ∈ BY (δ2), such that

‖p̄‖W∞
≤ M̃ ‖y0‖Y , and u ∈ C(I,U). (4.20)
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Proof. To verify the regular point condition, we evaluate e defined in (3.6) at (ȳ, ū, y0). To check
the claim on the range of e′(ȳ, ū, y0) we consider for arbitrary (r, s) ∈ L2(I, V ∗)× Y the equation

zt −Az −F ′(ȳ)z −B(w − ū) = r, z(0) = s, (4.21)

for unknowns (z, w) ∈W∞ × Uad. By taking w = −Kz ∈ U we obtain

zt − (A−BK)z −F ′(ȳ)z +Bū = r, z(0) = s.

We apply Lemma 4.6 to this equation with G = −F ′(ȳ) and f = r−Bū. By Lemma 4.5 and (3.3)
in Remark 3.1 there exists δ2 ∈ (0, δ1] such that ‖F ′(ȳ)‖L(W∞,L2(I;V ∗)) ≤ 1

2MK . Consequently by

Lemma 4.6 there exists M̃ such that

‖z‖W∞
≤ M̃

(
‖r‖L2(I;V ∗) + ‖s‖Y + ‖B‖L(U ,Y ) ‖ū‖U

)

≤ M̃
(
‖r‖L2(I;V ∗) + ‖s‖Y + ‖B‖L(U ,Y )M ‖y0‖Y

)
, (4.22)

with M as in (4.11). We shall need to check whether w = −Kz is feasible, which will be the case
if w(t) ≤ η for a.e. t ∈ I. Indeed we have

‖w(t)‖U ≤ ‖K‖L(Y,U) ‖z(t)‖Y ≤ ‖K‖L(Y,U) ‖I‖ M̃
(
‖r‖L2(I;V ∗) + ‖s‖Y + ‖B‖L(U ,Y )M ‖y0‖Y

)
.

Consequently, possibly after further reducing δ2, and choosing δ̃ > 0 sufficiently small we have

‖w‖L∞(I;Y ) ≤ η for all y0 ∈ BY (δ2) and all (r, s) satisfying ‖(r, s)‖L2(I;V ∗)×Y ≤ δ̃. (4.23)

Consequently the regular point condition is satisfied. Hence there exists a multiplier λ = (p, p1) ∈
L2(I;V )× Y satisfying,

〈Ly(ȳ, ū, y0, p̄, p̄1), v〉L2(I;V ∗),L2(I;V ) = 0, 〈Lu(ȳ, ū, y0, p̄, p̄1), u− ū〉U ≥ 0, ∀u ∈ Uad, (4.24)

where

L(y, u, y0, p, p1) = J(y, u) +

∫ ∞

0
〈p, yt −Ay −F(y)−Bu〉V,V ∗dt+ 〈p1, y(0)− y0〉Y .

This implies that (4.17) holds.

Now, if we impose the additional assumption (A5), we have F ′(ȳ)∗p̄ ∈ L2(I;V ∗). Thus −A∗p̄ −
F ′(ȳ)∗p̄+ ȳ ∈ L2(I;V ∗) and the previous identity implies that p̄ ∈W∞. Thus we derive

−p̄t −A∗p̄−F ′(ȳ)∗p̄ = −ȳ in L2(I;V ∗) and lim
t→∞

p̄(t) = 0,

and (4.17)-(4.19). Testing the first identity in (4.24) with v ∈ L2(I;V ) we also have p̄1 = p̄(0),
which is well-defined since p̄ ∈ W∞ ⊂ C(I;Y ). The second identity in (4.24) gives (4.18). It
remains to estimate p̄ ∈W∞.

Let r ∈ L2(I;V ∗) with ‖r‖L2(I;V ∗) ≤ δ̃ and consider

zt −Az −F ′(ȳ)z −B(w − ū) = −r, z(0) = 0. (4.25)
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Arguing as in (4.21)-(4.22) there exists a solution to (4.25) with w = −Kz such that

‖z‖W∞
≤ M̃

(
δ̃ + ‖B‖L(U ,Y )M ‖y0‖Y

)
≤ M̃

(
δ̃ + ‖B‖L(U ,Y )Mδ2

)
=: C1. (4.26)

From (4.23) we have that ‖w‖L∞(I,U) ≤ η. Let us now observe that

〈p̄, r〉L2(I,V ),L2(I,V ∗) = 〈p̄,−zt +Az + F ′(ȳ)z〉L2(I,V ),L2(I,V ∗) + 〈p̄, B(w − ū)〉L2(I;Y ),

= 〈p̄t +A∗p̄+ F ′(ȳ)∗p̄, z〉+ 〈B∗p̄, w − ū〉U ,

where we have used that z(0) = 0 and lim
t→∞

p̄(t) = 0, since p̄ ∈W∞. We next estimate using (4.17),

(4.19) and (4.26)

〈p̄, r〉L2(I,V ),L2(I,V ∗) ≤ ‖ȳ‖L2(I,V ∗) ‖z‖L2(I,V ) + α〈ū, w − ū〉U ≤
(
‖ȳ‖L2(I,V ∗) + α ‖ū‖U

)
(C1 + η + ‖ū‖U ) .

By (4.11), this implies the existence of a constant C2 such that

sup
‖r‖

L2(I,V ∗)≤δ̃

〈p̄, r〉L2(I,V ),L2(I,V ∗) ≤ C2 ‖y0‖Y ,

and thus

‖p̄‖L2(I,V ) ≤
C2

δ̃
‖y0‖Y , for all y0 ∈ BY (δ2). (4.27)

Now we estimate, again using (A5)

‖p̄t‖L2(I;V ∗) ≤
∥∥A∗p̄+ F ′(ȳ)∗p̄− ȳ

∥∥
L2(I;V ∗)

≤ C3 ‖p̄‖L2(I,V ) + C4 ‖p̄‖L2(I,V ) + ‖ȳ‖L2(I;V ∗) .

By (4.11) and (4.27) we obtain ‖p̄t‖L2(I;V ∗) ≤ C5 ‖y0‖Y . Combining this estimate with (4.27) yields

(4.20). Finally, by (4.18) we find ū(t) = PUad

(
1

α
B∗p̄(t)

)
. Since p̄ ∈ C(Ī;Y ) and B∗ ∈ L(Y,U)

this implies that u ∈ C(Ī;U).

4.2 Verification of (H1)-(H6).

In this section we specialize the previously proved abstract results in Section 2 to the semilinear
parabolic setting. We start with the following lemma which shows that assumptions A imply
(H1)-(H6).

Lemma 4.7. Consider problem (P) with assumptions (A1)-(A4) holding. Then (H1)–(H4), (H6)
are satisfied for (P) uniformly for all y0 ∈ BY (δ̃2) for some δ̃2 ∈ (0, δ2]. If moreover, (A5) holds,
then (H5) holds as well.

Proof. Throughout y0∈BY (δ2), (ȳ, ū) denotes a local solution to (P), and (p, p1) ∈ L2(I;V ∗)× Y
the associated Lagrange multiplier.

(i) Verification of (H1): The initial condition y0 is our nominal reference parameter q. Lemma 4.5
guarantees the existence of a local solution (ȳ, ū) ∼ x0 to (P)∼ (Pq0). Clearly f defined in (3.5)
satisfies the required regularity assumptions. Moreover e satisfies the regularity assumptions
as a consequence of (A3).

22



(ii) Verification of (H2): Proposition 4.1 implies that (ȳ, ū) is a regular point.

(iii) Verification of (H3): The second derivative of e is given by

e′′(ȳ, ū, y0)((v1, w1), (v2, w2)) =

(
F ′′(ȳ)(v1, v2)

0

)
, ∀ v1, v2 ∈W∞, ∀w1, w2 ∈ U. (4.28)

For the second derivative of L w.r.t. (y, u), we find

L′′(ȳ, ū, y0, p̄, p̄1)((v1, w1), (v2, w2)) =

∫ ∞

0
(v1, v2)Y dt+ α

∫ ∞

0
(w1, w2)Y dt

+

∫ ∞

0
〈p̄,F ′′(ȳ)(v1, v2)〉V,V ∗dt. (4.29)

By (A3) for F ′′ and Lemma 4.5 , there exists M̃1 such that

∫ ∞

0
〈p̄,F ′′(ȳ)(v, v)〉V,V ∗dt ≤ M̃1‖p̄‖L2(I;V ) ‖v‖2W∞

, ∀ v ∈W∞, (4.30)

for each solution (ȳ, ū) of (P) with y0 ∈ BY (δ2). Then we obtain

L′′(ȳ, ū, y0, p̄, p̄1)((v,w), (v,w)) ≥
∫ ∞

0
‖v‖2Y dt+ α

∫ ∞

0
‖w‖2U dt− M̃1‖p̄‖L2(I;V ) ‖v‖2W∞

.

(4.31)
Now let 0 6= (v,w) ∈ kerE ⊂ W∞ × Uad, where E as defined in (3.7) is evaluated at (ȳ, ū).
Then,

vt −Av −F ′(ȳ)v −Bw = 0, v(0) = 0.

Next choose ρ > 0, such that the semigroup generated by (A − ρI) is exponentially stable.
This is possible due to (A1). We equivalently write the system in the previous equation as,

vt − (A− ρI)v −F ′(ȳ)v − ρv −Bw = 0, v(0) = 0.

Now, we invoke Lemma 4.6 with A−BK replaced by A− ρI, G = F ′(ȳ), and f(t) = ρv(t) +
Bw(t), and the role of the constant MK will now be assumed by a parameter Mρ. By selecting

δ̃2 ∈ (0, δ2] such that ‖ȳ‖W∞
sufficiently small, we can guarantee that

∥∥F ′(ȳ)
∥∥
L(W∞;L2(I;V ∗))

≤
1/2Mρ , see (4.11) and (3.3) in Remark 3.1. Then the following estimate holds,

‖v‖W∞
≤ 2Mρ ‖v +Bw‖L2(I;V ∗) .

This implies that
‖v‖2W∞

≤ M̃2(‖v‖2L2(I;Y ) + ‖w‖
2
L2(I;Y )). (4.32)

for a constant M̃2 depending on Mρ, ‖B‖, and the embedding of Y into V ∗. These prelimi-
naries allow the following lower bound on L′′:

L′′(ȳ, ū, y0, p̄, p̄1)((v,w), (v,w)) ≥
∫ ∞

0
‖v‖2Y dt+ α

∫ ∞

0
‖w‖2Y dt− M̃1‖p̄‖L2(I;V ) ‖v‖2W∞

,

by (4.32) ≥
∫ ∞

0
‖v‖2Y + α

∫ ∞

0
‖w‖2Y − M̃1M̃2‖p̄‖L2(I;V )

[
‖v‖2L2(I;Y ) + ‖w‖2L2(I;Y )

]
,
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=
(
1− M̃1M̃2 ‖p̄‖L2(I;V )

)
‖v‖2L2(I;Y ) +

(
α− M̃1M̃2‖p̄‖L2(I;V )

)
‖w‖2L2(I;Y ) ,

≥ γ̃
[
‖v‖2L2(I;Y ) + ‖w‖2L2(I;Y )

]
, (4.33)

where γ̃ = min
{
1− M̃1M̃2‖p̄‖L2(I;V ), α− M̃1M̃2‖p̄‖L2(I;V )

}
. By possible further reduction

of δ̃2 it can be guaranteed that γ̃ > 0, see (4.27). Then by (4.32), we obtain,

L′′(ȳ, ū, y0, p̄, p̄1)((v,w), (v,w)) ≥
γ̃

2

[
‖v‖2L2(I;Y ) + ‖w‖

2
L2(I;Y )

]
+

γ̃

2M̃2

‖v‖2W∞
,

≥ γ̃

2M̃2

‖v‖2W∞
+

γ̃

2
‖w‖2L2(I;Y ) .

By selecting γ̄ = min

{
γ̃

2M̃2

,
γ̃

2

}
, we obtain the positive definiteness of L′′, i.e.

L′′(ȳ, ū, y0, p̄, p̄1)((v,w), (v,w)) ≥ γ̄ ‖(v,w)‖2W∞×U , y0 ∈ BY (δ̃2), (v,w) ∈ ker E. (4.34)

Thus (H3) is satisfied.

(iv) Verification of (H4): It can easily be checked that f ′(y, u) can be extended to an element
in X∗ = L2(I;V ∗) × (U ∩ C(Ī;U)) for each (y, u) ∈ X = W∞ × U . We refer to Remark
3.2 to show that the restriction of e′(y, u, y0)∗ to W ∗ satisfies e′(y, u, y0)∗ ∈ L(W ∗,X∗) =

L(W∞ × Y,L2(I;V ∗)× (U ∩ C(Ī;U))).

(v) Verification of (H6): This is trivially satisfied.

Thus we have proved that assumptions (A1)-(A4) imply (H1)-(H4), and (H6) for all y0 ∈
BY (δ̃2).

(vi) Verification of (H5): Here we use (A5) and have (p, p1) = (p, p(0)) ∈ W̃∞. Observe that
L′ : W∞ × (U ∩ C(Ī;U)) × Y ×W∞ → L2(I;V ∗) × (U ∩ C(Ī;U)) evaluated at (ȳ, ū, y0, p) is
given by

L′(ȳ, ū, y0, p̄) =
(
ȳ + e′(ȳ, ū, y0)∗p̄

αū−B∗p̄

)
=

(
ȳ − p̄t −A∗p̄−F ′(ȳ)∗p̄

αū−B∗p̄

)
.

Further for (v.w) ∈W∞ × U we have

(L′)′(ȳ, ū, y0, p̄)(v,w) =
(
v − [F ′(ȳ)∗]′(p̄, v)

αw

)
∈ L2(I;V ∗)× (U ∩ C(Ī;U)).

By (A3) and Remark 3.2 we have that L′ and (L′)′ are continuous as mappings fromW∞×(U∩
C(Ī;U))×Y×W∞ to L2(I;V ∗)×(U∩C(Ī;U)), respectively to L(W∞×(U∩C(Ī;U));L2(I;V ∗)×
(U ∩ C(Ī;U))).

This proves the lemma.

Remark 4.2. Let us summarize our findings so far. There exists δ̃2 such that for each y0 ∈ BY (δ̃2)

problem (P) posesses a solution (ȳ, ū) ∈ W∞ × (U ∩ C(Ī;U)), with an adjoint p̄ ∈ W̃∞. Further
(A1)-(A5) imply (H1)-(H6) for (P) with y0 ∈ BY (δ̃2). As a consequence for each y0 ∈ BY (δ̃2)
and each associated local solution (ȳ, ū) there exists a neighborhood V̂ of the origin in Y :=
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L2(I;V ∗)× (U ∩C(Ī;U))× L2(I;V ∗)× Y such that for each β ∈ V̂ there exists a unique solution(
y(β), u(β), p(β), p1(β)

)
∈W∞ × U × L2(I;V )× Y to T (y, u, p, p1) = β, see step (ii) of the proof of

Theorem 2.1 and
(
y(β), u(β)

)
Lipschitz continuous w.r.t. β, see (2.33) in the proof of Theorem 2.1.

– To verify the remaining assumption (H7) we need to argue that
(
u(β), p(β)

)
∈ (U ∩C(Ī;U))×W∞

and that β 7→
(
y(β), u(β), p(β)

)
is Lipschitz continuous from V̂ ⊂ Y to W∞ × (U ∩C(Ī;U))×W∞ .

Remark 4.3. Here we remark on the smallness assumption on y0 expressed by δ2, respectively
δ̃2. The condition y0 ∈ BY (δ2) guarantees the well-posedness of (P), existence and boundedness
of adjoint states as expressed in Proposition 4.1. The additional condition y0 ∈ BY (δ̃2) implies
that the second order optimality condition (H3) is satisfied, for each local solution associated to
an initial condition y0 ∈ BY (δ2). In the following we formulate the results for all y0 ∈ BY (δ̃2).
Alternatively we could narrow down the claims to neighborhoods of single local solutions (ȳ, ū)
with y0 ∈ BY (δ2) and additionally assuming that the second order condition is satisfies at (ȳ, ū).
Concerning the second order condition itself, in some publications, see e.g. [Gri], it is required to
hold only for elements x = (y, u) ∈ kerE and u = u1−u2, with u1, u2 in Uad. By a scaling argument
it can easily be seen that this condition is equivalent to the one we use.

4.3 Verification of (H7) and Lipschitz stability of the linearized problem.

Throughout the remainder, we assume that (A1)-(A5) are satisfied and that y0 ∈ BY (δ̃2) so that
Proposition 4.1 and Lemma 4.7 are applicable. In the following, the triple (y, u, p) refers to the
solution T (y, u, p, p1) = β. Throughout without loss of generality, we also assume that V̂ is
bounded.

Lemma 4.8. Let assumptions (A) hold and let (ȳ, ū), and p̄ denote a local solution and associated
adjoint state to (P) corresponding to an initial datum y0 ∈ BY (δ̃2). Then, possibly after further
reduction of V̂ , the mapping β 7→ p(β) is continuous from V̂ to W∞.

Proof.
Step 1: For β ∈ V̂ , with V̂ as in Remark 4.2, let (y(β), u(β), p(β), p1(β)) be the solution to
T (y, u, p, p1) = β. As a consequence of (A5) it is also a solution to T (y, u, p, p(0)) = β with
p(β) ∈W∞. Thus the first two equations of this latter equality can be expressed as

−∂tp(β) −A∗p(β) −F ′(ȳ)∗p(β) + y(β) − [F ′(ȳ)∗p̄]′(y(β) − ȳ) = β1 in L2(I;V ∗), (4.35a)

〈αu(β) −B∗p(β) − β2, w − u(β)〉U ≥ 0 for all w ∈ Uad. (4.35b)

The above inequality is equivalent to u(β)(t) = PUad

[
1

α

(
B∗p(β)(t) + β2(t)

)]
. Since p(β) ∈ W∞ ⊂

C(Ī;Y ) and β2 ∈ C(Ī;U), it follows that u(β) ∈ C(Ī;U) for every β ∈ V̂ .

Step 2: (Boundedness of {p(β) : β ∈ V̂ }). Since V̂ is assumed to be bounded, the discussion in
Remark 4.2 shows that there exists a constant M1 > 0 such that

∥∥y(β)
∥∥
W∞

+
∥∥u(β)

∥∥
U
≤M1 for all β ∈ V̂ .

To argue the boundedness of p(β), we use a similar technique as in the proof of Proposition 4.1.

With δ̃ as in the proof of that Proposition, β ∈ V̂ , and r ∈ R =
{
r ∈ L2(I;V ∗) : ‖r‖L2(I;V ∗) ≤ δ̃

2

}
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let z denote the solution to

zt −Az −F ′(ȳ)z −B
(
w − u(β)

)
= −r, z(0) = 0, w = −Kz. (4.36)

From the proof of Proposition 4.1, we know that there exists a constant M̃ such that

‖z‖W∞
≤ M̃

(
‖r‖L2(I;V ∗) + ‖B‖L(U ,Y )

∥∥u(β)
∥∥
U

)
,

≤ M̃
(
‖r‖L2(I;V ∗) + ‖B‖L(U ,Y )

(
‖ū‖U +

∥∥u(β) − ū
∥∥
U

))
. (4.37)

Consequently, we obtain with M from (4.11) for a.a. t > 0

‖w(t)‖U ≤ ‖K‖L(Y,U) ‖z(t)‖Y ,

≤ ‖K‖L(Y,U) ‖I‖ M̃
(
‖r‖L2(I;V ∗) + ‖B‖L(U ,Y )

(
M ‖y0‖Y +

∥∥u(β) − ū
∥∥
U

))
,

≤ ‖K‖L(Y,U) ‖I‖ M̃
(
δ̃

2
+ ‖B‖L(U ,Y )

(
Mδ̃2 +

∥∥u(β) − ū
∥∥
U

))
,

≤ η + ‖K‖L(Y,U) ‖I‖ M̃ ‖B‖L(U ,Y )

∥∥u(β) − ū
∥∥
U
.

Due to the continuity of β → u(β) ∈ U , we obtain ‖w‖L∞(I;Y ) ≤ η possibly after further reduction

of V̂ . Simultaneously, let us reduce V̂ such that

∥∥∥∥
1

α
β2

∥∥∥∥
C(Ī;U)

≤ η

2
for all β ∈ V̂ . Thus w is feasible.

Moreover we have that ‖z‖W∞
≤ C1 for a constant independently of r ∈ R and β ∈ V̂ . Due to

(4.35a) and (4.35b), we have

〈p(β), r〉L2(I;V ),L2(I;V ∗) = 〈p(β),−zt +Az + F ′(ȳ)z〉L2(I;V ),L2(I;V ∗) + 〈B∗p(β), w − u(β)〉U ,
≤ 〈y(β) − [F ′(ȳ)∗p̄]′(y(β) − ȳ)− β1, z〉L2(I;V ∗),L2(I;V ) + 〈αu(β) − β2, w − u(β)〉U , (4.38)

where we also used the feasibility of w ∈ Uad. Consequently

〈p(β), r〉L2(I;V ),L2(I;V ∗) ≤ ‖z‖L2(I;V )

(∥∥y(β)
∥∥
L2(I;V ∗)

+ ‖β1‖L2(I;V ∗) +
∥∥[F ′(ȳ)∗p̄]′(y(β) − ȳ)

∥∥
L2(I;V ∗)

)

+
(
α
∥∥u(β)

∥∥
U
+ ‖β2‖U

)∥∥w − u(β)
∥∥
U
.

The right hand side is uniformly bounded for β in the bounded set V̂ and w.r.t. r ∈ R. Hence

taking the supremum w.r.t. r ∈ R we verified that
{∥∥p(β)

∥∥
L2(I;V ∗)

: β ∈ V̂
}

is bounded. Bound-

edness of
{∥∥p(β)

∥∥
W∞

: β ∈ V̂
}

follows from (4.35a).

Step 3: (Continuity of p(β) in W∞). Let {βn} be a convergent sequence in V̂ with limit β. Since{∥∥p(βn)

∥∥
W∞

: n ∈ N

}
is bounded, there exists a subsequence {βnk

} such that p(
βnk

) ⇀ p̃ weakly

in W∞ and strongly L2(0, T ;Y ) for every T ∈ (0,∞), see e.g. [Emm, Satz 8.1.12, pg 213]. Passing
to the limit in the variational form of

−∂tp(βnk
) −A∗p(βnk

) −F ′(ȳ)∗p(βnk
) + y(βnk

) − [F ′(ȳ)∗p̄]′
(
y(βnk

) − ȳ
)
= βnk

,1 ,
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we obtain
− ∂tp̃−A∗p̃−F ′(ȳ)∗p̃+ y(β) − [F ′(ȳ)∗p̄]′

(
y(β) − ȳ

)
= β1. (4.39)

Since the solution to this equation is unique, we have p(βn)
⇀ p(β) weakly in W∞. To obtain strong

convergence, we set δβ = βn − β, δp = p(βn)
− p(β), and δy = y(βn)

− y(β). Since p(β) ∈ W∞ we

have that lim
t→∞

p(β)(t) = 0 in Y . Hence there exists T̂ such that
1

α

∥∥B∗p(β)(t)
∥∥
U ≤

η

4
for all t ≥ T̂ ,

and by the choice of V̂ , we also have that

∥∥u(β)(t)
∥∥
U =

∥∥∥∥PUad

[
1

α

(
B∗p(β)(t) + β2(t)

)]∥∥∥∥
U
=

1

α

∥∥B∗p(β)(t) + β2(t)
∥∥
U ≤

3η

4
,

i.e. the constraint is inactive for t ≥ T̂ . Let us estimate for z ∈W∞,

〈δp,B(Kz − u(βnk
))〉L2(I;Y ) ≤

∫ T̂

0
〈p(βnk

)(t)− p(β)(t), B(Kz(t)− u(βnk
)(t))〉Y dt

+

∫ ∞

T̂
〈B∗(p(βnk

)(t)− p(β)(t)),Kz(t) − u(βnk
)(t)〉U dt,

≤
∫ T̂

0

∥∥∥B∗(p(βnk
)(t)− p(β)(t))

∥∥∥
Y

∥∥∥Kz(t)− u(βnk
)(t)
∥∥∥
U
dt

+

∫ ∞

T̂
〈(αu(βnk

)(t)− βnk,2(t))− (αu(β)(t)− β2(t)),Kz(t) − u(βnk
)(t)〉Udt,

≤
(
‖B‖L(U ,Y )

∥∥∥p(βnk
) − p(β)

∥∥∥
L2(0,T̂ ;Y )

+ α
∥∥∥u(βnk

) − u(β)

∥∥∥
U

+ ‖βnk ,2 − β2‖U
) (
‖K‖L(Y,U) ‖z‖W∞

+
∥∥∥u(βnk

)

∥∥∥
U

)
.

Let R1 =
{
r ∈ L2(I;V ∗) : ‖r‖L2(I;V ∗) ≤ 1

}
, and denote the solution to (4.36) by z = z(β) for

β ∈ V̂ . From the estimates in (4.37) there exists M2 such that
∥∥z(β)

∥∥
W∞

≤M2 for all β ∈ V̂ , and
r ∈ R1.

From (4.35a) we derive that

− ∂t(δp)−A∗(δp) −F ′(ȳ)∗(δp) + (I − [F ′(ȳ)∗p̄)]′)(δy) = δβ1 (4.40)

holds in L2(I;V ∗). Hence from (4.36) we find for arbitrary r ∈ R1

〈δp, r〉L2(I;V ),L2(I;V ∗) = 〈(I− [F ′(ȳ)∗p̄]′)(δy)− δβ1 , z〉L2(I;V ∗),L2(I;V )+ 〈δp,B(Kz(β)−u(β))〉L2(0,T̂ ;Y ),

and thus for some C2 > 0,

‖δp‖L2(I;V ) = sup
r∈R1

〈δp, r〉L2(I;V ),L2(I;V ∗)

≤ C2

(
‖δy‖W∞

+ ‖(δβ1, δβ2)‖L2(I;V ∗)×U + ‖δp‖L2(0,T̂ ;Y ) + ‖δu‖U
)
. (4.41)

Since ‖δy‖W∞
→ 0, ‖δp‖L2(0,T̂ ;Y ) → 0, ‖(δβ1, δβ2)‖L2(I;V ∗)×U → 0 for n → 0 this implies that

‖δp‖L2(I;V ) → 0. Together with (4.40) it follows that lim
n→∞

‖δp‖W∞
= 0.
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Proposition 4.2. Let assumptions (A) hold and let (ȳ, ū), and p̄ denote a local solution and
associated adjoint state state to (P) corresponding to an initial condition ȳ0 ∈ BY (δ̃2). Then there
exists ε > 0 and C > 0 such that for all β̂ and β ∈ V̂ ∩BY(ε)

∥∥∥p̂(β̂) − p(β)

∥∥∥
W∞

+
∥∥∥u(β̂) − u(β)

∥∥∥
C(Ī;U)

≤ C

(∥∥∥ŷ(β̂) − y(β)

∥∥∥
W∞

+
∥∥∥u(β̂) − u(β)

∥∥∥
U
+
∥∥∥β̂ − β

∥∥∥
Y

)
(4.42)

holds.

Proof. As we described in Step 3 of the proof of Lemma 4.8, since p̄ ∈W∞ and lim
t→∞

p̄(t) = 0 in Y ,

there exists T > 0 such that
1

α
‖B∗p̄(t)‖Y ≤

η

2
, ∀t > T.

Since p(0) = p̄, and since by Lemma 4.8, β ∈ Y 7→ p(β) ∈W∞ ⊂ C(Ī;Y ) is continuous, there exists
ε > 0 such that

1

α

∥∥B∗p(β)(t) + β2(t)
∥∥
Y
≤ η

4
, ∀t ≥ T, ∀β ∈ V̂ ∩BY(ε).

Consequently the constraints are inactive for these parameter values, i.e. we have

u(β)(t) =
1

α

[
B∗p(β)(t) + β2(t)

]
,
∥∥u(β)(t)

∥∥
Y
≤ η, ∀t ≥ T, ∀β ∈ V̂ ∩BY(ε). (4.43)

We next treat separately the cases [0, T ) and [T,∞). We consider first the case [T,∞) and set

(y, u, p) =
(
y(β), u(β), p(β)

)
, and (ŷ, û, p̂) =

(
ŷ(β̂), û(β̂), p̂(β̂)

)
. We shall use that

‖p̂− p‖L2(T,∞;V ) = sup
‖r‖

L2(T,∞;V ∗)≤1

∫ ∞

T
〈p̂(t)− p(t), r(t)〉V,V ∗dt.

Let z ∈W (T,∞) be such that,

zt − (A−BK)z −F ′(ȳ)z = r, z(T ) = 0,

From Lemma 4.6, see also the proof of Proposition 4.1, we know that there exists a constant C1 > 0
such that ‖z‖W (T,∞) ≤ C1 ‖r‖L2(T,∞;V ∗). Then we can estimate

‖p̂− p‖L2(T,∞;V ) = sup
‖r‖

L2(T,∞;V ∗)≤1

∫ ∞

T
〈p̂ − p, r〉V,V ∗dt,

≤ sup
‖r‖≤1

∫ ∞

T
−〈(p̂t − pt) +A∗(p̂− p) + F ′(ȳ)∗(p̂− p), z〉V ∗,V dt

+ sup
‖r‖≤1

∫ ∞

T
〈B∗(p̂ − p),Kz〉V,V ∗dt.

In the following, Ci denote constants independent of β̂ and β ∈ V̂ ∩ BY(ε). From (4.35a) and
(4.43) we obtain, for C2 > 0,
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‖p̂− p‖L2(T,∞;V ) ≤ C2 sup
‖r‖≤1

∫ ∞

T

[
‖ŷ − y‖V ∗ +

∥∥[F ′(ȳ)∗p̄]′(ŷ − y)
∥∥
V ∗ +

∥∥∥β̂1 − β1

∥∥∥
V ∗

+
∥∥∥β̂2 − β2

∥∥∥
U∩C(I;U)

+ α ‖B∗‖ ‖K‖ ‖û− u‖
]
‖z‖V dt.

From (A3) recall that
∥∥[F ′(ȳ)∗p̄]′(ŷ − y)

∥∥
L2(I;V ∗)

≤ C3 ‖ŷ − y‖W∞
. This gives the following estimate

for C4 > 0,

‖p̂− p‖L2(T,∞;V ) ≤ C4

(
‖ŷ − y‖W∞

+ ‖û− u‖U +
∥∥∥β̂ − β

∥∥∥
Y

)
. (4.44)

By (4.35a) we have (p̂t − pt) ∈ L2(T,∞;V ∗). Then we obtain p̂− p ∈W (T,∞). Then there exists
C5 > 0 independent of β̂ and β ∈ V̂ ∩BY(ε) such that,

‖p̂− p‖W (T,∞) ≤ C5

(
‖ŷ − y‖W∞

+ ‖û− u‖U +
∥∥∥β̂ − β

∥∥∥
Y

)
. (4.45)

By the embedding W (T,∞) ⊂ C(T,∞;Y ), there exists a constant C6 > 0:

‖p̂− p‖C([T,∞);Y ) ≤ C6

(
‖ŷ − y‖W∞

+ ‖û− u‖U +
∥∥∥β̂ − β

∥∥∥
Y

)
. (4.46)

Similarly, we estimate on [0, T ]:

‖p̂− p‖L2(0,T ;V ) = sup
‖r‖

L2(0,T ;V ∗)≤1

∫ T

0
〈p̂ − p, r〉V,V ∗dt. (4.47)

Choose z as
zt −

(
Az + F ′(ȳ)z

)
= r, z(0) = 0,

Then there exists C7 > 0 such that ‖z‖W (0,T ) ≤ C7 ‖r‖L2(0,T ;V ∗) by Lemma 4.6. Note that C7

depends on T , but T is fixed. We obtain the following estimate,

‖p̂− p‖L2(0,T ;V ) ≤ sup
‖r‖≤1

∫ T

0
−〈(p̂t − pt) +A∗(p̂ − p) + F ′(ȳ)∗(p̂ − p), z〉V ∗,V dt

+ ‖p̂(T )− p(T )‖Y ‖z(T )‖Y .

Then by a similar computation to that for the t ∈ [T,∞) case, we obtain,

‖p̂− p‖L2(0,T ;V ) ≤ C8

(
‖ŷ − y‖W∞

+
∥∥∥β̂1 − β1

∥∥∥
L2(I;V ∗)

)
+ ‖p̂(T )− p(T )‖Y ‖z(T )‖Y . (4.48)

By (4.46) with ‖z(T )‖Y ≤ C9, we obtain

‖p̂(T )− p(T )‖Y ‖z(T )‖Y ≤ C7C9

(
‖ŷ − y‖W∞

+ ‖û− u‖U +
∥∥∥β̂ − β

∥∥∥
Y

)
.

Combining this estimate with (4.44) and (4.48), we obtain for some C10 > 0

∥∥∥p̂(β̂) − p(β)

∥∥∥
W∞

≤ C10

(∥∥∥ŷ(β̂) − y(β)

∥∥∥
W∞

+
∥∥∥û(β̂) − u(β)

∥∥∥
U
+
∥∥∥β̂ − β

∥∥∥
Y

)
. (4.49)
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We also have

u(β) = PUad

[
1

α

(
B∗p(β) + β2

)]
∈ U ∩ C(Ī;U),

and thus

∥∥∥û(β̂)(t)− u(β)(t)
∥∥∥
U
≤
∥∥∥∥PUad

[
1

α

(
B∗p̂(β̂)(t) + β̂2(t)

)]
− PUad

[
1

α

(
B∗p(β)(t) + β2(t)

)]∥∥∥∥
U
,

≤ 1

α

(
‖B∗‖

∥∥∥p̂(β̂)(t)− p(β)(t)
∥∥∥
Y
+
∥∥∥β̂2(t)− β2(t)

∥∥∥
U

)
.

This yields ∥∥∥û(β̂) − u(β)

∥∥∥
C(Ī;U)

≤ C11

(∥∥∥p̂(β̂) − p(β)

∥∥∥
W∞

+
∥∥∥β̂2 − β2

∥∥∥
C(Ī;U)

)
, (4.50)

and (4.42) follows.

Combining Remark 4.2, Step (iii) of the proof of Theorem 2.1, and (4.42) there exists a constant
L such that

∥∥∥ŷ(β̂) − y(β)

∥∥∥
W∞

+
∥∥∥p̂(β̂) − p(β)

∥∥∥
W∞

+
∥∥∥û(β̂) − u(β)

∥∥∥
U∩C(Ī;Y )

≤ L
∥∥∥β̂ − β

∥∥∥
Y
, (4.51)

for all β̂ and β ∈ V̂ ∩ BY(ε). Thus the verification of (H1)–(H7) is concluded. Here and in the
following the p1 coordinate of the adjoint state coincides with p(0). Therefore it is not indicated.

We now obtain the following corollary to Theorem 2.1.

Corollary 4.9. Let assumptions (A) hold and let (ȳ, ū) be a local solution of (P) corresponding
to an initial datum ȳ0 ∈ BY (δ̃2). Then there exist δ3 > 0, a neighborhood Û = Û(ȳ, ū, p) ⊂
W∞ × (U ∩C(Ī;U))×W∞, and a constant µ > 0 such that for each y0 ∈ BY (ȳ0, δ3) there exists a
unique (y(y0), u(y0), p(y0)) ∈ Û satisfying the first order condition, and

‖(y(ŷ0), u(ŷ0)), p(ŷ0))) − (y(ỹ0), u(ỹ0), p(ỹ0)))‖W∞×(U∩C(Ī ;U))×W∞
≤ µ ‖ŷ0 − ỹ0‖Y , (4.52)

for all ŷ0, ỹ0 ∈ BY (ȳ0, δ3), and (y(y0), u(y0)) is a local solution of (P).

Next we obtain one of the main results of this paper, the Fréchet differentiability of the local value
function associated to (P). By referring to a local value function we pay attention to the fact that
for some y0 ∈ BY (δ̃2), problem (P) may not admit a unique solution. But since due to the second
order optimality condition local solutions are locally unique under small perturbations of y0, there
is a well-defined local value function. We continue to use the notation for Û and BY (ȳ0, δ3) of
Corollary 4.9.

Theorem 4.1. (Sensitivity of Cost) Let assumptions (A) hold and let (ȳ, ū) be a local solution of
(P) corresponding to an initial datum ȳ0 ∈ BY (δ̃2). Then for each y0 ∈ BY (ȳ0, δ3) the local value
function V associated to (P) is Fréchet differentiable with derivative given by

V ′(y0) = −p(0; y0). (4.53)

Proof. Let ȳ0 ∈ BY (δ̃2), y0 ∈ BY (ȳ0, δ3), and choose δy0 sufficiently small so that y0 + δy0 ∈
BY (ȳ0, δ3) as well. Following Corollary 4.9 let (ỹ(y0+s(δy0)), ũ(y0+s(δy0)), p̃(y0+s(δy0))) ∈ Û for
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s ∈ [0, 1] be solutions of the optimality system with (ỹ(y0 + s(δy0)), ũ(y0 + s(δy0))) local solutions
to (P). We obtain

V(y0 + s(δy0))− V(y0) =
(
1

2
‖ỹ‖2L2(I,Y ) +

α

2
‖ũ‖2U

)
−
(
1

2
‖y‖2L2(I,Y ) +

α

2
‖u‖2U

)
,

= 〈y, ỹ − y〉L2(I,Y ) + α〈u, ũ− u〉U +
1

2
‖ỹ − y‖2L2(I,Y ) +

α

2
‖ũ− u‖2U . (4.54)

Observe the identity

〈y, ỹ−y〉L2(I,Y )+α〈u, ũ−u〉U = −(p(0), s(δy0))Y−〈(ỹt−yt)−A(ỹ−y)−F ′(y)(ỹ−y), p〉+α〈u, ũ−u〉U ,
= −(p(0), s(δy0))Y−〈F(ỹ)−F(y)−F ′(y)(ỹ − y), p〉L2(I;V ∗),L2(I;V ) + 〈αu−B∗p, ũ− u〉U ,

where p = p(y0). Now we have for V(y0 + s(δy0))− V(y0),

V(y0 + s(δy0))− V(y0) = −(p(0), s(δy0))Y + 〈F(y) −F(ỹ) + F ′(y)(ỹ − y), p〉L2(I,V ∗),L2(I,V )

+ 〈αu−B∗p, ũ− u〉U +
1

2
‖ỹ − y‖2L2(I,Y ) +

α

2
‖ũ− u‖2U . (4.55)

Since p ∈ L2(I;V ), ‖ỹ − y‖W∞
= O(s), and by the continuous Fréchet differentiability of F ′ due

to (A3) we have ∣∣〈F(ỹ)−F(y) + F ′(y)(ỹ − y), p〉L2(I,V ∗),L2(I,V )

∣∣ = o(s). (4.56)

Let sn → 0 be an arbitrary convergent sequence. By Corollary 4.9 we have that

‖ũ(y0 + sn(δy0))− u(y0)‖U ≤ µsn(δy0),

for all sn sufficiently small. Hence there exists a subsequence, denoted by the same notation and
some u̇ such that

s−1
n (ũ(y0 + sn(δy0))− u(y0)) ⇀ u̇ weakly in U.

Using (4.18), we have

lim
n→∞

s−1
n 〈αu −B∗p, ũ− u〉U = 〈αu−B∗p, u̇〉U ≥ 0.

Analogously
lim
n→∞

s−1
n 〈αũ −B∗p, u− ũ〉U = 〈αu−B∗p, u̇〉U ≤ 0.

and hence 〈αu−B∗p, u̇〉U = 0. Since the sequence {sn} is arbitrary, we obtain

〈αu−B∗p, ũ− u〉U = o(s). (4.57)

Corollary 4.9 yields,

‖ỹ(y0 + sn(δy0))− y(y0)‖2L2(I;Y ) + α ‖ũ(y0 + sn(δy0))− u(y0)‖2L2(I;Y ) = o(sn). (4.58)

Combining (4.56), (4.57), and (4.58) we obtain

lim
s→0+

s−1 (V(y0 + s(δy0))− V(y0)) = −(p(0), (δy0))Y . (4.59)

This implies the Gateaux differentiability. Since y0 → p(y0) is continuous from BY (ȳ0; δ3) to
C(Ī , Y ) the mapping y0 → V(y0) is Fréchet differentiable in BY (ȳ0; δ3).
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Remark 4.4 (Sensitivity w.r.t. other parameters). We have developed a technique to verify
the continuous differentiability of the local value function V pertaining to a semilinear parabolic
equation on infinite time horizon subject to control constraints with respect to small initial data
y0 ∈ Y . Thus the parameter q in (Pq) is the initial condition y0. The reason to focus on this case
is due to feedback control. Without much additional effort the sensitivity analysis of the value
function could be carried out with respect to other parameters as for instance additive noise on the
right hand side of the state equation. The papers cited in the introduction, see e.g. [GHH], [GV],
consider such situations for the finite horizon case.

5 Proof of Theorem 3.2: Derivation of the HJB Equation.

Utilizing the results established so far we now verify that the (global) value function V (i.e. the
value function associated to global minima) is a solution to a Hamilton-Jacobi-Bellman equation.
The initial conditions will be chosen from the neighborhood Y0 of the origin in Y so that the
assertions of Theorem 4.1 and Corollary 4.9 are available. It will be convenient to recall the
dynamic programming principle for the infinite time horizon problem: let y0 be an initial condition
for which a solution to (P) exists. Then for all τ > 0, we have

V(y0) = inf
u∈L2(0,τ ;Uad)

∫ τ

0
ℓ(S(u, y0; t), u(t))dt + V(S(u, y0; τ)), (5.1)

where ℓ(y, u) =
1

2
‖y‖2Y +

α

2
‖u‖2U , and S(u, y0; t) denotes the solution to (3.2b), (3.2c) on (0, τ ].

For convenience we restate Theorem 3.2. Utilizing the notation that we have already established
we can now slightly ease the assumption on the regularity of F(ȳ).

Theorem 5.1. Let assumptions (A) hold and let (ȳ, ū) be a global solution of (P) corresponding
to an initial datum ȳ0 ∈ BY (δ̃2). Let Y0 denote the subset of initial conditions in BY (ȳ0, δ3) which
allow global solutions in Û , and assume that for each y0 ∈ D(A)∩ Y0 there exists Ty0 > 0 such that
F(ȳ) ∈ C([0, Ty0);Y ). Then the following Hamilton-Jacobi-Bellman equation holds at y0:

V ′(y)(Ay+F(y))+1

2
‖y‖2Y +

α

2

∥∥∥∥PUad

(
1

α
B∗V ′(y)

)∥∥∥∥
2

Y

+

〈
B∗V ′(y),PUad

(
1

α
B∗V ′(y)

)〉

Y

= 0. (5.2)

If for the optimal trajectory ȳ(t) ∈ BY (ȳ0, δ3) ∩ D(A) for a.a. t ∈ (0,∞) and Ty0 = ∞, then (5.2)
holds at a.a. t ∈ (0,∞) and

ū(t) = PUad

(
1

α
B∗V ′(ȳ(t))

)
. (5.3)

Proof. The proof is similar to that of [BKP1, Proposition 10]. For the sake of completeness and
since it also requires some changes we provide it here. Choose and fix some y0 ∈ D(A) ∩ Y0. Then
the existence of a (globally) optimal pair (ŷ, û) ∈ W∞ × Uad to (P) and of an associated adjoint
state p̂ ∈ W∞ with (ŷ, û, p̂) ∈ Û are guaranteed, see Corollary 4.9. In particular we have that

û(t) = PUad

(
1

α
B∗p̂(t)

)
, and since p̂ ∈ C([0,∞);Y ) we have that û ∈ C([0,∞);Y ). Let u0 denote

the limit of û as time t tends to 0. Since ŷ ∈ C([0,∞);Y ) and since BY (y0, δ3) is open there exists
τy0 > 0 such that ŷ(t) ∈ BY (y0, δ3), for all t ∈ [0, τy0).
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Step 1: Let us first prove that

V ′(y0)
(
Ay0 + F(y0) +Bu0

)
+ ℓ(y0, u0) = 0. (5.4)

For this purpose we invoke the dynamic programing principle: We have

1

τ

∫ τ

0
ℓ(ŷ(s), û(s))ds +

1

τ

(
V(ŷ(τ))− V(y0)

)
= 0, (5.5)

where we choose τ ∈ (0,min(Ty0 , τy0)) . By continuity of ŷ and û at time 0, the first term converges
to ℓ(y0, u0) as τ → 0. To take τ → 0 in the second term we first consider

1

τ

(
ŷ(τ)− y0

)
=

1

τ

(
eAτy0 − y0

)
+

1

τ

∫ τ

0
eA(τ−s)

[
F(ŷ(s)) +Bû(s)

]
ds. (5.6)

Using the facts that y0 ∈ D(A), that the terms in square brackets are continuous with values in Y ,
and that A generates a strongly continuous semigroup on Y , we can pass to the limit in (5.6) to
obtain that

lim
τ→0+

1

τ

(
ŷ(τ)− y0

)
= Ay0 + F(y0) +Bu0 in Y. (5.7)

Now we return to the second term in (5.5) which we express as

1

τ

(
V(ŷ(τ))− V(y0)

)
=

∫ 1

0
V ′
(
y0 + s(ŷ(τ)− y0)

)
ds

1

τ
(ŷ(τ)− y0). (5.8)

Using (5.7) and since y → V ′(y) is continuously differentiable at y0, we can pass to the limit in
(5.8) to obtain

lim
τ→0+

1

τ

(
V(ŷ(τ))− V(y0)

)
= V ′(y0)

(
Ay0 + F(y0) +Bu0

)
. (5.9)

Now we can pass to the limit in (5.5) and obtain (5.4).

Step 2: For u ∈ Uad we define ũ ∈ Uad by,

ũ(τ, x) =

{
u for τ ∈ (0, 1),

0 for τ ∈ [1,∞),

and define ỹ = S(y0, ũ) as the solution to (3.2b), (3.2c). Then ỹ(t) ∈ BY (ȳ0, δ3), for all t sufficiently
small, and by (5.1) we have,

1

τ

∫ τ

0
ℓ(ỹ(s), u(s))ds +

1

τ

(
V(ỹ(τ))− V(y0)

)
≥ 0,

for all τ sufficiently small. We pass to the limit τ → 0+ with the same arguments as in Step 1 and
obtain

V ′(y0)
(
Ay0 + F(y0) +Bu

)
+ ℓ(y0, u) ≥ 0. (5.10)

This inequality becomes an equality if u = u0, and thus the quadratic function on the left had side
of (5.10) reaches its minimum 0 at u = u0. This implies that u0 = PUad

(
1
αB

∗V ′(y0)
)
. Inserting

this expression into (5.4) we obtain

V ′(y0)(Ay0+F(y0))+
1

2
‖y0‖2Y +

α

2

∥∥∥∥PUad

(
1

α
B∗V ′(y0)

)∥∥∥∥
2

Y

+

〈
B∗V ′(y0),PUad

(
1

α
B∗V ′(y0)

)〉

Y

= 0.

(5.11)
Under the additional assumptions on the trajectory, (5.3) follows.
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6 Some Applications

In this section we discuss the applicability of the framework in two specific cases. It should be
noted that even for linear state equations, the sensitivity result for the constraint infinite horizon
optimal control problem may be new.

6.1 Fisher’s Equation

We consider the optimal stabilization problem for the Fisher equation in an open connected bounded
domain Ω in R

d, d ∈ {1, 2, 3, 4}, with Lipschitzian boundary Γ = ∂Ω:

(PF is) V(y0) = min
(y, u) ∈W∞ × Uad

1

2

∫ ∞

0
‖y‖2Y dt+

α

2

∫ ∞

0
‖u‖2U dt, (6.1a)

subject to 



yt = ∆y + y(1− y) +Bu in Q = (0,∞)× Ω,

y = 0 on Σ = (0,∞) × Γ,

y(0) = y0 in Ω,

(6.1b)

(6.1c)

(6.1d)

where U and Uad are as in Section 3.1, B ∈ L(U , Y ), with Y = L2(Ω) and V = H1
0 (Ω). To further

cast this problem in the framework of Section 3, we define the operator

Ay = (∆ + I)y, and y|Γ = 0, D(A) = H2(Ω) ∩ V.

Clearly A has an extension as operator A ∈ L(V, V ∗). Moreover it generates an analytic semigroup
on Y . Thus (A1) holds. For U = Y and B = I, condition (A2) is trivially satisfied. Feedback
stabilization by finite dimensional controllers was analyzed in [Tri], for example.

It can readily be checked that the nonlinearity F(y) = −y2 is twice continuously differentiable as
mapping F : W∞ → L2(I;V ∗). The first and second derivatives of F are given by,

F ′(y)v1 = 2yv1, F ′′(y)(v1, v2) = 2(v1, v2), for y, v1, v2 ∈W∞.

Since the second derivative is independent of y, its boundedness is automatic. For the sake of
illustration we verify the boundedness of the bilinear form of the second derivative on W∞ ×W∞.
For this purpose, for arbitrary y ∈W∞, v1, v2 ∈W∞, φ ∈ L2(I;V ) we estimate

∫ ∞

0
〈F ′′(y)(v1, v2), φ〉V ∗,V dt ≤ 2

∫ ∞

0

∫

Ω
v1v2φ dxdt ≤

∫ ∞

0
‖v1‖L2(Ω) ‖v2‖L4(Ω) ‖φ‖L4(Ω) dt,

≤ C1 ‖v1‖W∞

∫ ∞

0
‖v2‖V ‖φ‖V dt ≤ C2 ‖v1‖W∞

‖v2‖L2(I;V ) ‖φ‖L2(I;V ) ,

≤ C3 ‖v1‖W∞
‖v2‖W∞

‖φ‖L2(I;V ) ,

(6.2)
where Ci are embedding constants, independent of y ∈W∞, v ∈W∞, φ ∈ L2(I;V ). We use that V
embeds continuously into L4(Ω) in dimension up to 4. This implies that ‖F ′′(y)(v1, v2)‖L2(I;V ∗) ≤
C3 ‖v1‖W∞

‖v2‖W∞
. Finally we have F(0) = F ′(0) = 0 and thus (A3) and (3.3) are satisfied.
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Turning to (A4) we show that F(y) : W (0, T ) → L1(0, T ;V ∗) is continuous for every T > 0. We
consider the sequence yn ⇀ ŷ in W∞ and let z ∈ L∞(0, T ;V ) be given. Then we estimate

∫ T

0
〈F(yn)−F(ŷ), z〉V ∗,V dt =

∫ T

0
〈y2n − ŷ2, z〉V ∗,V =

∫ T

0

∫

Ω
(yn − ŷ)(yn + ŷ)z dxdt,

≤ C4

∫ T

0
‖yn − ŷ‖Y ‖yn + ŷ‖L4(Ω) ‖z‖L4(Ω) dt,

≤ C4 ‖yn − ŷ‖L2(0,T ;Y )

[
‖yn‖L2(0,T ;V ) + ‖ŷ‖L2(0,T ;V )

]
‖z‖L∞(0,T ;V ) .

Since V is compactly embedded in Y , we obtain by the Aubin Lions lemma that ‖yn − ŷ‖L2(0,T ;Y ) →
0 for n→∞. This implies

∫ T

0
〈F(yn)−F(ŷ), z〉V ∗,V dt −−−→

n→∞
0,

and (A4) follows. It is simple to check that F ′(ȳ) = 2ȳ ∈ L(L2(I;V ), L2(I;V ∗)) and thus (A5)
holds as well.

We turn to the assumption F(ȳ) ∈ C([0, Ty0);Y ), for y0 ∈ D(A) and some Ty0 , arising in Theorem
3.2 for y0 ∈ D(A). Utilizing the fact that V embeds continuously into L4(Ω) in dimension d ≤ 4
and ȳ ∈ L2(I;V ), we have F(ȳ) ∈ L2(I;Y ). Hence parabolic regularity theory implies that ȳ ∈
C([0,∞);V ) for y0 ∈ V , and F(ȳ) ∈ C([0,∞);Y ) follows.

Remark 6.1. The specificity of this example rests in the fact that the second derivative is inde-
pendent of the point were it is taken. Other nontrivial cases of analogous structure are reaction
diffusion systems with bilinear coupling, see [Gri] where the finite horizon case was treated. Even
the case of the Navier Stokes equations falls in this category. Sensitivity for the infinite horizon
problems was treated by independent techniques in [BKP3].

6.2 Nonlinearities induced by functions with globally Lipschitz continuous sec-
ond derivative.

Consider the system (P) with A associated to a strongly elliptic second order operator with domain
H2(Ω)∩H1

0 (Ω), so that (A1)-(A2) are satisfied. Let F : W∞ → L(I;V ∗) be the Nemytskii operator
associated to a mapping f : R→ R which is assumed to be C2(R) with first and second derivatives
globally Lipschitz continuous, and second derivative globally bounded. The regularity assumption
F(ȳ) ∈ C([0, Ty0);Y ) for y0 ∈ V = H1

0 (Ω) is satisfied by parabolic regularity theory. We discuss
assumption (A3)-(A5) for such an F , and show that they are satisfied for dimensions d ∈ {1, 2}.
For the finite horizon problem it will turn out that d = 3 is also admissible. By direct calculation
it can be checked that F is continuously Fréchet differentiable for d ∈ {1, 2, 3}. We leave this part
to the reader and immediately turn to the second derivative.

We proceed by considering the general dimension d to highlight, how the restrictions on the dimen-
sion arise. Thus let d ∈ N with d > 1. The case d = 1 can be treated with minor modifications
from those in the following steps.
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6.2.1 Second derivative of F(y).

For y, h1, h2 ∈W∞ the relevant expression is given by

∥∥F ′(y + h2)h1 −F ′(y)h1 −F ′′(y)(h1, h2)
∥∥
L2(I;V ∗)

= sup
‖ϕ‖

L2(I;V )≤1
〈F ′(y + h2)h1 −F ′(y)h1 −F ′′(y)(h1, h2), ϕ〉L2(I;V ∗),L2(I;V ),

= sup
‖ϕ‖

L2(I;V )≤1

∫ ∞

0

∫

Ω
(f′(y(t, x) + h2(t, x))− f′(y(t, x)) − f′′(y(t, x))h2(t, x))h1(t, x)ϕ(t, x)dxdt,

= sup
‖ϕ‖

L2(I;V )≤1

∫ ∞

0

∫

Ω
g(t, x) h2(t, x)h1(t, x)ϕ(t, x)dxdt,

where g(t, x) =

∫ 1

0
(f′′(y(t, x) + sh2(t, x)) − f′′(y(t, x)))ds. Note that g is bounded on I × Ω and

g ∈ W∞. Here we use that f′′ is globally Lipschitz continuous and that h1 ∈ W∞. Henceforth we
let r ∈ (1, 2d

d−2 ] so that W 1,2(Ω) ⊂ Lr(Ω) continuously. Let r′ denote the conjugate of r so that

r′ ∈ [ 2d
d+2 ,∞) for d > 2 and r′ ∈ (1,∞) for d = 2. We further choose ρ > 1, σ > 2 such that

1
ρ + 2

σ = 1. Then we estimate

∣∣∣∣
∫ ∞

0

∫

Ω
gh1h2ϕ dxdt

∣∣∣∣ ≤
∫ ∞

0

(∫

Ω
|gh1h2|r

′

dx

)1/r′

‖ϕ(t)‖Lr(Ω) dt,

≤
(∫ ∞

0

(∫

Ω
|gh1h2|r

′

dx

)2/r′

dt

)1/2 (∫ ∞

0
‖ϕ‖2Lr(Ω) dt

)1/2

.

This further implies that

∣∣∣∣
∫ ∞

0

∫

Ω
gh1h2ϕ dxdt

∣∣∣∣ ≤ C0

[∫ ∞

0
‖g(t)‖2

Lr′ρ(Ω)
‖h1(t)‖2Lr′σ(Ω)

‖h2(t)‖2Lr′σ(Ω)
dt

]1/2
‖ϕ‖L2(I;V ) .←− (a)

(6.3)
Here and below Ci, i = 0, 1, 2, . . . denote constant which are independent of y, ϕ, h1, h2. We next
recall Gagliardo’s inequality [BF, p 173]:

‖u‖Lq(Ω) ≤ ‖u‖
1−d/q−d/2
L2(Ω)

‖u‖
d/2+2/q
W 1,2(Ω)

, for all q > 2, and u ∈W 1,2(Ω) ≡ V,

where q ∈ [2, 2∗] and

q∗





∈ [2,∞] for d = 1,

∈ [2,∞) for d = 2,

∈ [2, 2d
d−2 ], for d > 2.

In the above estimate we take, q = r′σ. We obtain

1 +
d

q
− d

2
=

(2− d)r′σ + 2d

2r′σ
,
d

2
− d

q
=

d(r′σ − 2)

2r′σ
, also r′σ > 2, (2− d)r′σ + 2d > 0.
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We estimate (6.3), (and check the conditions on the ranges of the parameters below)

sup
‖ϕ‖

L2(I;V )≤1
(a) (6.4)

= C1

(∫ ∞

0
‖g(t)‖2

Lr′ρ(Ω)

(
‖h1(t)‖L2(Ω) ‖h2(t)‖L2(Ω)

) (2−d)r′σ+2d

r′σ
(‖h1(t)‖V ‖h2(t)‖V )

d(r′σ−2)

r′σ

)1/2

dt,

≤ C2

(
‖h1‖W∞

‖h2‖W∞

) (2−d)r′σ+2d

2r′σ

(∫ ∞

0
‖g(t)‖2Lr′ρ(Ω) (‖h1(t)‖V ‖h2(t)‖V )

d(r′σ−2)

r′σ

)1/2

dt.←− (b)

We set d(r′σ−2)
r′σ = 2

3 . This yields,

(b) ≤ C3

(
‖h1‖W∞

‖h2‖W∞

)2/3 (‖h1‖W∞
‖h2‖W∞

)1/3
(∫ ∞

0
‖g(t)‖6

Lr′ρ(Ω)

)1/6

dt,

= C4 ‖h1‖W∞
‖h2‖W∞

(∫ ∞

0

(∫

Ω
|g(t)|r′ρ dx

)6/r′ρ

dt

)1/6

. (6.5)

Now we check the conditions on the parameter r, σ, d , and r′, σ. Since d(r′σ−2)
r′σ = 2

3 , together with
the conditions on r′ and σ these parameters need to satisfy

r′σ =
6d

3d− 2
, r′ ∈

[
2d

d+ 2
,∞
)
, σ ∈ (2,∞) r′σ ∈ [2, 2∗], (6.6)

and r′ > 1 if d = 2. The last condition above holds without restricting the dimension d. From the
first three relations we infer that necessarily 6d

3d−2 = r′σ > 4d
d+2 which is only possible for d ≤ 3.

Let us focus on d = 2. Then the choice of parameters r = 6, r′ = 6/5, σ = 5/2, ρ = 5 satisfies all the
above requirements and it is convenient to further estimate (6.5). In fact we obtain

∥∥F ′(y + h2)h1 −F ′(y)h1 −F ′′(y)(h1, h2)
∥∥
L2(I;V ∗)

≤ C5 ‖h1‖W∞
‖h2‖W∞

(∫ ∞

0

(∫

Ω
|g(t, x)|6 dx

)
dt

)1/6

,

≤ C6 ‖h1‖W∞
‖h2‖W∞

(∫ ∞

0

(∫

Ω
|g(t, x)|2 dx

)
dt

)1/6

,

for all y, h1, h2 ∈ W∞. Here we use the boundedness of g. By Lebesgue’s bounded convergence
theorem the last factor converges to 0 for ‖h2‖W∞

→ 0 and hence the fact that F is twice differ-
entiable is verified. The continuity of the second derivative follows with the above estimates and
again by the Lebesgue theorem.

Next we consider d = 3. In this case an analogous procedure is not possible, since the relations (6.6)
and r′ρ ≤ 6 cannot be fulfilled simultaneously. In fact, r′σ = 18/7, r

′ ≥ 6/5, and thus necessarily
σ ∈ (2, 15/7]. The condition r′ρ ≤ 6 is equivalent to 12 ≤ σ(6− r′) = 18/7r′(6− r′), which in turn is
equivalent to 17r′ ≤ 18, which contradicts r′ ≥ 6/5.
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Thus we fix parameters r and σ such that (6.6) are satisfied for d = 3, as for instance r′ = 6/5, σ =
15/7, which implies that ρ = 15 and r′ρ = 18. Then for the finite horizon problem we can estimate
by Hölder’s inequality with η = r′ρ/6:

(b) ≤ C7 ‖h1‖W∞
‖h2‖W∞

(∫ T

0

(∫

Ω
|g(t, x)|2 dx

)6/r′ρ

dt

)1/6

,

≤ C8 ‖h1‖W∞
‖h2‖W∞

(∫ T

0

(∫

Ω
|g(t, x)|2 dx

)
dt

)1/6η

T
1/6η′ .

From here we can proceed as in the case d = 2 to assert the continuous second Fréchet differentia-
bility of F in d = 3 for the finite horizon case.

6.2.2 Assumptions (A4) and (A5).

In order to verify (A4), we show that F(y) : W (0, T )→ L1(0, T ;V ∗) is continuous for every T > 0.
We consider the sequence yn ⇀ ŷ in W (0, T ) and let z ∈ L∞(0, T ;V ) be given. Then we estimate

∫ T

0
〈F(yn)−F(ŷ), z〉V,V ∗dt =

∫ T

0

∫

Ω
(f(yn)− f(ŷ))z dxdt ≤ C ‖yn − ŷ‖L2(0,T ;Y ) ‖z‖L2(0,T ;Y ) .

Then by the compactness of V in Y , we obtain (A4).

Now we verify (A5). We recall Remark 3.1, and proceed as in (6.2) for y ∈W∞, ϕ ∈ L2(I;V ),

∥∥F ′(y)∗p
∥∥
L2(I;V ∗)

=
∥∥(F ′(y)∗ −F ′(0)∗)p

∥∥
L2(I;V ∗)

= sup
‖ϕ‖

L2(I;V )≤1

∫ ∞

0

∫

Ω
〈(F ′(y)∗ −F ′(0)∗)p, ϕ〉V ∗,V ,

= sup
‖ϕ‖

L2(I;V )≤1

∫ ∞

0

∫

Ω
(f′(y)− f′(0))pϕ dxdt ≤ C ‖y‖W∞

‖p‖L2(I;V ) .

This shows F ′(y)∗ satisfies (A5).

6.3 Cubic nonlinearity y3 in one dimension (Ω ⊂ R).

We can also consider the optimal stabilization problem with cubic nonlinearity, i.e. F(y) = y3 in
one dimension. This is a special monotone case of the Schlögl model of theoretical chemistry.

(PSch) V(y0) = min
(y, u) ∈W∞ × Uad

1

2

∫ ∞

0
‖y‖2Y dt+

α

2

∫ ∞

0
‖u‖2U dt, (6.7a)

subject to 



yt = ∆y + y3 +Bu in Q = (0,∞) × Ω,

y = 0 on Σ = (0,∞) × Γ,

y(0) = y0 in Ω.

(6.7b)

(6.7c)

(6.7d)

In this model, one can easily verify assumption (A1) is satisfied by taking Ay = ∆y, y|Γ = 0,
and D(A) = H2(Ω) ∩ V . Clearly A can be extended to A ∈ L(V, V ∗). Moreover A generates
an analytic semigroup on Y which is uniformly stable. Assumption (A2) is satisified under the
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same argumentation as in Fisher’s equation. Differentiability assumption (A3), and continuity
assumption (A4) are satisfied along similar computations as in subsections 6.2.1, 6.2.2. For (A5)
we require that y0 ∈ V . Indeed in this case for ȳ ∈W∞ by Gagliardo’s inequality

∫ ∞

0

∫

Ω
|ȳ3|2dxdt =

∫ ∞

0
‖ȳ‖6L6(Ω) dt ≤

∫ ∞

0
‖ȳ‖4L2(Ω) ‖ȳ‖

2
V dt ≤ C ‖ȳ‖4W∞

∫ ∞

0
‖ȳ‖2V dt ≤ C ‖ȳ‖6W∞

.

Thus ȳ3 ∈ L2(I;Y ) and parabolic regularity theory implies that ȳ ∈ C(I;V ) if y0 ∈ V . We estimate
for h, ϕ ∈ L2(I;V ), suppressing the arguments (t, x),

∣∣∣∣
∫ ∞

0

∫

Ω
F ′(ȳ)hϕdxdt

∣∣∣∣ ≤
∣∣∣∣
∫ ∞

0

∫

Ω
ȳ2hϕdxdt

∣∣∣∣ ≤
∫ ∞

0
‖ȳ‖2L4(Ω) ‖h‖L4(Ω) ‖ϕ‖L4(Ω) dt,

≤ C ‖ȳ‖2C(I;V ) ‖h‖L2(I;V ) ‖ϕ‖L2(I;V )

which implies (A5). Moreover we have F(ȳ) ∈ C([0, Ty0);Y ), since V ⊂ C(Ω̄) in dimension 1, and
thus the extra regularity demanded in Theorem 3.2 is satisfied.
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