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A CONTINUOUS ASSOCIAHEDRON OF TYPE A

MAITREYEE C. KULKARNI, JACOB P. MATHERNE, KAVEH MOUSAVAND, AND JOB D. ROCK

Abstract. Taking a representation-theoretic viewpoint, we construct a continuous associahedron
motivated by the realization of the generalized associahedron in the physical setting. We show that
our associahedron shares important properties with the generalized associahedron of type A. Our

continuous associahedron is convex and manifests a cluster theory: the points which correspond
to the clusters are on its boundary, and the edges that correspond to mutations are given by
intersections of hyperplanes. This requires development of several methods that are continuous
analogues of discrete methods. We conclude the paper by showing that there is a sequence of
embeddings of type A generalized associahedra into our continuous associahedron.
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1. Introduction

The classical (n − 2)-dimensional associahedron is a convex polytope whose vertices are binary
bracketings of words using n symbols, and whose edges correspond to one application of associativity.
It was first discovered by Tamari while studying general questions about associativity in algebras
[T51] and rediscovered under the name of Stasheff polytope in the context of homotopy theory
[S63]. The associahedron captures the combinatorial structure of a variety of objects throughout
mathematics, including triangulations of polygons, operads and homotopy theory, real moduli spaces,
and cluster structures [FZ01, CFZ02]. For details of these constructions and for other realizations
of associahedra, we point to [CSZ15] and the references therein.

The purpose of this paper is to introduce a continuous version of the classical associahedron
guided by recent advances in cluster categories and particle physics. Our motivation for such a
construction is two-fold:

• From [FZ01, CFZ02], the associahedron can be viewed as the “cluster polytope” which cap-
tures the combinatorics of type A cluster algebras. In each of [IT15] and [IRT20], the authors
use representation theory of type A quivers with infinitely many vertices to give an analogue
for a cluster structure. However, neither of these settings has a known cluster algebra. In
this paper, we strengthen the analogy between the continuous and finite dimensional cases
by developing an analogue of the cluster polytope in the continuous setting.

2020 Mathematics Subject Classification. 16G20, 18G80 (primary); 13F60, 05E10 (secondary).
MK received support from the Max Planck Institute for Mathematics in Bonn, Germany. MK, JM, and JR also
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• In [AB+18], where the scattering amplitude of a certain quantum field theory is treated,
the authors realized the corresponding amplituhedron as the generalized associahedron of
type A. Moreover, a continuous associahedron of type A appears in [AH+19], where it is
obtained as an inverse limit of the generalized associahedra for An, as n goes to infinity. In
contrast, we start from a category with a continuous cluster structure, allowing us to treat
time as a continuous phenomenon from the beginning and consequently give a continuous
associahedron without taking limits.

As in [AH+19], our construction of the continuous associahedron is motivated by the representation-
theoretic techniques developed in [BD+18].

1.1. The continuous associahedron. Fix an algebraically closed field k of characteristic 0. The
central category considered in [IT15] is the Krull–Schmidt triangulated category D (defined in Sec-
tion 2.2), whose indecomposable objects are the points (x, y) in R×(−π

2 ,
π
2 ), and whose shift functor

is given by (x, y)[1] := (x+π,−y) for every indecomposable object (x, y). Choosing a zigzag Z in D
(Definition 3.1) determines a t-structure (D≤0,D≥0) on D (Section 4.1). One may “quilt” off of Z
(Definition 3.3), just as one knits off of the projective slice in Db(An). The indecomposable objects of
D≤0 are those obtained by quilting off Z, and the indecomposable objects of D≥0 are those obtained
by inverse quilting off Z[1]. We write D♥ := D≤0∩D≥0 for the heart of this t-structure and note that
it plays an analogous role to rep(An) in our continuous story. See Section 4.4 for more on this philos-
ophy. The setting for the continuous associahedron is the category CZ = add

(
Ind(D♥) ⊔ Ind(Z[1])

)
.

The category CZ has a continuous analogue of the mesh relations appearing in the Auslander–Reiten
theory of algebras of type A: this allows us to define continuous deformed mesh relations (Defini-
tion 3.18) using a function c : Ind(CZ) → R>0 analogous to the construction in [BD+18]. For the
remainder of the introduction, we fix a zigzag Z and such a function c.

Definition (Definition 6.5). The continuous associahedron UZ,c is the subset of
∏

Ind(CZ) R consist-

ing of nonnegative solutions of the continuous deformed mesh relations with respect to c.

Theorem A (Theorem 6.7). The continuous associahedron UZ,c is convex in the sense that any
line segment in

∏
Ind(CZ ) R whose endpoints are in UZ,c is entirely contained in UZ,c.

1.2. The continuous associahedron as a cluster “polytope”. Using the triangulated structure
in D, we define compatibility of a pair of indecomposables in CZ (Definition 5.2). A T-cluster T
(Definition 5.4) is a maximal collection of pairwise compatible indecomposables in CZ . We define an
exchange relation T → (T \ {X})∪ {Y }, called T-mutation (Definition 5.10), that replaces exactly
one indecomposable X ∈ T with a new indecomposable Y /∈ T whenever possible. We say a solution
Φ corresponds to a T-cluster T if Φ(X) = 0 for all X ∈ T . Given a T-cluster T , it is not known
whether a solution corresponding to T exists, and if it exists, whether or not it is unique. We refer
the reader to Question 6.3 and the discussion preceding it for further details.

Remark. A key difference to the cluster structure in [BD+18] is that one is not necessarily able
to exchange an arbitrary object in a T-cluster (see Example 5.12). Additionally, our category CZ is
not a cluster category in the sense of [BM+06] because CZ is not an orbit category of D. We do,
however, have a cluster theory as in [IRT20, Definition 5.1.1].

Cluster polytopes were introduced by Fomin and Zelevinsky [FZ01] and their polytopality was
proved by Chapoton, Fomin, and Zelevinsky [CFZ02]. In particular, the vertices correspond to
clusters and the edges to mutation. We show similar behavior in UZ,c. To each indecomposable
X in CZ , we associate the hyperplane HX in

∏
Ind(CZ ) R given by setting the X-coordinate to 0.

Additionally, using Theorem A, we define a point X to be on the boundary of UZ,c if there exists a
nontrivial line segment (a line segment with distinct endpoints) ending at X that cannot be extended
inside UZ,c such that X is no longer an endpoint (Definition 6.8).

Theorem B (Theorems 6.9 and 6.11). If T is a T-cluster, then a solution corresponding to T is on
the boundary of UZ,c. Let T and T ′ be two T-clusters, each of which uniquely correspond to two
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respective points Φ and Φ′ on the boundary of UZ,c. Then there is a T-mutation T → T ′ if and
only if there is an edge in UZ,c connecting Φ to Φ′, which is given by

⋂
X∈T ∩T ′ HX .

In Section 6.4, we embed the finite dimensional generalized associahedra Un,c given in [BD+18],
for all n, into the continuous associahedron UZ,c in a way that preserves the cluster structures in
the sense of the following theorem.

Theorem C (Theorem 6.18). There is an infinite sequence of embeddings

U2,c →֒ U3,c →֒ · · · →֒ Un,c →֒ Un+1,c →֒ · · ·UZ,c.

For Un,c →֒ Un+1,c, cluster vertices are taken to cluster vertices and mutation edges are taken to
mutation edges. For Un,c →֒ UZ,c, cluster vertices are taken to solutions corresponding to T-clusters
and mutation edges are taken to edges corresponding to T-mutations.

1.3. Outline. In Section 2.1, we review the representation-theoretic construction of the finite di-
mensional associahedron in [BD+18]. In the rest of Section 2, we introduce the category D and
prove some basic properties. Section 3 is dedicated to introducing the continuous deformed mesh
relations using a process called “quilting”, which is analogous to knitting in the finite dimensional
case. We develop connections to representations of quivers in Section 4, where we prove that the
hearts of certain t-structures have several of the same properties as finitely generated representations
of type An quivers. In Section 5, we introduce T-clusters and T-mutation. Our last section, Section
6, is devoted to the definition of the associahedron UZ,c and the proofs of our main results.

1.4. Setting and notation. We work over an algebraically closed field k of characteristic 0 (for
example, the field of complex numbers). For a finite dimensional k-algebra Λ, by modΛ we denote
the category of all finite dimensional left Λ-modules and Ind(Λ) denotes the set of all isomorphism
classes of indecomposable objects in modΛ. To modΛ, we associate its Auslander–Reiten quiver
ΓΛ, where the set of vertices of ΓΛ is in bijection with Ind(Λ) and the arrows between two vertices
X and Y in ΓΛ correspond to the irreducible morphisms in HomΛ(X,Y ). We denote by Db(Λ) the
bounded derived category of Λ, and consider the full additive subcategory C of Db(Λ) generated
by Ind(Λ) ⊔ {Pi[1] | i ∈ Q0}, where Pi[1] is the shift of the projective module Pi in Db(Λ). For a
detailed treatment of the representation theory of finite dimensional algebras, and for all undefined
terms, we point to [ASS06]. In this paper, we write Db(An) := Db(Λ), where Λ = kAn is the path
algebra of the type An quiver.

Acknowledgements. This research was part of the Junior Trimester Program at the Hausdorff
Research Institute for Mathematics (HIM) in Bonn, Germany. MK, JM, and JR would like to thank
the HIM for the financial support and the stimulating working environment. The authors would like
to thank Hugh Thomas for insightful conversations and numerous helpful comments on an earlier
draft of this manuscript. Also, the authors would like to thank Nima Arkani-Hamed and Giulio
Salvatori for stimulating discussions.

2. Finite case and D

2.1. Amplituhedron for Dynkin quivers. The amplituhedron studied by physicists in [AB+18]
was constructed representation theoretically in [BD+18]. The main goal of this paper is to introduce
an analogue of this construction in the continuous setting. To set the scene, we use this section to
briefly recall the construction in [BD+18], preferring to stick to an example rather than inundating
the reader with technical details.

Example 2.1. Let Q be the quiver given by the following orientation of A5:

1 2
αoo 3

β
oo

γ
// 4 5

δoo

where {3, 5} is the set of sources and {1, 4} consists of sinks in Q0.
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∗

∗

∗

∗

∗

Figure 1. Augmented Auslander–Reiten quiver for 1← 2← 3→ 4← 5.

The algebra Λ = kQ is finite dimensional and B := {e1, e2, e3, e4, e5, α, β, γ, δ, αβ} is a k-basis for
Λ, where ei denotes the trivial path at vertex i, for each 1 ≤ i ≤ 5. Moreover, the multiplication in
Λ is given by the composition of directed paths, whenever possible, and zero otherwise. For example
0 6= αβ ∈ B, but βα = 0 and γβ = 0.

In this case, ΓΛ is the subquiver of the quiver in Figure 1 determined by the solid vertices (those of
the form •) and the arrows between them. In particular, the leftmost copy of Qop in Γ, which appears
in bold, has the projective indecomposable modules Pi := Λei as its vertices, where 1 ≤ i ≤ 5.
Moreover, the additive subcategory C of Db(kA5) is generated by Ind(kA5) ⊔ {Pi[1] | 1 ≤ i ≤ 5},
where Pi[1] is the shift of the projective module Pi in Db(kA5). The Auslander–Reiten quiver ΓC is
obtained by extending ΓΛ, as further explained below.

In Figure 1, ΓC is the quiver consisting of both solid and star vertices, together with all arrows
between them. The vertices depicted by ◦ and the dotted arrows in Figure 1 are called virtual, for
the reason we soon explain in the following.

Following the same notation from Example 2.1, if Q is a simply-laced Dynkin quiver and Λ = kQ,
the leftmost copy of Qop in ΓΛ is called the projective slice, while the rightmost copy of Qop in ΓC is
called the shifted projective slice. This is because for all i ∈ Q0, the vertices of these copies of Qop

respectively correspond to the projective indecomposable modules Pi = Λei and their shifts Pi[1] in

Db(Λ). For each Pi, the dimension vector dim(Pi) ∈ Z
Q0

≥0 is given as following: For any j ∈ Q0, the

jth coordinate of dim(Pi) is the number of paths from i to j in Q. For each quiver Q treated in this
work, and each pair of vertices i and j in Q, there is at most one directed path from i to j. Hence,

for a fixed vertex i, the coordinates of the dimension vector dim(Pi) in Q
Z≥0

0 always belong to {0, 1},
whereas for an arbitrary quiver Q the coordinates of dim(Pi) can be arbitrarily large. In particular,
we always have the ith coordinate of dim(Pi) is 1. Since the Auslander–Reiten theory induces mesh
relations on ΓC , we can start from the projective slice and dimension vectors of projective modules
and use the mesh relations to determine the dimension vector dim(X), for each vertex X of ΓC .

It is well known that each vertex of ΓC corresponds to a cluster variable of the cluster algebra
associated to the simply-laced Dynkin quiver Q. Recall that two cluster variables are said to be
compatible if there is some cluster which contains both of them. Consequently, two elements of ΓC

are called compatible if the corresponding cluster variables are such.
The case that generalizes to our continuous setting is when we take Λ = kQ for Q a type An

quiver (for n ∈ Z>1). Here, we consider C := add
(
Ind(Λ) ⊔

{
Pi[1] | i ∈ Q0

})
as a full subcategory of

Db(Λ), and we extend the Auslander–Reiten quiver ΓC to a larger quiver Γ̃A which plays a prominent
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role in our studies. For an inductive construction of Γ̃A compatible with our continuous setting, we
fix the following particular configuration of ΓC as the initial step:

(0) Suppose Γ0
C is a realization of ΓC in R2 such that each arrow of ΓC is of unit length which

makes a ±45-degree angle with the horizon, and the Auslander–Reiten translation is a
horizontal shift to the left.

It follows that any mesh relation in Γ0
C forms a diamond or an isosceles triangle. Now

that the initial step of our inductive construction is described, we extend Γ0
C to the desired

translation quiver Γ̃Λ. In particular, provided Γi
C is constructed, the next step is as follows:

(i+ 1) In Γi
C , if x is a leftmost vertex of odd degree, add an arrow δx of unit length outgoing from

x and pointing to the East such that δx is orthogonal to all arrows of Γi
C connected to x.

Denote the resulting quiver by Γi+1
C .

We say δx is a virtual arrow of Γi+1
C . Moreover, if e(δx) does not belong to ΓC , it is called a virtual

vertex of Γi+1
C . Consequently, Γi+1

C is said to be the virtual extension of Γi
C by δx. Finally, if Γi+1

C

has no vertex of odd degree, set Γ̃Λ := Γi+1
C and call it the augmented Auslander–Reiten quiver of

A. From the construction it is easy to see that there is a unique i ∈ Z with Γ̃Λ = Γi+1
C .

We observe that Γ̃Λ can be tiled by squares (symmetric diamonds) of the same size. Moreover, the
projective slice (resp. the shifted projective slice) in ΓC determines the leftmost (resp. rightmost)

border of Γ̃Λ. All arrows in Γ̃Λ \ΓC are virtual, but there are virtual arrows whose endpoints belong

to ΓC , meaning that e(δx) is not necessarily virtual. In fact, the top and bottom rows of Γ̃Λ consists

of virtual vertices and each virtual vertex of Γ̃Λ belongs to exactly one of these two rows.
For instance, if Q is the quiver from Example 2.1, then in Figure 1 we can see the explicit

construction of the augmented quiver Γ̃Λ for Λ = kQ via the above algorithms. In this case, we
iterate the second step of the algorithm twelve times, each time creating a new virtual arrow shown
by dotted arrows. The virtual vertices are depicted by circle (nonsolid) vertices, which form the top

and bottom rows of vertices in Γ̃Λ.
Recall that each vertex of ΓC comes with its own dimension vector. Further, to any virtual

vertex v of Γ̃Λ we associate the virtual dimension vector, being dim(v) = (0, 0, . . . , 0) ∈ ZQ0 . For

each diamond tile ♦ in Γ̃Λ, let L♦, R♦, U♦, and D♦ respectively denote the left, right, top and
bottom vertices of ♦. Then, thanks to the Auslander–Reiten translation in ΓC and the induced

mesh relations, the following identity holds for any diamond ♦ in Γ̃Λ:

dim(L♦) + dim(R♦) = dim(U♦) + dim(D♦).

From the above identity and a straightforward computation, one obtains similar equations for any

rectangular area that entirely lies in the quiver Γ̃Λ. In particular, every such rectangle is tiled with
the symmetric diamonds. Via the cancellations induced by these diamonds, an analogous equation
holds for the rectangle, where L♦, R♦, U♦, and D♦ should be replaced by the appropriate corners of
the rectangle.

Remark 2.2. The notion of compatibility of vertices in ΓC also has a more homological incarnation
and can be phrased in terms of extensions between the corresponding indecomposable objects in C. In
particular, as shown in [BM+06], two vertices v and w of ΓC , with the corresponding indecomposable
objects Mv and Mw in C, are compatible if and only if Ext1C(Mv,Mw) = Ext1C(Mw,Mv) = 0.

As described above, we can view v and w as vertices of Γ̃Λ. This implies that Mv and Mw are

incompatible if and only if there exists a rectangle that fully lies in Γ̃Λ whose left and right corners
are v and w (or w and v).

Suppose I+ denotes the set of vertices in Γ̃Λ associated to Ind(Λ). The dimension vectors for
all such vertices are nonzero with nonnegative coordinates. This justifies the choice of notation I+.
From the construction of Γ̃Λ, it follows that any vertex in Γ̃Λ which does not belong to I+ is either
a virtual vertex or it is associated to Pi[1], for some i ∈ Q0. In the former case the associated
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dimension vector is virtual and thus the zero vector, but in the latter case the associated dimension

vector is nonzero with nonpositive coordinates. In particular, the set of vertices of Γ̃Λ is a disjoint
union of the form I+ ⊔ Iv ⊔ I [1], where Iv denotes the set of virtual vertices, and I [1] consists of
vertices associated to the shifted projective indecomposable objects Pi[1] in C, for all i ∈ Q0. For

the dimension vectors associated to the vertices of Γ̃Λ, we often refer to those corresponding to I+,
Iv and I [1] respectively as the positive, zero and negative dimension vectors.

In addition to the set of dimension vectors, the collection of g-vectors corresponding to the positive

and negative vertices of Γ̃Λ satisfy all the mesh relations. It is well known that the g-vectors of the

indecomposable modules in the projective slice, being the leftmost boundary of Γ̃Λ, are given by
the standard basis of RQ0 . Therefore, if to each vertex in Iv we again associate the zero vector,

one can use the mesh relations in Γ̃Λ to compute the g-vectors of all the remaining indecomposable

modules in Γ̃Λ. This new set of vectors has played a pivotal role in the generalization of the setting
and results in [AB+18]. This is because the physical phenomena studied by the authors resulted
in a system of equations which could be realized as the deformed mesh relations that hold in the

augmented quiver Γ̃Λ, where Λ = kAn for the linearly oriented quiver An. In particular, for each

diamond ♦ in Γ̃Λ, the deformed mesh relation is of the form

(2) dim(L♦) + dim(R♦) = dim(U♦) + dim(D♦) + c♦

where c♦ is a nonnegative real value associated to ♦. We observe that for each rectangular area

that entirely lies in the quiver Γ̃Λ, the deformed mesh relations imply a similar equation, while the
constant c♦ must be replaced by the sum of all c♦’s for the diamonds ♦ that tile the rectangle.

Furthermore, it is obvious that if c♦ = 0, for every diamond ♦ in Γ̃Λ, we get the old system of
equations induced by the mesh relations.

In retrospect, in [AB+18] the authors considered a polytopal realization of the space induced by

the deformed mesh relations coming from Γ̃Λ, where Λ = kAn is given by a linearly oriented quiver
An. This phenomenon was in fact viewed as a geometric description of the scattering amplitudes
for bi-adjoint φ3 scalar theory and plays an analogous role to that of a particular semialgebraic
set in a Grassmannian, called the amplituhedron, which encodes scattering amplitudes for N = 4
super Yang–Mills theory. Due to the analogous nature of the aforementioned polytopal realization
in [AB+18], we adopt this terminology and henceforth refer to that as the amplituhedron for bi-
adjoint φ3 scalar theory. This realization of the amplituhedron was generalized to all simply-laced
Dynkin quivers in terms of generalized associahedra—the polyhedra whose normal fan is given by
the g-vectors (see [BD+18]). This last realization occurs in a kinematic space V =

∏
I R, where

I := I+ ⊔ I [1]. Provided c = (c♦)♦∈Γ̃Λ
is a collection of positive integers, in [BD+18] the authors

consider an n-dimensional affine space Ec inside V determined by c. Here n is the number of vertices
of the quiver. In fact, Ec is induced by the c-deformed mesh relations of the form

pi,j + pi+1,j = cij +
∑

(i,j)→(i′,j′)→(i+1,j)

pi′,j′ ,

where pi,j is the coordinate function on V indexed by (i, j) in I. Let Uc denote the intersection of
the positive orthant in V with Ec. In [BD+18], the authors further use these pi,j and the g-vectors to
define a projection of V onto the n-dimensional real space. In particular, they consider Ac = π(Uc),

where π : V → Rn, whose kth coordinate is given by pij for (i, j) ∈ I [1] such that g(i, j) = −ek.
Here ek denotes the kth standard bases of Rn. More specifically, they show the following theorem.
For further details, see [BD+18].

Theorem 2.3. (1) Each facet of Uc is defined by the vanishing of exactly one coordinate of V.
Moreover, the vertices of Uc correspond to clusters.

(2) The faces of Ac correspond bijectively to compatible sets in I.
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2

3
4

5

1

X02
X22

• •
X22 = 0

• •

X02 = 0

X11 = 0

•
X12 = 0

X01 = 0

Figure 2. For n = 2, the kinematic space is R5. The associahedron is realized inside

a 2-dimensional affine plane determined by a system of inequalities in terms of the mesh

relations. The facets correspond to diagonals of the pentagon, and vertices correspond to

its triangulations.

In our treatment of the more general setting which will be discussed in the following sections,

c need not be an integer vector, meaning that for each diamond ♦ in Γ̃Λ, we only assume c♦ is a
nonnegative real value.

Remark 2.4. Since the dimensions of the kinematic space V =
∏

IR and the subspace Uc grow
fast, visualization of the amplituhedron Ac is possible only for small Dynkin quivers. In Figure 2 we
consider the case Q = A2. In particular, Ac is the ordinary associahedron for c ∈ R3

>0, where the

Xij denote the (affine-)linear forms on RI , indexed by the vertices of ΓC , as labelled below:

(0, 2)

(0, 1)

(1, 2)

(1, 1)

(2, 2)

We note that each choice of c ∈ R3
≥0 yields different deformed mesh relations and the corresponding

system of equations gives rise to different generalized associahedra Ac in R2. Regardless of the choice
of c, we remark that all the generalized associahedra Ac have two pairs of parallel facets, which are
{X01, X22} and {X02, X12}.

2.2. The category D. We now introduce a continuous version of Db(An), which we denote by
D. This category is triangulated equivalent to the category Dπ defined by Igusa and Todorov
[IT15]. Moreover, these categories are isomorphic: they are equivalent and their objects (not just
isomorphism classes) are in bijection.

2.2.1. Objects and morphisms. The indecomposable objects of D are the points in the set R ×
(−π

2 ,
π
2 ), and each object in D is a finite (possibly empty) direct sum of indecomposable objects.

y = π
2

y = −π
2

For each point (x, y), define the set H(x, y) in the following way. First, consider the rectangle
determined by the points

(x, y),
(
x+

π

2
− y,

π

2

)
,
(
x+

π

2
+ y,−

π

2

)
, and (x+ π,−y).
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y = π
2

y = −π
2

(x, y)

(x+ π
2 + y,−π

2 )

(x+ π
2 − y, π2 )

(x+ π,−y)

Figure 3. Morphisms between indecomposable objects in D.

The set H(x, y) is the interior of this rectangle together with the left boundary, but without the
points (x + π

2 − y, π
2 ) and (x + π

2 + y,−π
2 ). One may also consider H(x, y) as being defined by the

beams emitted from (x, y) with slopes ±1. See Figure 3 for an illustration of the set H(x, y).
We define Hom between indecomposable objects as follows:

Hom((x, y), (x′, y′)) =

{
k if (x′, y′) ∈ H(x, y)

0 otherwise.

When (x, y) = (x′, y′), the identity morphism on (x, y) is 1 ∈ k. The composition of morphisms
f : (x1, y1) → (x2, y2) and g : (x2, y2) → (x3, y3) is given by multiplication of f and g inside k
whenever Hom((x1, y1), (x3, y3)) is not 0. Hom sets and composition of morphisms for arbitrary
objects is given by extending the structure bilinearly.

2.2.2. Triangulated structure. Let (x, y) be an indecomposable object in D. We define the shift of
(x, y) by

(x, y)[1] := (x+ π,−y).

The shift of a sum of indecomposables is defined to be the sum of the shift of each of the indecom-
posables.

The minimal distinguished triangles in D are of the form

(x, y) // E // (x′, y′) // (x+ π,−y),

where the case E = (x, y)⊕ (x′, y′) is called a trivial triangle.
Among these minimal distinguished triangles, we are particularly interested in the nontrivial ones.

This is because, as in Definition 2.5 and Section 5, we use them to discuss the notions of tilting
rectangles (Definition 2.5) and compatibility (Definition 5.2). Moreover, the rest of the distinguished
triangles in D can be constructed from this collection of minimal distinguished triangles (see [IT15]
for details).

The other possibility occurs when (x′, y′) is an element of H(x, y) ∩
(
R× (−π

2 ,
π
2 )
)
, where the

overline denotes the closure of H(x, y) in R2 with the standard Euclidean topology. In this case,
consider the following two points:

T =

(
x+ x′ − y + y′

2
,
−x+ x′ + y′ + y

2

)

B =

(
x+ x′ + y − y′

2
,

x− x′ + y′ + y

2

)
.

If the y-coordinate of T is π
2 then we set T = 0 in D, and similarly for B if the y-coordinate of B is

−π
2 . Thus, each of T and B is an indecomposable object or 0 in D.
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These can be seen in Figure 4 as the top and bottom points of the rectangle whose respective left
and right endpoints are (x, y) and (x′, y′). If T = B = 0 in D then (x′, y′) = (x + π,−y), and we

y = π
2

y = −π
2

(x, y)

(x+ π,−y)

(x′, y′)

T

B

Figure 4. An example of a tilting rectangle corresponding to the distinguished
triangle (x, y)→ T ⊕B → (x′, y′)→ (x + π,−y).

have the distinguished triangle

(x, y) // 0 // (x+ π,−y)
∼= // (x+ π,−y).

The rectangles we obtain from such distinguished triangles will play a key role in our construction
of the continuous associahedron.

Definition 2.5. Let X = (x, y) be a point in the strip R × (−π
2 ,

π
2 ). Let a and b be positive real

numbers such that

0 < a ≤
π

2
− y

0 < b ≤ y +
π

2
.

Let Y , Z, and W be the points

Y = (x+ a, y + a)

Z = (x+ b, y − b)

W = (x+ a+ b, y + a− b).

We call the rectangle XYWZ a tilting rectangle.

We see an example of a tilting rectangle in Figure 4.

Proposition 2.6. There is a bijection between tilting rectangles in R × [−π
2 ,

π
2 ] and distinguished

triangles in D whose first and third terms are both nonzero and indecomposable.

Proof. This follows from Igusa and Todorov’s construction [IT15, Section 2]. �

This proposition asserts that the set R× (−π
2 ,

π
2 ) acts like the Auslander–Reiten quiver of D and

R× [−π
2 ,

π
2 ] acts like the augmented Auslander–Reiten quiver of D. In [IT15] the authors show that

this, along with a choice of which triangles are distinguished, are sufficient to yield a triangulated
structure on D. This choice does not affect our constructions.

2.3. Continuous mesh relations. In the finite and discrete setting, the mesh relations are induced
by the almost split triangles in Db(kAn). Recall that almost split triangles are not trivial. However,
in D, the only irreducible morphisms are isomorphisms. Thus, we cannot have any almost split
triangles. Nevertheless, a continuous version of the mesh relations hold instead.

From now on, we use capital letters to denote indecomposable objects in D.
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X

E1

E2

F1

Y

F2

G1

G2

Z

Figure 5. A schematic of distinguished triangles in D and the corresponding rect-
angles in R× (−π

2 ,
π
2 ).

Definition 2.7. Let V be an arbitrary real vector space and Φ : Ind(D) ⊔ {0} → V a function
satisfying Φ(0) = 0. We extend Φ to all objects of D by defining its value on a direct sum to be the
sum of the values of Φ on each indecomposable summand.

We say Φ satisfies the continuous mesh relations provided that for every distinguished triangle

X // Y // Z // X [1],

where X and Z are indecomposable, the following equation holds:

Φ(X) + Φ(Z) = Φ(Y ).

Two examples of such functions are gZ-vectors (Section 4.2) and dimension vectors (Section 4.3).
We now set the context for an important property of functions satisfying continuous mesh relations,
which is stated in Proposition 2.8. Suppose there are nontrivial distinguished triangles

(1) X // E1 ⊕ E2
// Y // X [1]

(2) Y // G1 ⊕G2
// Z // Y [1]

(3) X // F1 ⊕ F2
// Z // X [1].

Without loss of generality, we assume that E1, F1, and G1 are top points of the tilting rectangles in
R× (−π

2 ,
π
2 ) obtained from the given distinguished triangles in D.

The relationship between the geometry in R× (−π
2 ,

π
2 ) and the distinguished triangles in D yields

the schematic of the points in R× (−π
2 ,

π
2 ) in Figure 5. It can be seen from the schematic that we

have two more distinguished triangles:

(4) E1
// F1 ⊕ Y // G1

// E1[1]

(5) E2
// Y ⊕ F2

// G2
// E2[1].

We see that distinguished triangles (1), (3) yield distinguished triangles (2), (4), and (5) both
algebraically in D and geometrically in R× (−π

2 ,
π
2 ).

The following proposition highlights how the continuous mesh relations behave similarly to the
discrete version.

Proposition 2.8. Assume Φ satisfies the continuous mesh relations. Let X, E1, E2, F1, and F2

be indecomposables in Ind(D). Let X → E1 and X → E2 be morphisms, the slope from X to E1 be
1, and the slope from X to E2 be −1. Also let E1 → F1 and E2 → F2 be morphisms, the slope from
X to F1 be 1, and the slope from X to F2 be −1.
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Then one obtains the distinguished triangles (1)–(5) above. Furthermore, the values Φ(X), Φ(E1),
Φ(E2), Φ(F1), and Φ(F2) determine Φ(Y ), Φ(G1), Φ(G2), and Φ(Z).

Proof. The application of the octahedral axiom yields the distinguished triangles. We see that

Φ(Y ) = Φ(E1) + Φ(E2)− Φ(X).

Then we may replace Φ(Y ) in the equations for Φ(G1) and Φ(G2). Finally we replace Φ(Y ), Φ(G1),
and Φ(G2) in the equation for Φ(Z). �

Note that, in the proposition above, if any of E1, E2, F1, and F2 are the 0 object then we may
choose points on the boundary of R× [−π

2 ,
π
2 ] such that the assertions hold.

3. Continuous deformed mesh relations

The goal of this section is to introduce the continuous version of the deformed mesh relations (2)
from Section 2.1. For that we first develop a technique that we call quilting, which does not depend
on knitting.

3.1. Quilting.

3.1.1. Patches and quilting. Notice that in Section 2.1 the projective slice forms a zigzag shape. To
introduce a continuous version of the projective slice, we begin with the following definition.

Definition 3.1. Let L = {ℓ1, . . . , ℓn} be a set of distinct line segments in R× [−π
2 ,

π
2 ] which satisfy

the following conditions.

• The slope of ℓ1 is ±1, and its top point is on the line y = π
2 .

• For 1 ≤ i < n, the segment ℓi+1 is below ℓi and they intersect at a right angle.
• The bottom point of ℓn lies on the line y = −π

2 .

Then we set

Z =

(
n⋃

i=1

ℓi

)
∩
(
R×

(
−
π

2
,
π

2

))
,

and call it a zigzag with n line segments. We consider Z as a full subcategory of D.
For each 1 ≤ i < n, the second condition implies ℓi+1 and ℓi have exactly one point Pi = (ai, bi)

in common and y < bi, for any other point (x, y) on ℓi+1. If the slope of ℓi is 1 (respectively, −1),
this unique point Pi is called a left vertex (respectively, right vertex ) of Z.

In Definition 3.1, the top point of ℓ1 and the bottom point of ℓn do not belong to Z, and all
points in Z are indecomposable objects in the category D.

Next we define the two types of patches. We will save visual depictions until we define quilting.

Definition 3.2. Let Z be a zigzag with n line segments.

• Let ℓi and ℓi+1 be line segments of Z that share a left vertex. Let the top point of ℓi be
(y1, y2) = Y and the bottom point of ℓi+1 be (z1, z2) = Z. Let the shared left vertex be
(x, y) = X , and let

W = (y1 + z1 − x1, y2 + z2 − x2).

Then XYWZ is a rectangle in R × [−π
2 ,

π
2 ] whose sides have slopes ±1. By a rectangular

patch, we mean the part of XYWZ in R× (−π
2 ,

π
2 ) together with the region it bounds.

• If ℓi is a line segment that does not share a left vertex with another line segment, then i = 1
or i = n. Let Y be the right vertex on ℓi and X the point in R× {−π

2 ,
π
2 } on ℓi. We reflect

ℓi about the vertical line through Y . Then there is a point Z in both R× {−π
2 ,

π
2 } and the

reflection of ℓi. This defines a triangle XY Z in R× [−π
2 ,

π
2 ]. By a triangular patch, we mean

the part of XY Z in R× (−π
2 ,

π
2 ) together with the region it bounds.

Henceforth, by a patch we mean a rectangular patch or a triangular patch.

Note that patches are always to the right of the corresponding zigzag.
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Definition 3.3 (Quilting). For a zigzag Z, we define quilting Q(Z) of Z via a process on all patches
induced by Z.

First, let XYWZ be a rectangular patch. By Q(ℓi+1) we denote the top right side of XYWZ,
which is a translation of ℓi+1. Furthermore, by Q(ℓi) we denote the bottom right side of XYWZ,
which is a translation of ℓi. Note that left vertices of Q(ℓi)∪Q(ℓi+1) are the right vertices of ℓi∪ℓi+1.
Also note that Q(ℓi+1) is now above Q(ℓi).

ℓi+1

ℓi

Q(ℓi+1)

Q(ℓi)
X

Z

Y

W

Now let XYZ be a triangular patch. We define Q(ℓi) to be the reflection of ℓi across the vertical
line through Y .

ℓ1 Q(ℓ1)

X

Y

Z

and/or

ℓn Q(ℓn)

X

Y

Z

We define Q(Z) := (
⋃

i Q(ℓi)) ∩
(
R× (−π

2 ,
π
2 )
)
. Notice again that the left vertex of Q(ℓi) is the

right vertex of ℓi. In the top-to-bottom ordering of the line segments of Q(Z), we consider these
reflections to be fixed when compared to Z.

Remark 3.4. It follows directly from the definition that Q(Z) is unique. Moreover, in R× [−π
2 ,

π
2 ],

a rectangular patch is a tilting rectangle.

3.1.2. Requisite combinatorics. In this section, we collect the combinatorial tools needed for our
proofs about quilting and continuous deformed mesh relations. We treat permutations as functions,
and therefore if α and β are permutations of a set X , by β ◦ α we denote the permutation obtained
by first performing α and then performing β. If [n, <] is an ordered set with n elements, say
{x1, . . . , xn}, by si we denote the simple permutation which swaps the position of xi and xi+1. In
particular, si([n, <]) = {x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn}.

For any m ∈ R, let ⌈m⌉ := min{a ∈ Z | m ≤ a} and ⌊m⌋ := max{b ∈ Z | b ≤ m}.

Definition 3.5. We consider two particular permutations on the ordered set [n, <]:

(1) Let π1 := s2⌊n
2
⌋−1 ◦ · · · ◦ s3 ◦ s1.

(2) Let π2 := s2⌈n−1
2

⌉ ◦ · · · ◦ s4 ◦ s2.

One may think of π1 as a permutation that moves elements in odd positions forward and elements
in even positions backwards, where the indices permit.

Example 3.6. Consider the sets {A,B,C,D,E} and {A,B,C,D,E, F}. We can visualize π2 ◦ π1

on the left and right, respectively.

A
π1

  
❆❆

❆❆
❆ B

~~⑥⑥
⑥⑥

C

  
❆❆

❆❆
❆ D

~~⑥⑥
⑥⑥

E
π1
��

A
π1

  
❆❆

❆❆
❆ B

~~⑥⑥
⑥⑥

C

  
❆❆

❆❆
❆ D

~~⑥⑥
⑥⑥

E

  ❅
❅❅

❅ F

~~⑦⑦
⑦⑦ π1

B
π2

��

A

  ❆
❆❆

❆❆
D

~~⑥⑥
⑥⑥

C

  
❆❆

❆❆
E

~~⑥⑥
⑥⑥ π2

B
π2

��

A

  ❆
❆❆

❆❆
D

~~⑥⑥
⑥⑥

C

  
❆❆

❆❆
F

~~⑥⑥
⑥⑥

E
π2
��

B D A E C B D A F C E
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Observe that the permutations behave slightly differently depending on whether or not we are
working with an even number of elements or an odd number of elements. For a permutation α, by
Fix(α) we denote the set of elements fixed under α.

Proposition 3.7. For [n, <] = {x1, . . . , xn}, we have the following properties.

• Both π1 and π2 are involutions on [n, <].
• If n is odd, then Fix(π1) = {xn} and Fix(π2) = {x1}.
• If n is even, then Fix(π1) = ∅ and Fix(π2) = {x1, xn}.
• Fix(π1) ∩ Fix(π2) = ∅.

Proof. The statements follow directly from Definition 3.5. �

Definition 3.8. Let [n, <] be an ordered set with n elements. For an even positive integer j, we
define

• the odd jth composition to be πj
o := (π2 ◦ π1)

j

2 ,

• and the even jth composition to be πj
e := (π1 ◦ π2)

j

2 .

For an odd positive integer j, we define

• the odd jth composition to be πj
o := π1 ◦ (π2 ◦ π1)

j−1

2 ,

• and the even jth composition to be πj
e := π2 ◦ (π1 ◦ π2)

j−1

2 .

The naming convention above was chosen so that the odd compositions start with π1 and the
even compositions start with π2. In essence, j counts the number of alternating compositions of π1

and π2 that we are performing.

Proposition 3.9. Let [n, <] = {x1, . . . , xn}. For 1 ≤ i < n and j = n− i, we have

• if i is odd, then πj
o(xi) = xn and πj+1

o (xi) = xn.
• if i is even, then πj

e(xi) = xn and πj+1
e (xi) = xn.

Proof. The proof is by induction on j. First suppose j = 1; we use Proposition 3.7. If i is odd,
then n is even. So π1(xi) = xn and π2(xn) = xn. If instead i is even, then n is odd. In this case,
π2(xi) = xn and π1(xn) = xn.

Assume that the assertion holds for all positive integers less than or equal to ℓ, and let j = ℓ+1.
Suppose i is odd. Then π1(xi) = xi+1. We know n− (i + 1) = ℓ and the proposition holds for ℓ.

If we perform πℓ
e ◦ π1 then we have performed πj

o, which sends xi to xn. If we perform πℓ+1
e ◦ π1

we have performed πj+1
o , which sends xi to xn. If i is even, we can perform a similar argument. �

Proposition 3.10. Let [n, <] = {x1, . . . , xn}. For 1 < i ≤ n and j = i− 1, we have

• if i is odd, then πj
e(xi) = x1 and πj+1

e (xi) = x1.
• if i is even, then πj

o(xi) = x1 and πj+1
o (xi) = x1.

Proof. The statement and the proof are symmetric to Proposition 3.9 and its proof. �

Lemma 3.11. Let [n, <] be an ordered set with n elements. The following hold.

• πn
o and πn

e both reverse the order of the element in [n, <].
• If x ∈ [n, <], there exist unique 0 ≤ i, j < n such that πi

o(x) = πi+1
o (x) and πj

e(x) = πj+1
e (x).

Proof. We prove the statement by showing that the ith element is sent to the ((n+1)− i)th element.
First suppose i is odd. Then, by Proposition 3.9, both πn−i

o and πn+1−i
o send i to the nth element.

If n is odd πi−1
e sends the nth element to the ((n+ 1)− i)th element. In this case, ((n+ 1)− i)

is odd; so πi−1
e ◦ πn+1−i

o = πn
o .

If n is even then πi−1
o sends the nth element to the ((n+1)−i)th element. In this case, ((n+1)−i)

is even; so πi−1
o ◦ πn+1−i

o = πn
o . The case when i is odd and we start with the ((n + 1)− i)th even

composition is similar.
Now suppose i is odd and we first perform πi

e. By Proposition 3.10, πi
e and πi−1

e send the ith
element to the first position. Thus, πi

e = π2 ◦ πi−1
e . We know the odd (n − i)th composition will
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send the first element to the ((n + 1) − i)th position. We also see that πn−1
o ◦ πi

e = πn
e . The case

when i is even is similar. This concludes the proof. �

3.1.3. Quilting. For a zigzag Z with n line segments, we show in Theorem 3.16 below that performing
quilting n times on Z yields Z[1].

Proposition 3.12. Let Z be a zigzag with the set of line segments L := {ℓ1, . . . , ℓn}. Then Q(Z)
is a zigzag, and the order on {Q(ℓi) | ℓi ∈ L} is π1(L) if the slope of ℓ1 is +1, and π2(L) otherwise.

Proof. By Definition 3.3, Q(Z) is indeed a zigzag: all line segments have alternating slopes ±1
and the top and bottom points respectively belong to the lines y = π

2 and y = −π
2 . To show the

assertion, we treat two cases based on the slope of ℓ1.
We consider the case where the slope of ℓ1 is +1 (the case where the slope of ℓ1 is −1 is similar).

In this case, the slope of all odd line segments are +1. Hence, the slope of all even line segments
are −1. Thus, for each pair ℓi and ℓi+1 that share a left vertex, i must be odd. So, Q(ℓi+1) is
above Q(ℓi). If n > 1 is odd, then, by Definition 3.3, Q(ℓn) is a reflection. If n is even there are no
reflections. Thus, the top-to-bottom order of the line segments of Q(Z) is given by π1(L). �

Proposition 3.13. For a zigzag Z, there exists a unique zigzag Z ′ such that Q(Z ′) = Z.

Proof. One may check that the symmetric construction to Definition 3.3 also yields a zigzag Z ′. It
follows directly that Q(Z ′) = Z and is unique. �

Propositions 3.12 and 3.13 justify the following definition and notation.

Notation 3.14. Let Z be a zigzag. By Q−1(Z) we denote the zigzag Z ′ such that Q(Z ′) = Z.
Furthermore, for i ∈ Z, we set

• Qi(Z) =

i times︷ ︸︸ ︷
Q(Q(· · · (Q(Z)) · · · )) if i > 0,

• Qi(Z) = Z if i = 0, and
• Qi(Z) = Q

−1(Q−1(· · · (Q−1

︸ ︷︷ ︸
i times

(Z)) · · · )) if i < 0.

Lemma 3.15. Let Z be a zigzag and L the set of its n line segments. The line segments of the zigzag
Qn(Z) are the translations of the reflections of those in Z, in the reverse order from top-to-bottom.

Proof. Notice that for the line segments ℓ1 and ℓn of a zigzag, reflection implies Q(ℓ1) and Q(ℓn)
are respectively the first and last line segments of Q(Z). If ℓ1 in Z has slope +1 then Q(ℓ2), which
is the top of Q(Z), has slope −1. If ℓ1 in Z has slope −1 then Q(ℓ1) has slope +1. Thus, the order
of the line segments in Qn(Z) is given either by πn

o (L) or π
n
e (L). In either case, by Lemma 3.11 the

line segments of Q(Z) are as described. �

We now prove the main result of the section. In Figure 6, we see an example of Theorem 3.16.

Theorem 3.16. Let Z be a zigzag in D with n line segments. Then, Qn(Z) = Z[1] and Q−n(Z) =
Z[−1].

Proof. If Z has one line segment the theorem is immediate. Assume Z has at least two line segments.
By Lemma 3.15, Qn(Z) and Z[1] have the same shape; i.e., they are translations of each other.
Similarly, Q−n(Z) is a translation of Z[−1].

We show the top points of Qn(Z) and Z[1] are the same, which implies that the translation is
the identity and Qn(Z) and Z[1] are the same. The symmetric argument shows Q−n(Z) = Z[−1].

We assume the slope of ℓ1 is −1, as the proof when ℓ1 has slope +1 is similar.
Let m be the largest odd number inclusively between 1 and n. We first show that the top point

of Qn(Z) is the same as the top point of Qm(ℓm). Then, by combining Propositions 3.9 and 3.10
with Lemma 3.11, we conclude that the top line segment of each zigzag obtained from Z is among

Q
0(ℓ1),Q(ℓ1),Q

2(ℓ3),Q
3(ℓ3), . . . ,Q

i−1(ℓi),Q
i(ℓi), . . .
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1 r1

r1

r1

r1

r1

r1

2

2

2

2

2 r2

r2

3

3

3 r3

r3

r3

r3

4

4

4 r4

r4

r4

r4

5

5

5

5

5 r5

r5

6 r6

r6

r6

r6

r6

r6

Z Q(Z) Q2(Z) Q3(Z) Q4(Z)Q5(Z) Q6(Z)

Figure 6. On a zigzag Z with 6 line segments, performing quilting 6 times results
in Z[1]. Here ‘r’ indicates the reflection of the line segment as in Definition 3.3.

where i is odd.
By Lemma 3.15, note that the top line segment of Qn(Z) is Qn(ℓn). If n is odd this line segment

has slope +1 since it was reflected exactly once. If n is even this line segment has slope −1 and so
shares its top point with Qn−1(ℓn−1). Thus, the top point of Qn(Z) is the top point of Qm(ℓm).
We have also shown that the top point of Qi(Z) is the top point of Qi+1(Z) when i < n is odd.

For each line segment ℓi, let xbi and xti be respectively the x-coordinates of the bottom point
and top point of ℓi. Let hi = |xti − xbi |. Now we show that the distance between the top point of
Z and the top point of Qn(Z) is

2




∑

odd 1≤i≤n

hi



 .

We see the distance between the top point of Z and the top point of Q1(Z) is 2h1. The distance
between the top point of Q2(Z) and Q3(Z) is 2h3, and so on.

Let xb (respectively, xt) denote the x-coordinate of the bottom point (respectively, the top point)
of Z. Observe that

xb − xt =




∑

odd 1≤i≤n

hi


−




∑

even 1≤i≤n

hi


 .
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Denote by xq the x-coordinate of the top point of Qn(Z). From the previous equation it follows
that

xq − xb = 2




∑

odd 1≤i≤n

hi



−




∑

odd 1≤i≤n

hi



+




∑

even 1≤i≤n

hi





=

n∑

i=1

hi = π.

This implies that the top point of Qn(Z) is (xb + π, π
2 ), which is the top point of Z[1]. �

3.2. Deformed mesh relations. In this section, we define the continuous analog of the deformed
mesh relations (2) in Section 2.1.

3.2.1. Permissible functions. We define the continuous analog of the c values in Section 2.1. In
practice we want to be able to integrate such a c function over any tilting rectangle (Definition
2.5) in the closed strip R × [−π

2 ,
π
2 ]. This will allow us to define what it means for a function

Φ : Ind(D) ⊔ {0} → V to satisfy the continuous deformed mesh relations (Definition 3.18).

Definition 3.17. Let c : Ind(D)⊔{0} → R be a function such that c(0) = 0. We say c is permissible
if for every tilting rectangle XYWZ in R× [−π

2 ,
π
2 ], the surface integral

∫

XYWZ

c

over XYWZ yields a real number.

We now define what it means for a function Φ to satisfy the continuous deformed mesh relations.
The reader is invited to compare the following definition with constructions preceding Theorem 2.3.
When we say a real vector space V has coordinates indexed by a set Ω, we mean V =

∏
ΩR.

Definition 3.18. Let Z be a zigzag in D, c : Ind(D) ⊔ {0} → R a permissible function, and V

a real vector space of arbitrary dimension whose coordinates are indexed by a set Ω. Suppose
Φ : Ind(D) ⊔ {0} → V is a function such that for every tilting rectangle XYWZ in R× [−π

2 ,
π
2 ] and

ω ∈ Ω the following equation is satisfied:

Φ(X)(ω) + Φ(W )(ω) = Φ(Y )(ω) + Φ(Z)(ω) +

∫

XY WZ

c.

Then we say Φ satisfies the continuous deformed mesh relations over c.

In Section 6 we work with V = R. However, to adopt a framework that does not require modifi-
cation in other contexts, we also allow V to be an arbitrary product of copies of R.

Remark 3.19. If c in Definition 3.18 is the constant function at 0, then Φ satisfies the continuous
mesh relations as in Section 2.3.

Proposition 3.20. Let Z be a zigzag in D and W an indecomposable in a patch between Z and
Q(Z). If W is not in Z, there exist X, Y , and Z in Ob(Z) ⊔ {0} such that XYWZ is a tilting
rectangle. If W is instead an indecomposable in a patch between Q−1(Z) and Z, but not in Z, then
there exist X, Y , and Z in Ob(Z) ⊔ {0} such that WYXZ is a tilting rectangle.

Proof. First assume W is contained in a patch between Z and Q(Z). If W is contained in a
rectangular patch then the indecomposables Y and Z are obtained by intersecting Z with the lines
of slope ±1 that intersect at W . The indecomposable X is the left vertex shared by the line segments
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used to create the rectangle.

X

ℓi+1

ℓi

Q(ℓi+1)

Q(ℓi)

W

Y

Z

Note that if W is the intersection of Q(ℓi+1) and Q(ℓi) then Y is the top point of the rectangle and
Z is the bottom point. In this case Y or Z may be 0.

If W is contained in a triangular patch then Y and Z are obtained by intersecting Z and the base
of the triangle with the lines of slope ±1 that intersect at W . At least one of these will be 0.

Let h be the line containing W that intersects the base of the triangle to the left of W . Then X
is obtained by intersecting Z with the line perpendicular to h that intersects at the same point on
the base of the triangle.

ℓ1 Q(ℓ1)

W

Y = 0

Z

X

or

ℓn Q(ℓn)

W

Z = 0

Y

X

If W is in Q(ℓi) and Z has one line segment then both Y and Z are 0.
If instead W is contained in a patch between Q−1(Z) and Z, then the argument is the same using

the symmetric geometry. �

Definition 3.21. Let Z be a zigzag in D and let W be an indecomposable in D. We say W can be
quilted from Z if there exists a nonnegative n ∈ Z such that W is in a patch of Qn(Z). We say W
can be inverse quilted from Z if there exists a negative n ∈ Z such that W is in a patch of Qn(Z).

The following lemma shows that for any zigzag Z in D and any indecomposable W in D, W can
be quilted or inverse quilted from Z.

Lemma 3.22. Let Z be a zigzag in D. For every indecomposable W in D, there exists n ∈ Z such
that W is in a patch of Qn(Z).

Proof. Let yW be the y-coordinate of W . Then there exist X and X ′ in Z where the y-value of X
is yW and the y-value of X ′ is −yW . If yW = 0 then X = X ′.

Let xW , x0, and x′
0 be the x-values of respectively W , X , and X ′. Since |x0 − x′

0| < π, we have
x′
0 < x0 + π and x0 < x′

0 + π. So, for every m ∈ Z define

xm =

{
mπ + x0 m is even

mπ + x′
0 m is odd.

Then there exists m ∈ Z such that xm ≤ xW < xm+1.
Let j be the number of line segments in Z. Then Qj(Z[m]) = Z[m + 1] by Theorem 3.16. For

each 0 ≤ i < j let Xi be the object on Qi(Z[m]) with y-coordinate yW . Let xm,i be the x-coordinate
of Xi and set xm,j = xm+1. Then there exists 0 ≤ iW < j such that xm,iW ≤ xW ≤ xm,iW+1.

It follows thatW is in a patch ofQiW (Z[m]), soW is in a patch ofQn(Z), where n = jm+iW . �

Let c : Ind(D) ⊔ {0} → R be a permissible function, V a real vector space whose coordinates are
indexed by a set Ω, Z a zigzag in D, and Φ : Ob(Z) → V a function. For each indecomposable
W /∈ Z in a patch between Z and Q(Z) (respectively between Q−1(Z) and Z), there is a unique
tilting rectangle ♦ = XYWZ (respectively ♦ = WYXZ) as in Proposition 3.20.
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Definition 3.23. With the same notation and setting as above, the quilting value of W over c is
the vector Φ(W ) in V, where the value for each coordinate ω ∈ Ω is given by

Φ(W )(ω) := Φ(Y )(ω) + Φ(Z)(ω)− Φ(X)(ω) +

∫

♦

c.

Proposition 3.24. Let c : Ind(D) ⊔ {0} → R be a permissible function and V a real vector space
with coordinates indexed by a set Ω. For a zigzag Z and function Φ : Ind(Z) → V, there exists a
unique extension of Φ to Ind(D) ⊔ {0} that satisfies the continuous deformed mesh relations over c.

Proof. Using Definition 3.23 we may extend Φ to all the patches of Z and, on these patches, the
extension satisfies the continuous deformed mesh relations over c. Similarly, we may extend Φ to all
the patches of Q−1(Z). Notice these extensions are unique.

By Lemma 3.22, each indecomposable W in D is in a patch of Qn(Z), for some n ∈ Z. We
recursively use this argument to obtain the desired extension of Φ. In particular, this uniquely
defines Φ(W ). Therefore, we may extend Φ to Ind(D) as stated in the proposition. �

4. Connections to representation theory

Our goal in this section is to highlight some fundamental connections between our construction
and the representation theory of quivers. More specifically, in Sections 4.2 and 4.3 we respectively
introduce the notions of g-vectors and dimension vectors in our setting. Furthermore, from the
results of Sections 4.1 and 4.4, we observe that for any zigzag Z, there is a t-structure in D whose
heart is analogous to the category of finitely generated representations of an An quiver. In particular,
by the end of this section the reader observes that the subspace of R × (−π

2 ,
π
2 ) corresponding to

the indecomposables in D♥ shares many properties with the Auslander–Reiten quiver of a type An

quiver (for further details, see Section 4.4).

4.1. t-structures. For a zigzag Z in D, define the full subcategories

D≤0 = add{X | X can be quilted from Z}

D≥0 = add ({Y | Y can be inverse quilted from Z[1]} \ Z[1]) .

We have a t-structure because the following hold.

• D≤0 is closed under [1] and D≥0 is closed under [−1].
• For any indecomposables X in D≤0 and Y in D≥0, we have HomD(X,Y [−1]) = 0. Since D
is Krull–Schmidt, this extends to all X in D≤0 and Y in D≥0.
• Every indecomposable in D belongs to at least one of D≤0 or D≥0. This immediately yields
that every object E in D belongs to a distinguished triangle

X // E // Y [−1] // X [1],

where X is in D≤0 and Y is in D≥0.

Notice that the heart D♥ := D≥0 ∩ D≤0 does not contain Z[1], but it does contain all other
indecomposables that can be both quilted from Z (including Z) and inverse quilted from Z[1].
We observe that D♥ is similar to the categories of representations of continuous quivers in [IT15,
IRT19, R19], where the projective representations are those on Z (Proposition 4.4). See Section
4.4 for further discussion. Representations of continuous quivers connect our interpretation to the
construction given in [BD+18].

We remark that once we have chosen Z, we have no further choices regarding our t-structure.
This implies that the heart is in some sense canonical.
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X

u

d

Z0 = Zu

Z3 = Zd

Z1

Z2

Figure 7. An example Z and X with u, d, Zu, and Zd. Each of the Zi are also
shown. The region bounded by u, d, and the zigzag will be of use in Section 6.1.

4.2. gZ-vectors. Let Z be a zigzag in D. We now show that the heart D♥ of the t-structure
obtained from Z in Section 4.1 has gZ -vectors, which behave like g-vectors in the classical sense.

Before we state the next definition, recall that each object Z in Z is an indecomposable in D.

Definition 4.1 (gZ-vectors). Let V be the real vector space whose coordinates are indexed by
Ob(Z). For each object Z in Z, set gZ(Z) to be the vector in V whose coordinates are 1 in the
Z-coordinate and 0 elsewhere. Let c be the 0 function. We uniquely extend gZ to all of D as in
Proposition 3.24. For an indecomposable X in D♥⊔Z[1], the gZ-vector of X is defined to be gZ(X).

We now give an explicit description of the gZ -vectors in D♥ ⊔ Z[1]; namely, in Proposition 4.2,
we show that each such gZ-vector gZ(X) is a finite sum of gZ-vectors of objects in Z.

For each indecomposable in Z, the associated gZ -vector is already defined. Therefore, to explicitly
describe the gZ-vector of every indecomposableX in D♥, we only need to treat those indecomposable
X in D♥ such that X is not in Z. For every such indecomposable X consider the rays u and d in
R × [−π

2 ,
π
2 ], respectively with slopes −1 and +1, which emanate from X and propagate in the

negative x-direction. (For a graphical depiction, see Figure 7.) Each of these rays u and d may
“bounce” off one of the horizontal lines y = π

2 or y = −π
2 at most once before they intersect Z.

Further, we associate a unique point Zu in Z to the ray u as follows. (The point Zd can be described
analogously.)

(1) Suppose u bounces off y = π
2 and intersects Z at a right vertex Z (Definition 3.1). Then we

define Zu to be the adjacent left vertex below Z or the intersection between u and d to the
left of X , whichever is closer to X .

(2) If u does not bounce off y = π
2 or does not intersect Z at a right vertex of Z, we define Zu

to be the rightmost intersection between Z and u.

By Euclidean geometry and the triangulated structure of D (Section 2.2.2), Zu = Zd if and only if
X ∈ Z[1].

Suppose X /∈ Z[1]. Consider the (possibly empty) set of all left and right vertices of Z whose
y-coordinates are strictly between those of Zu and Zd. Enumerate these left and right vertices as
Zi, starting with Z1, where i < i′ if the y-coordinate of Zi is greater than the y-coordinate of Zi′ .
Let j be the number of such Zi’s, Z0 = Zu, and Zj+1 = Zd. For i /∈ [0, j + 1], set Zi = 0.

Proposition 4.2. Let X be an indecomposable in D♥ ⊔ Z[1], but not in Z. Then the gZ-vector of
X is given by

gZ(X) =





∑
odd i

gZ(Zi)−
∑

even i

gZ(Zi) Z0 is left of Z1

∑
even i

gZ(Zi)−
∑
odd i

gZ(Zi) Z0 is right of Z1

−gZ(X [−1]) X ∈ Z[1].

Proof. First, we treat the case X ∈ Z[1]. In this case, note that Zu = Zd = X [−1]. Consider the
tilting rectangle whose left corner is X [−1] and right corner is X , where the top and bottom corners
lie on y = π

2 and y = −π
2 , respectively. Thus, gZ(X [−1]) + gZ(X) = 0 implies the desired result.
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Now suppose X /∈ Z[1]. Let nℓ be the number of line segments of Z. We proceed by strong
induction on n < nℓ, starting with n = 0. If X is in a patch of Z = Q0(Z), the result follows from
Definition 3.23.

Suppose the result holds for all X in any patch of Qm
Z , for all 0 ≤ m ≤ n < nℓ − 1. Let X be in

a patch of Qn+1(Z), and define Zu, Zd, and the Zi as above. Further, we can assume X is not in
Qn+1(Z), as otherwise X is in a patch of Qn(Z) and we are done.

Since X /∈ Z[1], we know Zu 6= Zd and the y-coordinate of Zu is greater than the y-coordinate of
Zd. Furthermore, since X is in a patch of Qn+1(Z), there exist X ′, Y ′, and Z ′ in Qn+1(Z) ⊔ {0}
such that X ′Y ′XZ ′ is a tilting rectangle. By induction we know the proposition holds for X ′, Y ′,
and Z ′. Note that the rays d coming from Y ′ and X ′ will determine the same Zd for both objects.
Similarly, Zu is the same for Z ′ and X ′. Moreover, Zu is the same for X and Y ′; Zd is the same for X
and Z ′. The y-coordinates of these four objects in Z will all be distinct since X is not in Qn+1(Z).
Schematically, there are four cases of the y-coordinates based on which rays (if any) bounce off the
boundary:

Zd, Y
′ and X ′

Zd, Z
′ and X

Zd, Y
′ and X ′

Zd, Z
′ and X Zd, Y

′ and X ′

Zd, Z
′ and X

Zd, Y
′ and X ′

Zd, Z
′ and X

Zu, Z
′ and X ′

Zu, Y
′ and X

Zu, Z
′ and X ′

Zu, Y
′ and XZu, Z

′ and X ′

Zu, Y
′ and X

Zu, Z
′ and X ′

Zu, Y
′ and X

Therefore, since

gZ(X) = gZ(Y
′) + gZ(Z

′)− gZ(X
′),

we see the proposition follows. �

4.3. Dimension vectors. Again let Z be a zigzag and D♥ be the heart of the t-structure obtained
from Z, as in Section 4.1. Now we show that for each indecomposable X in D♥, there is a notion of
dimension vector analogous to the discrete case.

First we introduce a partial order on Z: If Z and Z ′ belong to the same line segment of Z, we
put Z ≤ Z ′ provided that the x-coordinate of Z is no larger than the x-coordinate of Z ′. If Z and
Z ′ are not on the same line segment in Z, then Z and Z ′ are not comparable. Then, for each Z in
Z, define dimZ(Z) in

∏
Ob(Z) R to be 1 on each Z ′-coordinate with Z ′ ≤ Z, and 0 elsewhere. Again

by Proposition 3.24, we extend dimZ uniquely to a function dimZ : D →
∏

Ob(Z) R. Now, for each

indecomposable object X in D♥, define the dimension vector of X with respect to Z to be dimZ(X).

Proposition 4.3. Let X be an indecomposable object in D♥. Then each coordinate of dimZ(X)
is 0 or 1. Moreover, {Z ∈ Ind(Z) | Z-coordinate of dimZ(X) is 1} forms a connected set, where
Ind(Z) ( R2 has the subspace topology.

Proof. If X ∈ Z, the proposition follows by the definition of dimZ . We use the same notation as in
Section 4.2. In particular, let Zu, Zd, and the Zi be as before. For the case where X /∈ Z, we know
that Z0 and Z1 are distinct and we can assume that Z0 is to the left of Z1 (the other case is similar).
We further remark that the proof of Proposition 4.2 does not rely on the values of gZ . Thus,

dimZ(X) =
∑

odd i

dimZ(Zi)−
∑

even i

dimZ(Zi) =
∑

i∈Z

(−1)i+1dimZ(Zi).

We now prove the result by induction on the number of Zi’s. We start with Z0 = Zu and Z1 = Zd.
In this case, the result is straightforward to check.

For the induction step on j + 1 ≥ 2, let S be the set of Z ∈ Z such that the Z-coordinate of∑j
i=1(−1)dimZ(Zi) is 1. Assume S is connected and that the Z-coordinate of

∑j
i=1(−1)dimZ(Zi)
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is 0 for all Z /∈ S. There are even and odd cases for the induction step; we first consider the even
case. If j + 1 is even, then Zj is a right vertex and S \ {Z | Z ≤ Zj+1} is also a connected set. If
j + 1 is odd, then Zj /∈ S is a left vertex and S ∪ {Z | Z ≤ Zj+1} is a connected set. In both cases,∑j

i=1(−1)
i+1dimZ(Zi) is 1 precisely on S and 0 elsewhere. �

4.4. Continuous representations and D♥. In this brief section we discuss how D♥ is similar to
rep(An) for a type An quiver, and thus may be thought of as a category of continuous representations.
We have already shown that the gZ-vectors (Section 4.2) and dimension vectors (Section 4.3) in D♥

behave similarly to g-vectors and dimension vectors, respectively, in rep(An).
For a type An quiver (Section 2.1), the projective indecomposables in rep(An) form a zigzag shape

in the (augmented) Auslander–Reiten quiver. The following proposition shows that the indecom-
posables in the zigzag Z are exactly the projective indecomposable objects in D♥.

Proposition 4.4. An indecomposable Z is projective in D♥ if and only if Z ∈ Ind(Z).

Proof. Let Z be an indecomposable in Z and X → Y → Z be a short exact sequence in D♥. Note
that if an indecomposable W in D♥ is not on Z then HomD♥(W,Z) = 0. This implies X and Y
consist of indecomposable summands on Z as well. Further note that for any pair of indecomposables
W,W ′ in Z, if W and W ′ are not on the same line segment then HomD♥(W,W ′) = 0 (see Hom
supports in Figure 3). By the triangulated structure proven in [IT15], and thus the abelian structure
in D♥, any such short exact sequence must be split. Thus, Z is projective in D♥.

LetX be an indecomposable inD♥, but not in Z. Then we may find a small enough nondegenerate
tilting rectangle ♦ in D♥ to the right of Z, such that the right corner of ♦ is X . This distinguished
triangle, and thus the short exact sequence in D♥, does not split. �

In the following theorem, we capture some of the main properties of D♥. Since the results follow
from Propositions 4.2 and 4.4, we omit the proof.

Theorem 4.5. The abelian category D♥ has enough projectives, it is Krull–Schmidt, and every inde-
composable object is finitely generated. From the construction of D, it follows that ExtiD♥(X,Y ) = 0
for i > 1, thus D♥ is of global dimension 1. Furthermore, the isomorphism classes of indecomposable
objects of D are given by shifts of those in D♥.

From the preceding theorem, observe that one can think of D♥ as the category of certain finitely
generated representations of a continuous quiver whose orientation is inherited by the partial order
on Z. The reader is referred to [IRT19] for a detailed introduction to continuous quivers of type A.
Our results are inspired by, but not reliant upon, that work.

5. T-clusters

In this section, we present a continuous generalization of the clusters and compatibility in [BD+18,
Section 2]. This will be used in our construction of a continuous analogue of the ABHY associahedron
for type A quivers, as we discuss in Section 6.

For the remainder of the paper, let Z be a fixed zigzag in D (Definition 3.1). Recall that D♥

denotes the heart of the t-structure in D, as described in Section 4.1. We consider the following
subcategory of D.

Notation 5.1. Let CZ := add(Ind(D♥)⊔ Ind(Z[1])). Namely, CZ is the full subcategory of D whose
objects are finite direct sums of indecomposable objects in D♥ and Z[1].

5.1. Compatibility. To generalize the compatibility in [BD+18] to the continuous version, we now
define compatibility in CZ , making use of the continuous deformed mesh relations (Definition 3.18).

Definition 5.2. Let X and Y be indecomposable objects in CZ . We say X and Y are incompatible
if there exists a distinguished triangle in D of one of the following forms:

X // E // Y // X [1] or Y // E // X // Y [1].
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Otherwise, we say X and Y are compatible.

Remark 5.3. Note that Definition 5.2 implies that each indecomposable X ∈ CZ is compatible with

itself. Recall that in Section 2.1, for two vertices of Γ̃C , we considered the notion of compatibility
based on the associated cluster variables in the cluster algebra of type An. From the tilting rectangles
(Definition 2.5), one observes that the compatibility condition in Definition 5.2 is analogous to that
in Section 2.1, described in Remark 2.2. In particular, two indecomposable objects X and Y in CZ
are incompatible if and only if there exists a tilting rectangle in R × [−π

2 ,
π
2 ] whose left and right

corners are X and Y (or Y and X).
We also note that if X is an indecomposable object in Z, then X and X [1] are incompatible.

This is because there is a distinguished triangle X → 0→ X [1]→ X [1] in D, which corresponds to
a tilting rectangle in R× [−π

2 ,
π
2 ]. By Proposition 4.4, this recovers a well known property of cluster

structures in the categorical settings: Every indecomposable projective P is incompatible with its
shift P [1].

Finally, we remark that our compatibility condition differs from the condition used by Igusa and
Todorov in [IT15], which is based on Ext spaces. It also differs from the condition for E-clusters
used by Igusa, Todorov, and the fourth author in [IRT20], which is based on the Euler product.

5.2. T-clusters. In this subsection, we define T-clusters. Since our compatibility condition is based
on tilting rectangles, we use the prefix T-, which also distinguishes our compatibility condition from
those in [IT15] and [IRT20]. While the T-clusters do not form a cluster structure in the sense of
[BI+09], they have many properties of clusters. In particular, in Section 5.3 we show that mutation
of T-clusters is relatively well behaved.

Definition 5.4. A T-cluster T is a maximal collection of pairwise compatible indecomposable
objects in CZ . That is, a collection of indecomposable objects T in CZ is a T-cluster if every pair
X and Y in T are compatible, and if for each Z /∈ T there exists X ∈ T such that X and Z are
incompatible.

Example 5.5. We provide a list of basic examples of T-clusters.

(1) The set of indecomposable objects in Z ( CZ is a T-cluster. Similarly, the set of indecom-
posable objects in Z[1] ( CZ is a T-cluster.

(2) Let ℓ be a smooth curve in D such that the slope of ℓ at each point is less than −1, greater
than +1, or equal to∞ and, for all a ∈ (−π

2 ,
π
2 ), there is an A ∈ ℓ such that the y-coordinate

of A is a. If ℓ ( Ind(CZ), then T = {A | A ∈ ℓ} is a T-cluster.
(3) Let Z ′ be a zigzag in D distinct from Z and Z[1]. If Ind(Z ′) ( Ind(CZ), then Z ′ is a

T-cluster.

Remark 5.6. Note that all of the T-clusters in Example 5.5 are connected as subsets of R×(−π
2 ,

π
2 ).

We warn the reader that this is not always the case. In fact, T-clusters may be totally disconnected
in R× (−π

2 ,
π
2 ). We further discuss this phenomenon through an example in Section 5.2.1.

5.2.1. A totally disconnected example. Suppose Z consists of one line segment of slope 1. Without
loss of generality, assume the indecomposable corresponding to the point (0, 0) is in Z. We use
a recursive process to modify Z and obtain a totally disconnected T-cluster. In fact, we produce
a sequence of T-clusters T0, T1, T2, . . . where the limit of the process, denoted by T∞, is a totally
disconnected set which is maximally compatible.

As already stated in Example 5.5, Z is a T-cluster. Set T0 = Z. Now we aim to explicitly describe
T1, for which the reader may find it helpful to refer to Figure 8 as we construct this new T-cluster.
Choose an integer-indexed subset X = {(xi, yi) | i ∈ Z} of T0 = Z such that

• yi < yi+1, for all i ∈ Z;
• X has two accumulation points, exactly at (−π

2 ,−
π
2 ) and (π2 ,

π
2 ).

For each i ∈ Z, let Xi be the indecomposable object in Z corresponding to (xi, yi), and note that
each of these points has the form Xi = (tiπ −

π
2 , tiπ −

π
2 ) for some ti ∈ (0, 1).
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Figure 8. The indecomposable objects of T1 drawn as filled points in Ind(D) (

R2. The open circles are the described limit points, but are not objects in D.
Additionally, Ei and Fi are indicated by squares, for i ∈ {−1, 0, 1}.

For each Y ∈ Z \ X , there exist i ∈ Z and s ∈ (0, 1) such that Y corresponds to the point

(1− s)(xi, yi) + s(xi+1, yi+1).

For each Xi, let

Ei :=
(
xi+1 + (xi +

π

2
), yi+1 − (yi +

π

2
)
)
,

Fi :=
(
xi+1 + (xi +

π

2
) + (xi+1 − xi), −

π

2

)
.

Then, by f1(Y ) we denote the indecomposable in CZ which corresponds to the point (1−s)Ei+sFi.
Now, we set

T1 := {Xi} ∪ {f1(Y ) | for all i ∈ Z, Y 6= Xi}.

As it can be seen via the dashed lines in Figure 8, from the construction it follows that each of
the open line segments from Ei to Fi form the right side of an isosceles triangle. This triangle is
similar to the one defined by Z, Z[1], and part of y = −π

2 . Inside each of the smaller triangles, we
repeat the construction of T1, except scaled and reflected about the vertical axis of symmetry in the
triangle. This produces T2, with its own set of smaller triangles.

We repeat the above process on the smaller and smaller triangles obtained. The limit of this
process, which we denote by T∞, contains all the discrete points from Tn, for all n ≥ 1. In the
limit, the line segments between the Ei’s and Fi’s vanish and we are left with a totally disconnected
(indeed discrete) set.

Finally, note that the construction guarantees that each Tn is a maximally compatible set in CZ .

Proposition 5.7. With the same notation as above, the set T∞ is a T-cluster.

Proof. Let W be an indecomposable in CZ such that W is not in T∞. It is straightforward to check
that if W is not in Tn for all n ≥ 0, then there exists X ∈ T∞ such that W and X are incompatible.

Suppose W is in Tn for some n ≥ 0. Without loss of generality, suppose W is in Tn but not Tn+1.
Then W was on a line segment obtained from the construction of Tn. Further, there is a sub-segment
of a line segment in Tn+1, whose complement is also a sub-segment, such that W is incompatible
with each X in the sub-segment (see Figure 9). Up to symmetry, we have the following picture
which contains only the relevant part of Tn+1. An infinite sequence of points used to construct Tn+2

approaches the upper end of the red line segment. Then there exist infinitely many such Xi in the
sequence that are incompatible with W . Each of the Xi in the sequence is in Tn+2 and in T∞. This
concludes the proof. �
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Figure 9. A visual aid to the proof of Proposition 5.7. There are infinitely many
objects in both the red line segment and T∞.

5.3. Mutation of T-clusters. We now describe the notion of mutation for T-clusters, which we
call T-mutation (Definition 5.10). Again, the reason for the ‘T-’ prefix is to indicate that our notion
of mutation is based on the compatibility condition, which itself relies on tilting rectangles. Before
we provide further details, we warn the reader that unlike in the standard setting of cluster algebras,
for an arbitrary object X in a T-cluster T there may not be a mutation at X .

To describe the notion of T-mutation, we need the following technical lemma.

Lemma 5.8. Let T be a T-cluster. Suppose X ∈ T and Y /∈ T such that (T \ {X}) ∪ {Y } is a
compatible set. Then there exists a tilting rectangle in CZ whose left and right corners are X and Y
(or Y and X) and whose top and bottom corners are in T . Moreover, for an indecomposable Z in
the interior or on a side of this tilting rectangle, if Z is not a corner vertex then it is not in T .

Proof. Because T is a T-cluster and further (T \{X})∪{Y } is also a compatible set, it follows that
X and Y cannot be compatible. Hence, there exists a tilting rectangle in CZ whose left and right
corners are respectively X and Y , or dually Y and X . Since the cases are symmetric, without loss
of generality, we only treat the former case.

Let T1 and T2 respectively denote the top and bottom vertices of the rectangle. We aim to show
T1 and T2 belong to T . Since X 6∼= Y , we must have T1 6∼= T2. For the sake of contradiction, suppose
T1 /∈ T and further T1 6= 0. (The case for T2 is similar.)

Since T1 /∈ T , there must exist Z in T such that T1 and Z are incompatible. Since X and T1 are
joined by a diagonal, we conclude Z 6∼= X . Similarly, Z 6∼= Y . In the following diagram, consider the
regions labelled 1, 2, 3. (If T2 = 0, we only have regions 1 and 3.)

X

Y

T2

T1
1

2

3

We show that Z cannot be to the left of T1. This is because if Z is to the left of T1, it must be
in regions 1, 2, or 3. But, Y is compatible with all objects in T \ {X}, and therefore Z cannot be
in regions 1 or 2. Further, Z cannot be in regions 2 or 3, because Z is compatible with X .

Similarly, one can show that Z cannot be to the right of T1. This gives the desired contradiction
and implies that T1 belongs to T .
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To prove the last assertion of the lemma, suppose Z is on a side of the tilting rectangle but is
not one of the corners. Then one may check Z is incompatible with either X or Y . If Z is in the
interior of the tilting rectangle, it is compatible neither with X nor with Y . Thus, Z /∈ T . �

Intuitively, if we may take out X and replace it with Y , then there is a tilting rectangle whose top
and bottom corners are in T and nothing “between” the corners may be in T . We use the preceding
lemma and this intuition to prove the following proposition. In particular, the proposition implies
that for a given T-cluster T and a given indecomposable object X in it, if the mutation at X is
possible, then it is unique.

Proposition 5.9. Let T be a T-cluster, and let X be in T such that there exists Y /∈ T where
(T \ {X}) ∪ {Y } is a compatible set. Then the following are true.

(1) The set T ′ := (T \ {X}) ∪ {Y } is a T-cluster.
(2) If there exists Y ′ such that (T \ {X}) ∪ {Y ′} is also a compatible set, then Y = Y ′.

Proof. We start with the first statement. If the statement fails, there is an object Z in CZ such
that Z is compatible with T ′ but not with T . This implies that Z is incompatible with X but it
is compatible with Y . By Lemma 5.8, there exists a tilting rectangle XT1Y T2 (or Y T1XT2) where
T1 and T2 are in T . By the same lemma, if M is a point in the tilting rectangle which is not on a
corner, then M is incompatible either with X or with Y .

Without loss of generality (by symmetry), assume the tilting rectangle is XT1Y T2. Consider the
regions labelled 1 through 7 in the following picture.

X

Y

T2

T1

3

1

2

4
6

7

5

Note that Z must be in one of the labelled regions, or else Z is compatible with X or is incompatible
with Y . First, observe that Z cannot be in region 1, because then Z would be to the left of Y [−1]
and thus not in CZ . Next, Z cannot be in regions 2 or 3, because Z would be incompatible with T2

or T1, respectively. Further, Z cannot be in region 4, because otherwise Z would be incompatible
with both T1 and T2.

Now on the right, Z cannot be in regions 5 or 6, since then Z would be incompatible with T1 or
T2, respectively. Finally, Z cannot be in region 7, since Z would not be compatible with both T1

and T2. Thus, if Z is not in T and Z 6= Y , then Z is not in T ′.
For (2), consider a Y ′ such that (T \ {X})∪ {Y ′} is a compatible set. We see that Y ′ cannot be

in any of the labelled regions but must be incompatible with X . By Lemma 5.8 again, Y ′ cannot
be on the interior or sides (without corners) of the tilting rectangle XT1Y T2. Thus Y

′ = Y . �

Definition 5.10. Let T be a T-cluster. Suppose X ∈ T and Y /∈ T such that T ′ := (T \{X})∪{Y }
is also a T-cluster. Define µ : T → T ′ by

µ(T ) =

{
Y T = X

T otherwise,

and call it the T-mutation of T at X .

Remark 5.11. Proposition 5.9 asserts that the T-clusters and T-mutations yield a cluster theory
in the sense of [IRT20, Definition 5.1.1]. The primary difference between a cluster structure as in
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[BI+09] and a cluster theory in [IRT20] is that, for a cluster theory, we do not require that every
object be mutable. The uniqueness of the mutation, if it exists, is required by both cluster structures
and cluster theories.

Example 5.12. Suppose Z has at least 3 line segments, and let T = Z. Also, let ℓi be a line
segment of Z and X be an interior point of ℓi. Then any nondegenerate rectangle ♦ in CZ whose
left corner is X has a side that intersects T = Z at infinitely many points. By Lemma 5.8, there is
no T-mutation T → T ′ at X with T ′ 6= T .

X

Y

Y [1]

In contrast, choose Y to be the intersection of ℓi and ℓi+1, where ℓi has slope −1. (By our assumption
on Z, there exists such a Y .) Then, we can find a T-mutation of T at Y , given by T ′ := (T \{Y })∪
{Y [1]}. For a given zigzag Z, all the possible ways to T-mutate Z are discussed in Section 6.3.

6. The associahedron

Throughout this section, Z denotes a zigzag in D (Definition 3.1), and by CZ we denote the
associated full subcategory in D introduced in Notation 5.1. Moreover, we fix a permissible function
c : Ind(D) ⊔ {0} → R (Definition 3.17) such that c(X) > 0 for all indecomposable objects X in CZ .

6.1. Solutions. As recalled in Section 2.1, in the finite setting there is a correspondence between
the clusters of the associated cluster algebra and the solutions of certain systems of equations arising
from the mesh relations, as discussed in [BD+18]. To employ this idea in the continuous setting, we
first generalize the notion of a solution with respect to a system of linear equations induced by the
continuous deformed mesh relations. Then, we connect T-clusters to such solutions and show that
for a solution Φ and each indecomposable X in CZ , the possible values of Φ(X) are bounded.

Definition 6.1. With the notations as above, a function Φ : Ind(D) ⊔ {0} → R is called a solution
with respect to c in CZ if it satisfies the following conditions.

• Φ satisfies the continuous deformed mesh relations over c (Definition 3.18), and
• Φ(X) ≥ 0 for each indecomposable X in CZ .

Since our ultimate goal is to relate these solutions toT-clusters, we are only interested in Φ|Ind(CZ ).
However, by Proposition 3.24, one can extend any such restricted function to all of Ind(D) ⊔ {0}.
We note that this extension is unique, thus two solutions Φ1 and Φ2 are the same if and only if they
are the same on CZ .

Proposition 6.2. Let Φ : Ind(D) ⊔ {0} → R be a solution with respect to c in CZ . If there exists a
T-cluster T such that Φ(X) = 0 for all X ∈ T , then Φ(X) > 0 for all X /∈ T .

Proof. Let W be an indecomposable in CZ such that W is not in T . Using the same notation as in
Definition 2.5, there exists X ∈ T and a tilting rectangle ♦ = XYWZ or ♦ = WYXZ contained in
CZ . In particular, since Y and Z are respectively the top and bottom vertices in either rectangle,
and because Φ satisfies the continuous deformed mesh relations over c, we have

Φ(X) + Φ(W ) = Φ(Y ) + Φ(Z) +

∫

♦

c.
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The right side of the equation is positive since c takes positive values and ♦ is nondegenerate. �

Recall that any zigzag contained in CZ is a T-cluster (Example 5.5). By Proposition 3.24, this
means that all such clusters have a unique solution with respect to c in CZ . The study of arbitrary
T-clusters is more complex. In particular, there are totally disconnected T-clusters, such as the
example in Section 5.2.1. In T1 (Figure 8) from the same section, one may instead fill the smaller
triangles on the bottom with a scaled down version of any cluster that does not intersect the top
point of the triangle or the left side. Furthermore, if one begins with a different zigzag, perhaps with
many line segments, there are even more possible constructions.

Question 6.3. For each T-cluster T , does there exist a solution Φ with respect to c in CZ such
that Φ(X) = 0 for all X ∈ T ? For which T-clusters is such a solution unique (when it exists)?

Let gZ-vectors (Definition 4.1) and the rays u and d be as defined in Section 4.2. Let X be an
indecomposable object in CZ which is neither in Z nor in Z[1]. Suppose GX is the region in CZ
bounded by Z, u, and d. The reader may refer back to Figure 7 for a depiction of such a GX .

Theorem 6.4. Let X be an indecomposable object in CZ . There exists a bound ξX ∈ R>0 such that
Φ(X) ≤ ξX , for all solutions Φ with respect to c in CZ .

Proof. Let Φ be a solution with respect to c in CZ . We first show that the possible values of the
objects in Z and Z[1] are bounded.

Let X ∈ Z. Let ♦ be the tilting rectangle in CZ whose left and right corners are X and X [1],
respectively. Note that Φ(X [1]) ≥ 0, and therefore the maximum possible value of Φ(X) is

∫
♦
c.

Similarly, Φ(X [1]) ≤
∫
♦
c.

Now let X be an indecomposable not in Z and not in Z[1]. Let Z0, . . . , Zn be the objects in Z
corresponding to the nonnegative coordinates of gZ(X). Using a similar argument to that in the
proof of Proposition 4.2, we see that

Φ(X) =






∑
odd i

Φ(Zi)−
∑

even i

Φ(Zi) +GX Z0 is left of Z1

∑
even i

Φ(Zi)−
∑

odd i

Φ(Zi) +GX Z0 is right of Z1.

Suppose Z0 is left of Z1. The other case is similar. Let ♦i be the rectangle in CZ whose left and
right corners are Zi and Zi[1], respectively. By using the minimum values of the even Φ(Zi)’s and
the maximum values of the odd Φ(Zi)’s, it follows that

Φ(X) ≤ GX +
∑

odd i

(∫

♦i

c

)
.

Now, choose ξX to be the right side of the displayed inequality. This completes the proof. �

6.2. Associahedron. Now we are equipped with the required tools to describe the titular object of
the paper: a continuous associahedron. First, let us fix the ambient space where this associahedron
will be realized. By

∏
Ind(CZ) R, we denote the real vector space whose coordinates are indexed by

indecomposable objects in CZ .
In this subsection, we introduce the continuous associahedron and show that it is a convex object

in the ambient space
∏

Ind(CZ) R. Further, we prove that the solutions corresponding to T-clusters

are extremal points (that is, on the boundary). To each function Φ : Ind(D) ⊔ {0} → R, one can
naturally associate a vector in

∏
Ind(CZ ) R. In particular, for a fixed c, we are interested in those

vectors corresponding to the solutions with respect to c in CZ .

Definition 6.5. For each fixed c, the continuous associahedron UZ,c is the subset of
∏

Ind(CZ ) R

consisting of those vectors corresponding to the solutions with respect to c in CZ .
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Remark 6.6. By Proposition 3.24, each solution Φ with respect to c in CZ is determined by the
values Φ takes on any zigzag in CZ . In particular, if we know the values of Φ on Z[1] then we
may recover the values of Φ on the rest of CZ . So, one may consider the projection of UZ,c onto∏

Ind(Z[1])R without losing any information.

As recalled in Section 2.1, in [BD+18] the authors give another characterization of Ac in terms
of the g-vectors of indecomposable modules associated to elements of I. (See Theorem 2.3 and the
paragraphs preceding it.) That is to say, Ac is obtained as the projection of Uc via a map determined

by the g-vectors of those indecomposable objects associated to elements of I [1]. Consequently, in
the setting of Dynkin quivers, they also recover Ac as a polytopal realization of the g-vector fans.
This approach has been further studied and developed in [PP+19]. Inspired by such results, it is
natural to hope for an analogous realization of the associahedron in the continuous setting. Namely,
to study the projection of UZ,c onto

∏
Ind(Z[1])R determined by the gZ-vectors corresponding to

each Z in Ind(Z[1]). This direction of work requires further investigation.

We recall that a subset X of a vector space V is said to be convex if for each pair of points
A,B ∈ X and every t ∈ [0, 1], the linear combination tA+ (1− t)B is in X.

Theorem 6.7. The set UZ,c is convex in
∏

Ind(CZ) R.

Proof. Let Φ0 and Φ1 be solutions to c in CZ . For each t ∈ (0, 1), define Φt as

Φt(X) := t · Φ1(X) + (1− t) · Φ0(X).

For each tilting rectangle ♦ = XYWZ in CZ , we have the following equations from Φ0 and Φ1:

Φ0(X) + Φ0(W ) = Φ0(Y ) + Φ0(Z) +

∫

♦

c

Φ1(X) + Φ1(W ) = Φ1(Y ) + Φ1(Z) +

∫

♦

c.

Since
∫
♦
c is fixed, we have

Φt(X) + Φt(W ) = Φt(Y ) + Φt(Z) +

∫

♦

c.

Thus, any line segment in
∏

Ind(CZ ) R connecting two points in UZ,c is entirely contained in UZ,c. �

The previous theorem and its proof allow us to make the following definition.

Definition 6.8. Let Φ ∈ UZ,c be a solution with respect to c in CZ . We say Φ is on the boundary
of UZ,c if there exists a line segment ℓ parameterized by t ∈ [0, 1] satisfying the following conditions.

• Φ = Φ1 and Φ0 ∈ UZ,c are the distinct endpoints of ℓ (and so ℓ ( UZ,c).
• If ℓ′ is a parameterized line segment that contains ℓ such that Φ1 is not an endpoint of ℓ′,

then ℓ′ is not contained in UZ,c.

We call the set of all such Φ the boundary of UZ,c.

Theorem 6.9. Let T be a T-cluster and Φ a solution with respect to c in CZ such that Φ(X) = 0
for all X ∈ T . Then Φ is on the boundary of UZ,c.

Proof. Let X ∈ T , Φ1 = Φ, and T ′ be any zigzag contained in CZ that does not contain X . By
Proposition 3.24, there is a unique solution Φ0 such that Φ0(X

′) = 0 for all X ′ ∈ T ′. For all t ∈ R

and indecomposables X in CZ , let

Φt(X) := t · Φ1(X) + (1− t) · Φ0(X).

Let ε > 0 and note Φ1+ε(X) = −ε · Φ0(X). Since X /∈ T ′, Proposition 6.2 asserts that Φ0(X) > 0.
Thus, Φ1+ε(X) < 0 and so Φ1+ε /∈ UZ,c. Therefore, Φ = Φ1 is on the boundary of UZ,c. �
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6.3. T-mutation a continuous associahedron. Recall that in the finite setting (Section 2.1),
the vertices of the ABHY associahedron correspond to the clusters, the facets are in bijection with
cluster variables, and the mutation of clusters corresponds to the edges which connect two vertices
of the associahedron. These edges are given by the intersection of the hyperplanes associated to the
mutable cluster variables. (For full details, see [BD+18].)

In this subsection, we discuss analogous phenomena in the continuous setting. In particular, we
describe the connections between T-mutations and the continuous associahedron UZ,c. Namely, we
show that for two different T-clusters, each of which corresponds to a unique solution in UZ,c, the
T-mutation can be seen via UZ,c.

Notation 6.10. For an indecomposable object X in CZ , by HZ,c(X) we denote the hyperplane in∏
Ind(CZ) R associated to X , which is the set of functions Φ : Ind(CZ)⊔{0} → R such that Φ(X) = 0.

Theorem 6.11. Let T and T ′ be T-clusters with respective unique solutions Φ and Φ′ in UZ,c. The
following are equivalent.

(1) There is a T-mutation µ : T → T ′, where T ′ = (T \{T0})∪{T1}, with T0 ∈ T and T1 ∈ T ′.
(2) There is a line segment {Φt | t ∈ [0, 1]} which connects Φ to Φ′ in UZ,c such that Φ0 = Φ,

Φ1 = Φ′, and Φt(X) = 0, for all X ∈ T ∩ T ′.

The line segment in the second part is given by
(

⋂

X∈T ∩T ′

HZ,c(X)

)
∩ UZ,c,

where T ∩ T ′ = T \ {T0} = T ′ \ {T1}.

Proof. If (2) holds, to get (1) apply Proposition 5.9 to the equation T ∩ T ′ = T \ {T0} = T ′ \ {T1}.
Now assume (1). Let Φ0 = Φ and Φ1 = Φ′. Moreover, for all indecomposable X in CZ define

Φt(X) = t · Φ1(X) + (1 − t) · Φ0(X),

for t ∈ [0, 1]. Then, for any X in T ∩ T ′ we have Φt(X) = 0. Since UZ,c is convex (Theorem 6.7),
we have the desired line segment. We know Φ and Φ′ are unique, so we have the singleton sets:

{Φ} =

(
⋂

X∈T

HZ,c(X)

)
∩ UZ,c and {Φ′} =

(
⋂

X∈T ′

HZ,c(X)

)
∩ UZ,c.

By Proposition 5.9, the line segment is the desired intersection. �

For the next proposition, recall the definition of a right vertex (Definition 3.1). An example of
the setting and statement of the proposition can be seen in Figure 10.

Proposition 6.12. Suppose Z has n right vertices, and let MZ be the set of T-clusters obtained
from Z via finitely many T-mutations. Then MZ and the edges in UZ,c corresponding to the T-
mutations form the 1-skeleton of an n-dimensional hypercube in UZ,c. In particular, MZ is finite.

Proof. We first note that the only T-mutable objects in Z are the right vertices (see Example 5.12).
For a vertex X , consider the mutation Z → (Z \ {X}) ∪ {X [1]}. Choose a different right vertex Y
of Z. We may also mutate

(Z \ {X}) ∪ {X [1]} → (((Z \ {X}) ∪ {X [1]}) \ {Y }) ∪ {Y [1]}.

We note that the mutation of X and Y are independent of each other. Further, observe that X and
Y were chosen arbitrarily, therefore this argument holds for all n right vertices of Z.

We then have a bijection from the set of T-clusters that can be obtained from Z in finitely many
T-mutations to the set {0, 1}n. This is in particular the number of vertices of an n-dimensional
hypercube. The commutativity of the mutations yields the n-dimensional hypercube structure. �
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Z

(Z \ {X1}) ∪ {X1[1]}

(Z \ {X2}) ∪ {X2[1]}

(Z \ {X3}) ∪ {X3[1]}

X1, X2, X3

X1, X2, X3[1]

X1, X2[1], X3

X1, X2[1], X3[1]

X1[1], X2, X3

X1[1], X2, X3[1] X1[1], X2[1], X3[1]

X1[1], X2[1], X3

Figure 10. We illustrate possible mutations where T = Z has 3 right vertices:
X1, X2, X3 (Definition 3.1). On the left, we have the web-like effect for mutation at
the unique Φ in UZ,c such that Φ(X) = 0 for all X ∈ Z. The vertices represented
by the webbing between the lines are not T-mutable. On the right, we have the
mutation structure starting with a zigzag Z with 3 right vertices. Each facet corre-
sponds to one of X1, X2, X3, X1[1], X2[1], and X3[1], and the vertices are labelled
by the facets they belong to. Thus, the vertices are the corresponding T-clusters.

6.4. Finite embeddings. The main goal of this section is to study the relationship between the
cluster structures of type An and the T-clusters. In particular, in Subsection 6.4.1 we return to
Example 5.5 (2) to prove a technical lemma (Lemma 6.13) that we need to deduce Theorem 6.18.
In Subsection 6.4.2, we use the results of the first subsection to complete our argument.

6.4.1. Using Example 5.5 (2). We now show that each T-cluster T as in Example 5.5 (2) has a
unique solution Φ in UZ,c such that Φ(X) = 0 for all X ∈ T .

Let ℓ be a curve between Z and Z[1] such that the slope of ℓ at each point is greater than 1, less
than −1, or equal to ∞. Additionally, suppose that for all a ∈ (−π

2 ,
π
2 ), there is an A ∈ ℓ such that

the y-coordinate of A is a. Assign Φ(A) = 0 for all A on ℓ.
Now we construct a tilting rectangle that contains part of ℓ. It may be helpful for the reader to

refer to Figure 11 while reading this construction. Let X be an indecomposable in CZ such that X
is not on ℓ and X is to the left of ℓ. Without loss of generality, we assume that the rays emanating
from X at ±45◦ intersect ℓ. Due to our conditions on ℓ, there is a unique X ′ not on ℓ such that the
tilting rectangle with left and right corners X and X ′ has top and bottom corners on ℓ. We create
a sequence of regions R1 ( R2 ( · · · such that

Φ(X) =

∫

limn→∞ Rn

c.

We now choose X such that X and X ′ above are both in CZ . Let ♦ be the tilting rectangle whose
left and right corners are X and X ′, respectively, and whose top and bottom corners are on ℓ. Then

Φ(X) + Φ(X ′) =

∫

♦

c.

We subdivide the rectangle with objects Y, Y ′, Z, Z ′, each distinct from each other and from X,X ′,
such that each of the four smaller rectangles share a corner on ℓ (illustrated in Figure 11). Let R1

be the tilting rectangle whose left corner is X , top corner is Y , bottom corner is Z, and right corner
is on ℓ. Then we have

Φ(X) = Φ(Y ) + Φ(Z) +

∫

R1

c.

In order for Φ to be a solution with respect to c in UZ,c, we must have Φ(X) ≥ 0, Φ(Y ) ≥ 0, and
Φ(Z) ≥ 0. Thus, we must have Φ(X) ≥

∫
R1

c. By a similar process, we create two smaller tilting

rectangles whose left corners are Y and Z, respectively, and whose right corners are on ℓ. Let R2 be
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X

X ′

Y

Y ′

Z

Z ′

ℓ

X

X ′

ℓ

Figure 11. On the left, we have the region R2 obtained in the processs of finding
a lower bound of Φ(X), where Φ is 0 on ℓ. On the right, we have the region R such
that Φ(X) =

∫
R
c.

the union of R1 and the two smaller rectangles. If we want to extend Φ to a solution with respect
to c in CZ , we must have Φ(X) ≥

∫
R2

c.
We continue defining successively larger regions R3 ( R4 ( · · · similarly. The limit R =

limn→∞ Rn is the region inside ♦ on the left of ℓ, and we see Φ(X) ≥
∫
R
c. Denote by R′ the

region in ♦ on the right of ℓ so that R ∪ R′ ∪ ℓ = ♦. Then Φ(X ′) ≥
∫
R′ c by the same argument.

Since Φ(X)+Φ(X ′) =
∫
♦
c, we must have Φ(X) =

∫
R
c and Φ(X ′) =

∫
R′ c. Repeating this argument

for each point in R shows that Φ extends uniquely to all of ♦.

Lemma 6.13. Let ℓ be a curve in CZ as in Example 5.5 (2). Then there is a unique solution Φ
with respect to c in CZ such that Φ(A) = 0, for all A ∈ ℓ.

Proof. Note that ℓ ( Ind(CZ). Since Z and Z[1] have finitely many line segments, we find finitely
many tilting rectangles {♦i}ni=1 in Ind(CZ) with the following three properties. First, ℓ (

⋃n
i=1 ♦i.

Second, for 1 ≤ i < n, the bottom corner of ♦i is the top corner of ♦i+1. Third, top corner of ♦1

and bottom corner of ♦n have y-coordinates π
2 and −π

2 , respectively. By the construction preceding
the lemma, we extend Φ uniquely on each of these ♦i’s. The left sides of all ♦i’s form a zigzag in
Ind(CZ). By Proposition 3.24, there is a unique extension of Φ as stated in the proposition. �

6.4.2. Construction of the embeddings. In this subsection we employ our argument in Section 6.4.1
to prove Theorem 6.18. Throughout the section, we use our notation from Section 2.1. For the
theorem, we consider the ascending linear orientation of An, for n ≥ 2, meaning that the An quiver
is linearly ordered and Pi →֒ Pj if i > j. There is an exact embedding rep(A2)→ rep(A3) determined
by sending P1 7→ P1 and P2 7→ P2. In general, there is an exact embedding rep(An) → rep(An+1)
by sending Pi 7→ Pi, for 1 ≤ i ≤ n. Also, for simplicity, we assume the zigzag Z consists of exactly
one line segment, which has slope +1. Otherwise, the computations become exceedingly involved.

We construct a T-cluster TU (Figure 12) similar to T1 from Section 5.2.1 (see Figure 8). We
consider {Xi = (xi, yi) | i ∈ Z<0}, as a sequence of indecomposables in Z such that j < i implies
yj < yi and limj→−∞ yj = −π

2 . Let (x0,
π
2 ) be the top boundary point of Z. For i < 0, we define
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Figure 12. The T-cluster TU used to construct the finite embeddings.

Ei as in Section 5.2.1 and a vertical line segment ℓi:

Ei :=
(
xi+1 + (xi +

π

2
), yi+1 − (yi +

π

2
)
)
,

ℓi :=
{
(x, y) | x = xi+1 + (xi +

π

2
), y < yi+1 − (yi +

π

2
)
}
.

Note that ℓi does not include Ei. Let

TU = {Xi | i < 0} ∪

(
⋃

i<0

ℓi

)
.

As in T1, we have the smaller triangles along the bottom. However, TU has a rightmost triangle on
the bottom. One may verify that TU is a T-cluster.

By Lemma 5.8, only the discrete set of points on Z are T-mutable. As in Section 4.1, D♥ denotes
the heart of the t-structure induced by Z in the category D.

Proposition 6.14. For n ≥ 2, there is an exact embedding rep(An) → D♥ of abelian categories
determined by P−i 7→ Xi, for −n ≤ i ≤ −1. The embedding factors as rep(An)→ rep(An+1)→ D

♥.

Proof. From the paragraph preceding the proposition, it follows that all pairwise distinct indecom-
posable projective objects in rep(An) are sent to pairwise distinct indecomposable projective objects
in D♥. Furthermore, for any two indecomposables E,F in rep(An), the space of morphisms from
E to F in rep(An) is isomorphic to the space of morphisms of the corresponding indecomposables
in D♥. From this, one may check that the embedding is exact. The factorization follows from the
definitions of the embeddings. �

The indecomposable objects of Db(An) and D are shifts of copies of rep(An) and D♥, respectively.
The following proposition then follows from straightforward computations.

Proposition 6.15. With the same notation as above, for each n ≥ 2, there is a triangulated
embedding Θn : Db(An)→ D determined by sending P−i[m] → Xi[m], for all m ∈ Z. Furthermore,
the embedding factors as Db(An)→ Db(An+1)→ D.

Consider again the T-cluster TU defined at the beginning of this section (depicted in Figure 12).
The following notation will be of use in the proof of Theorem 6.18. Recall I+ as defined in Section
2.1, page 5.

Notation 6.16. Let S be a cluster of type An consisting of indecomposables in add(I+). Using Θn

in Proposition 6.15, set S̃ := (TU \ {Xi}i≥−n) ∪Θ(S), where {Xi | i ∈ Z<0} is as before.

Proposition 6.17. With the same notation TU as above, there is a unique solution Φ with respect
to c in CZ such that Φ(X) = 0, for all X ∈ TU .
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Proof. Let Φ(X) = 0 for all X ∈ TU . Then Φ is defined on a countable number of points on Z, but
not on all of Z. By Lemma 6.13, if we consider each of the small triangles in the bottom of Figure 8
as a triangular patch, this Φ uniquely extends to all of them. From here it is straightforward to
check that we may uniquely extend Φ to all of Z. Then, Proposition 3.24 implies that Φ uniquely
extends to all of CZ . Thus, we have a unique Φ as in the statement of the proposition. �

For each An, by Proposition 6.15, we may consider add(I+) as a subcategory of CZ . The almost
split triangles in add(I+), inherited from Db(An), determine tilting rectangles in CZ . Assign to
each indecomposable E in rep(An) the value of

∫
c over the corresponding tilting rectangle in CZ

determined by the almost split triangle starting with E. While not integer values, we may still find
values for the deformed mesh relations in add(I+). Denote by Un,c the associahedron obtained from
An using c in this way.

Theorem 6.18. There is an infinite sequence of embeddings

U2,c →֒ U3,c →֒ · · · →֒ Un,c →֒ Un+1,c →֒ · · ·UZ,c.

For n ≥ 2, the composition of embeddings Un,c → UZ,c takes the point corresponding to any cluster

S to the unique solution Φ with respect to c in CZ such that Φ(X) = 0 for all X ∈ S̃ (Notation
6.16). Furthermore, the composition Un,c → UZ,c takes a mutation edge to a T-mutation edge.

Proof. We first show that each Θn|add(I+) in Proposition 6.15 takes clusters in add(I+) to T-clusters
in CZ . Then we show that Θn|add(I+) takes mutations to T-mutations.

Let S be a cluster in add(I+) and S̃ be as in Notation 6.16. Suppose Y ∈ CZ but Y /∈ S̃. We

show that there must exist a T ∈ S̃ such that T and Y are incompatible. If there exists T ∈ ℓi,
for some i < 0, such that T and Y are incompatible we are done. So, for every i < 0, suppose Y
is compatible with all X ∈ ℓi. Using Figure 12, we see the rays extending from Y in the negative
y-direction with slope −1 and +1 must intersect some Ej and Ei, respectively. Otherwise, one of
the rays intersects one of the ℓi’s, which contradicts our assumption. This is because we took An to
be the linearly ordered quiver with Pi →֒ Pj if i > j.

If Ei = E−1 then Y = Xj [1] because Y ∈ Ind(Z[1]), and there is a distinguished triangle

Xj → 0 → Y
∼=→ Xj [1]. If Ei 6= E−1, there is a distinguished triangle Xj → Xi+1 → Y → in

D with all terms in CZ . In either case, we use the fact that Θn is a triangulated embedding by
Proposition 6.15. This implies there is a distinguished triangle Pj → W → F → in Db(An) whose

terms are in add(I+), such that Y = Θn(F ). Since Y /∈ S̃, we have F /∈ S. Hence, there is S ∈ S
such that S and F are incompatible. Using Proposition 6.15 again, we have Θn(S) and Y are

incompatible. Now Θn(S) is the desired T ∈ S̃ such that T and Y are incompatible. This shows
that each Θn|add(I+) in Proposition 6.15 takes clusters in add(I+) to T-clusters in CZ .

Now, we let µ : S → S ′ be a mutation of clusters in add(I+). Then S̃ and S̃ ′ differ by one

element. Thus, by Proposition 5.9, S̃ → S̃ ′ is a T-mutation.
We finish the proof by showing that each Θn induces a geometric embedding Un,c → UZ,c. We

index the coordinates of the ambient space
∏

I+ R of Un,c by the indecomposables in I+. Then
Θn|add(I+) induces a geometric embedding

∏
I+ R →֒

∏
Ind(CZ ) R. Note that the deformed mesh

relations in add(I+) (Section 2.1, Equation (2)) satisfy the continuous deformed mesh relations in
CZ (Definition 3.18). Thus, the embedding takes nonnegative solutions to nonnegative solutions.
Given our embeddings, for each n ≥ 2 we may consider an An cluster and complete it to an An+1

cluster by including the projective Pn+1. By this assumption and the paragraph before the theorem,
the deformed mesh relations for An can be viewed as a set of deformed mesh relations for An+1.

Furthermore, for each An cluster S, there exists a sequence of finitely many mutations {µi}
m
i=1

such that µm · · ·µ1 takes S to the cluster of projective indecomposables. Therefore, by our previous

argument, the corresponding sequence of T-mutations of S̃ forms a finite sequence that takes S̃ to

TU . Then by Proposition 6.17, for each S̃ above, there is a unique solution Φ with respect to c in
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CZ such that Φ(X) = 0, for all X ∈ S̃. Finally, since each Θn takes An clusters to T-clusters and
mutations to T-mutations, Theorem 6.11 implies the final statement of the theorem. �

We remark that in Theorem 6.18 there is no Un,c (or indeed any discrete associahedron) that
immediately precedes UZ,c.
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(mimeographed)

Mathematical Institute, University of Bonn, Bonn, Germany.

Email address: kulkarni@math.uni-bonn.de

Mathematical Institute, University of Bonn, Bonn, Germany and Max Planck Institute for Mathe-

matics, Bonn, Germany.

Email address: jacobm@math.uni-bonn.de

Department of Mathematics and Statistics, Queen’s University, Kingston, ON, Canada.

Email address: mousavand.kaveh@gmail.com

Boston, MA

Email address: jobdrock@gmail.com

https://doi.org/0.1007/JHEP05(2018)096
https://arxiv.org/abs/1912.12948
https://doi.org/10.1017/CBO9780511614309
https://arxiv.org/abs/1808.09986
https://doi.org/10.1112/S0010437X09003960
https://doi.org/110.1016/J.AIM.2005.06.003
https://arxiv.org/pdf/1912.02840v2.pdf
https://doi.org/10.1016/j.aim.2005.06.003
https://doi.org/10.1007/s00493-014-2959-9
https://doi.org/10.4153/CMB-2002-054-1
https://doi.org/10.4007/annals.2003.158.977
https://arxiv.org/abs/1909.10499
http://arxiv.org/abs/2004.10740
https://doi.org/10.1007/s10468-014-9481-z
https://arxiv.org/abs/1906.06861
https://arxiv.org/abs/1910.04140
https://doi.org/10.1090/s0002-9947-1963-0158400-5

	1. Introduction
	2. Finite case and D
	3. Continuous deformed mesh relations
	4. Connections to representation theory
	5. T-clusters
	6. The associahedron
	References

