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Abstract
Multi-channel inputs offer several advantages over single-
channel, to improve the robustness of on-device speech recog-
nition systems. Recent work on multi-channel transformer, has
proposed a way to incorporate such inputs into end-to-end ASR
for improved accuracy. However, this approach is characterized
by a high computational complexity, which prevents it from be-
ing deployed in on-device systems. In this paper, we present
a novel speech recognition model, Multi-Channel Transformer
Transducer (MCTT), which features end-to-end multi-channel
training, low computation cost, and low latency so that it is suit-
able for streaming decoding in on-device speech recognition. In
a far-field in-house dataset, our MCTT outperforms stagewise
multi-channel models with transformer-transducer up to 6.01%
relative WER improvement (WERR). In addition, MCTT out-
performs the multi-channel transformer up to 11.62% WERR,
and is 15.8 times faster in terms of inference speed. We further
show that we can improve the computational cost of MCTT by
constraining the future and previous context in attention compu-
tations.
Index Terms: Transducer, Transformer network, Attention
layer, Multi-channel ASR, End-to-end ASR, Speech recogni-
tion, streamable ASR

1. Introduction
Voice assisted devices nowadays are usually equipped with mul-
tiple microphones for far-field speech recognition in noisy en-
vironments [1, 2]. By combining the spectral and spatial infor-
mation of target and interference signals captured from different
microphones, the beamforming approaches [3–8] have been
demonstrated to benefit automatic speech recognition (ASR) sys-
tems substantially for improved recognition accuracy [6, 8, 9].
The beamformer thus has become the standard module, typically
introduced before the ASR front-end and acoustic model.

The delay-and-sum and super-directive beamformers [10,11]
are among the most popular beamforming methods for ASR, the
latter one characterized by both its higher directivity and its lack
of robustness to imperfect microphone arrays [12]. With the
great success of deep neural networks, neural beamformers have
gained significant interest and are becoming the state-of-the-art
technologies in end-to-end all-neural ASR systems [13–22]. The
neural beamforming methods are generally categorized into fixed
beamforming (FBF) [18, 22] and adaptive beamforming (ABF)
methods [13–17,19,21] depending on whether the beamforming
weights are fixed or varied based on the input signals during
inference time.

While neural beamforming approaches are attractive for their
model capacity and direct access to the downstream ASR loss for
optimizing the beamforming weights, their performance is still
hindered by stagewise training. For example, the neural mask
estimators in ABF methods [13, 14] usually must be pre-trained
on synthetic data where the target speech and noise labels are

well defined. The mismatch of these statistics between synthetic
data and real-world data, however, can lead to noise leaking into
the target speech statistics [23], and deteriorate its finetuning
with the cascaded acoustic models.

Bypassing the need for stage-wise optimization and leverag-
ing the core ability of transformer networks [24], i.e. attention
on multiple modalities, a single integrated multi-channel trans-
former network was proposed [25] with both channel-wise and
cross-channel attention layers for joint beamforming and acous-
tic modeling. Despite its effectiveness, this model is hard to
apply to the streaming case such as on-device speech recog-
nition [26], which demands low latency and low computation.
First, it relies on an attention mechanism (encoder-decoder atten-
tion) over full encoder outputs to learn alignments between input
and output sequences [27]. Second, the input audio is encoded
in a bidirectional way, thus requiring a full utterance as input.
Furthermore, the attention computation increases quadratically
with the length of input sequences. Finally, the model size of
the multi-channel transformer increases w.r.t. the number of mi-
crophones and the number of time frames [25] due to the use of
affine transformations to aggregate multi-channel embeddings in
cross-channel attention layers. For these reasons, it is unsuitable
for on-device ASR systems with small memory.

There exist many streamable ways for alignment learning
such as connectionist temporal classification (CTC) [28], trans-
ducer [29], monotonic chunkwise attention (MoChA) [30], and
triggered attention [31], all of which can be integrated with trans-
former [24, 32–35]. In this work, we focus on transducer due to
its outstanding performance over traditional hybrid models for
streaming speech recognition [26, 36]. Several research efforts
have combined transformer with transducer for single-channel
speech recognition [37–40], but to the best of our knowledge, it
is the first time that transducer is integrated with multi-channel
transformer.

In addition to achieving streamable alignment learning, we
further make the encoders streamable via limiting future con-
text (right-context) and previous context (left-context) in both
channel-wise and cross-channel attention computations for multi-
channel audio encoding, and constraining previous context in
self attention for output sequence embedding as well. For cross-
channel attention computations, we also propose to use two
simple combiners, the average and concatenation of multiple
channels to create keys and values. In this way, our model
size does not increase as the number of microphone and input
sequence length increase.

In a far-field in-house dataset, we show that the proposed
multi-channel transformer transducer outperforms single channel
and stagewise neural beamformers cascaded with transformer
transducers by 7.14% and 6.01% WERR respectively. Moreover,
our model performs better than multi-channel transformer [25]
up to 11.62% WERR and is 15.8 times faster in terms of in-
ference speed (TP50). Finally, we improve the computational
cost of both multi-channel audio encoder and label encoder for
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Figure 1: An overview of the multi-channel transformer transducer (MCTT). (a) The high-level block diagram of MCTT (b) The
multi-channel audio encoder architecture, which contains NAE channel-wise attention layers (left) and cross-channel attention layers
(right). MHA represents multi-head attention, and C is the number of channels. (c) The label encoder architecture, which consists of
NLE self-attention layers with token labels as inputs. Note that the layer norm is applied in both MHA and feed-forward layers, but
omitted here.

streaming case, by limiting both the left and right context in
attention computations. Moreover, the performance gap between
the causal attention and full attention versions of our model can
be bridged by attending to a limited number of future frames.

2. Multi-Channel Transformer Transducer
2.1. Transducer

We denote C-channel of audio sequences as X =
(X1, ..., Xi, ..., XC) where each channel is of T frames, Xi =
(xi,1,xi,2, ...,xi,T ). We also denote a transcription label se-
quence of length U as y = (y1, y2, ..., yU ), where yu ∈ Z ,
and Z is a predefined set of token labels. As depicted in Fig. 1
(a), the transducer model encodes acoustic sequences first with
a multi-channel audio encoder network (Fig. 1 (b)) to produce
encoder output states as h = (h1, ..., hT ). For each encoder
state ht, the model predicts either a label or a blank symbol
〈b〉 with a joint network. If the model predicts a blank symbol,
which indicates the lack of token label for that time step, then
the model proceeds to the next encoder state. Different from
CTC [28], the transducer model exploits not only the encoder
output at time t but also the previous non-blank label history as
inputs to predict the next output. The previously predicted labels
are encoded with a label encoder as shown in Fig. 1 (c).

The transducer model defines a conditional distribution,

P (ŷ|X ) =
T+U∏
i=1

P (ŷi|X , ti, y0, ..., yui−1) (1)

where ŷ = (ŷ1, ..., ŷT+U ) ⊂ {Z ∪ 〈b〉}T+U correspond to any
possible alignment path with T blank symbols and U labels such
that after removing all blank symbols in ŷ yields y, and y0 is
the start of sentence symbol.

We can marginalize P (ŷ|X ) over all possible alignments
A(X ,y) to obtain the probability of the target label sequence y
given the input multi-channel sequences X ,

P (y|X ) =
∑

ŷ∈A(X ,y)

P (ŷ|X ) (2)

This alignment probability summation can be computed effi-
ciently with forward-backward algorithm [29].

2.2. Multi-Channel Audio Encoder

Previous work on the transducer framework [29, 37–40] relied
only on single-channel input. To address multi-channel inputs,
we propose to build our audio encoder based on multi-channel
transformer network [25], as shown in Fig. 1 (b), containing
two main blocks, channel-wise self-attention layers and cross-
channel attention layers.

Channel-wise Self-Attention Layer (CSA): We start by
projecting the source channel features (log-STFT magnitude and
phase features are used in this work) to the dense embedding
space for more discriminative representations. Then the em-
bedded features plus the positional encoding [24] are fed into a
set of learnable weight parameters to create Query (QCS

i ), Key
(KCS

i ), Value (V CS
i ). Similar to [25], the transformed features,

QCS
i and KCS

i , are used to compute the correlation across time
steps within a channel via multi-head attention (MHA) [24]. The
resulting attention matrix is then used to reweight the features of
V CS
i in each time step followed by a feed-forward network to

produce the self-attention outputs.
Cross-Channel Attention Layer (CCA): Given the self-

attended outputs per channel, the cross-channel attention layers
aim to learn the contextual relationship across channels both
within and across time steps. Inspired by [25], when we use the
i-th channel to create QCC

i , the other channels are leveraged
by a combiner to create KCC

i and V CC
i . Different from [25]

which takes the sum of channel encodings after applying affine
transformations (Affine), we investigate two simple combiners:
(1) Avg: take the average of the other channels along both time
and embedding axes, HCC

i = 1/C
∑

j 6=i X̂j , which can be
seen as the symmetric weight case of the Affine combiner in [25]
(2) Concat: concatenate the other channels along the time axis,
HCC

i = [X̂1; ...; X̂j ; ...; X̂C ]j 6=i. Here, X̂j ∈ RT×d and d is
the embedding size. With this adaptation, the model parameters
do not increase w.r.t. the number of microphones (C) and time
frames (T ) as in [25]. Finally, the cross-channel attention outputs
are fused by a simple average.

2.3. Label Encoder and Joint Network

We leverage the transformer network to build the label encoder,
as illustrated in Fig. 1 (c). An embedding layer converts pre-
viously predicted non-blank labels into vector representations.
Then several linear layers project the embedding vectors in or-
der to create QLS , KLS , and V LS followed by masked MHA



(a) (b)
Figure 2: The relative word error rate reduction, WERRs (%), by comparing the multi-channel transformer transducer (MCTT) to the
beamfomers cascaded with transformer transducers. (a) WERRs over different methods (b) WERRs over SC-TT w.r.t. different SNR
levels. A higher number indicates a better WER. Negative WERRs are not reported.

Table 1: The WERRs (%) of MCTT over MCT [25] for 2-channel
inputs, and 3-channel inputs with different combiners.

Model Size
Method (Million) combiner test-clean test-other
MCT-2 [25] 18.59 - 0 0
MCTT-2 17.53 - 11.62 4.51
MCT-3 [25] 20.43 Affine 0 0
MCT-3 [25] 18.59 Avg 7.01 6.99
MCTT-3 17.53 Avg 11.55 8.32
MCTT-3 17.53 Concat 10.44 5.41

computations. The attention scores from the future frames are
always masked out to ensure causality. Note that label encoder
outputs do not attend to multi-channel audio encoder outputs,
in contrast to the architecture in [25]. As discussed in Sec. 1,
doing so poses a challenge for streaming applications. Instead,
we use a joint network, which is a fully-connected feed-forward
neural network with a single hidden layer and tanh as the acti-
vation function. We concatenate outputs of multi-channel audio
encoder and label encoder as inputs to the joint network.

2.4. Limiting History and Future Contexts in Attention

Attending to the whole input acoustic sequences in attention
computations (i.e. full attention) not only disables the stream-
ing inference but also gives the high computational complexity,
O(T 2) for computing encoder outputs. To reduce the computa-
tional cost and latency, we limit the left history frames (L) and
future frames (R), (xt−L, ...,xt−R), of multi-channel encoder
to compute hti . We also limit the left history frames (L) of the
label encoder to compute hui−1 . However, it also comes with
potential performance drop, as investigated in experiments.

3. Experiments
3.1. Dataset

To evaluate our multi-channel transformer transducer (MCTT),
we conduct a series of ASR experiments using over 2,200 hours
of speech utterances from our in-house de-identified far-field
dataset. The amount of training set, validation set (for model
hyper-parameter selection), and test set are 2,000 hours, 24 hours,
and 233 hours respectively. The device-directed speech data was
captured using a smart speaker with 7 microphones, and a 63 mm
aperture. The evaluation set has abundant annotations including

Table 2: The inference speed comparisons of MCTT and
MCT [25] in terms of Wall Clock Time (WCT).

Model Size WCT (sec)
Method (Million) TP50 TP90 TP99
MCT [25] 18.59 4.26 5.65 5.91
MCTT 17.53 0.27 0.48 0.74

the estimated SNR levels, and test-clean (no background speech)
as well as test-other (with background speech) splits . In this
dataset, 2 microphone signals of aperture distance and the super-
directive beamformed signal by [10] using 7 microphone signals
are employed through all the experiments.

3.2. Baselines

Following [25], one of the baselines is single channel + Trans-
former Transducer (SC-TT); we feed each of two raw channels
individually into the transformer transducer for training and
testing, and pick the best performed one. In addition, we com-
pare to three stagewise beamforming methods cascaded with the
transformer transducer (TT) models. The beamforming meth-
ods include Super-directive beamformer (SDBF) [10], Neural
beamformer (NBF) [18], and Neural masked-based beamformer
(NMBF) [13]. We denote the stagewise methods as SDBF-TT,
NBF-TT, NMBF-TT, respectively. Note that SDBF-TT uses 7
microphone signals for beamforming as mentioned in section 3.1
while NBF-TT, NMBF-TT, and the proposed MCTT all take only
2 microphone signals as inputs. We also compare our method
to multi-channel transformer network (MCT) [25], which is a
single integrated multi-channel model.

3.3. Experimental Setup and Evaluation Metric

We set the number of audio encoder layers (NAE=12) and label
encoder layers (NLE=6 for SC-TT, SDBF-TT, NBF-TT, NMBF-
TT, NLE=4 for MCT and MCTT) with 512 neurons to make all
models with comparable number of parameters (18 millions),
except for NMBF-TT (25.39 millions) due to the additional mask
estimator [13]. Following [25], we use log-STFT square magni-
tude and phase features [41, 42] as inputs of our method, which
are extracted every 10 ms with a window size of 25 ms from
audio samples. The same setting is also applied to the feature ex-
traction for baselines following [25]. The Adam optimizer [43],
and subword tokenizer [44] with 4, 001 tokens are exploited.
Results of all the experiments are reported as relative word error
rate reduction (WERR) [25]. The higher the WERR is the better.



Table 3: The WERRs (%) over full-attention MCTT (all con-
texts=“inf”) by limiting left context per layer for label encoder.

MC Audio Mask Label Mask WERR (%)
L R L test-clean test-other
inf inf inf 0 0
inf inf 20 2.10 -0.24
inf inf 4 1.17 0.95
inf 10 inf -3.27 -3.76
inf 10 20 -2.68 -5.25
inf 10 4 -3.10 -4.00

Table 4: The WERRs (%) over full audio attention based MCTT
by limiting right context (R) per layer for MC audio encoder.

MC Audio Mask Label Mask WERR (%)
L R L test-clean test-other
inf inf 20 0 0
inf 0 20 -23.65 -16.56
inf 2 20 -12.17 -8.04
inf 6 20 -5.99 -2.74
inf 10 20 -4.88 -5.00

3.4. Comparisons to Stagewise Multi-channel Models

We first compare the performance of MCTT with 2 channels,
Avg combiner (MCTT-2) to the stagewise beamforming plus
transformer transducer models, all with full attention audio en-
coder. The results are illustrated in Fig. 2. As shown in Fig. 2 (a),
MCTT-2 outperforms SC-TT by 7.1% and neural beamformer
+ acoustic models (NBF-TT and NMBF-TT) by 6% in average.
MCTT-2 also performs better than SDBF-TT by 2.48% even
though it only considers 2 raw channels (2 chs). We further
investigate if the super-directive beamformed signal is comple-
mentary to the other 2 channels by taking it as the third channel
and feed them all to MCTT (denoted as MCTT-3). As can be
seen in Fig. 2 (a), it provides 4% more improvements (WERRs)
in average over all baselines as comparing to MCTT-2. In Fig. 2
(b), we further compare different methods w.r.t. different SNR
levels. Again, we observe MCTT-2,3 achieve consistent improve-
ments over SC-TT comparing to other methods across different
SNRs.

3.5. Comparisons to Multi-channel Transformer

Next, we compare the proposed MCTT to MCT [25] with 2
channels and 3 channels (2 raw channels plus the super-directive
beamformed signal) as inputs with different combiners. They
are denoted as MCT-2,3 and MCTT-2,3 respectively. Note the
combiner introduced in Sec. 2.2 is not needed for the 2-channel
case, so its effect is only reported for the 3-channel case. We
observe in Table 1 that MCTT-2 outperforms MCT-2 especially
in test-clean split. Both MCT-3 and MCTT-3 with Avg combiner
perform better than MCT-3 with Affine combiner, and MCTT-3
performs the best. Besides, using Avg combiner is more effective
than using Concat combiner.

We further evaluate inference speed by measuring decoding
time over 10,000 utterances on a Intel Xeon® Platinum 8175M
processors machine using 1 CPU per method to process an utter-
ance at a time with greedy search decoding. The Top Percentile
values, TP50 (median), TP90, and TP99 wall clock times (WCT)
are shown in Table 2. Most of inference time of MCT has been
dedicated to the encoder-decoder attention, while MCTT does
not have this issue and achieves 15.4 times faster inference speed
in terms of TP50.

Table 5: The WERRs (%) over full audio attention based MCTT
(with left context of label encoder L=20) by limiting both MC
audio contexts (L and R) and label contexts (L) for streaming.

MC Audio Mask Label Mask WERR (%)
L R L test-clean test-other
inf inf 20 0 0
20 0 20 -27.68 -22.87
20 10 20 -7.37 -6.79
20 20 20 -7.54 -6.31
10 0 20 -24.08 -22.45
10 10 20 -9.51 -11.08
10 20 20 -7.28 -7.92

3.6. Results of Limiting Contexts in Attention Computation

Finally, we ran training and decoding experiments using MCTT
with limited attention windows over audio and text labels, with a
view to build streaming multi-channel (MC) speech recognition
systems with low latency and low computation cost. “inf” in
Table 3, 4, 5 means we employ all of the left or right contexts.
Besides, MC Audio Mask, and Label Mask indicate the coverage
of audio/label frames to be considered in attention of Multi-
Channel audio encoder and label encoder respectively.

We start from evaluating how the left context of the label
encoder affects performance. In Table 3, we show that constrain-
ing each layer to use only 4 previous label frames yields the
similar accuracy with the model using all previous frames per
layer (1.06% WERR in average when MC audio mask R=inf).
As constraining right context of MC audio to 10, the WERR
differences are also small; the maximum WERR difference is
0.24% (-3.76%-(-4)%) when compared to using all previous
frames per layer. It indicates that very limited left context for
label encoder is good enough for MCTT.

We then fix the left context of label encoder to 20 , and
constrain the MC audio encoder to attend to only the left of the
current frame (so that no latency is introduced). As shown in
Table 4, the WERs drastically degrade by 23.65% and 16.56%
in test-clean and test-other splits comparing to MCTT with full
attention MC audio encoder. By allowing the model to see some
future frames (e.g. R = 10), we can bring down the WER
degradation to ≤ 5% for both splits.

Table 5 reports the results when limiting both the left and
right contexts of MC audio encoder. By doing so, not only the
latency can be reduced, but also the time complexity for one-step
inference becomes a constant. We limit the left context of MC
audio encoder to 20 and 10 respectively, and then increase right
context from 0 to 20. As can be seen in both cases, with the
look-ahead to few future frames (e.g. R = 20), the WER gap
to the full-attention audio encoder based model was narrowed
down to 6.31% and 7.92% respectively in test-other split.

4. Conclusion
We propose a novel speech recognition model, Multi-Channel
Transformer Transducer, which is capable of leveraging multi-
channel inputs in an end-to-end fashion and applicable to stream-
ing decoding for speech recognition. We show that the pro-
posed MCTT outperforms its stagewise counterparts, and signif-
icantly reduces the inference time against multi-channel trans-
former [25]. Furthermore, by limiting the left contexts and with
look-ahead to few future frames, we can not only improve the
computation cost, but also bridge the gap between the perfor-
mance of left-only attention and full attention models.
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