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Abstract 
 

The problem of underwater acoustic (UWA) channel 
estimation is the non-uniform sparse representation 
that may increase the algorithm complexity and the 
required time. A mathematical framework utilizing l21 

constraint with two-dimensional frequency domain is 
employed to enhance the channel estimation. The 
frame work depends on both main and auxiliary 
channel information. The simulation results have been 
demonstrated that the proposed estimation method 
can improve some problems that are achieved with 
other norms like l1. Furthermore, it can achieve a better 
performance in terms of mean square error (MSE) and 
execution time. 
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1 Introduction 
The primary purposes of underwater acoustic sensor 

networks include pollution monitoring, oceanographic data 

collection, disaster prevention, tactical surveillance, 

underwater exploration, and port security [1]. However, 

their drawbacks include limited battery life, difficult 

operating conditions (caused by a large number of 

multipaths), propagation delay spread due to the slow 

speed of sound, and susceptibility to Doppler shift between 

the source and destination. These have resulted in low data 

collection rates and limited distance communication [2]. 

Cooperative communication allows multiple sensors to 

form a distributed cooperative sensor network, enabling 

them to achieve spatial diversity which in turn helps save 

transmission power by combating the severe signal 

attenuation encountered over long distances. It can be 

difficult maintaining a lineof- sight (LOS) due to the 

movement of the platform caused by ambient disturbances 

or propulsion. There are therefore many potential 

applications involving mobile platforms, such as the one 

involving underwater robotics [3]. It also extends network 

coverage by providing LOS between the source and 

sensors, and between sensors and destination, which results 

in providing multiple communication links for higher data 

collection rates [4]. 

Two categories the current adaptive based channel 

estimation methods have mainly divided. Firstly, 

introducing a proportional step size into each filter 

coefficient the convergence rate by using the proportional 

adjustment, which uses the sparsity of the impulse 

response, such as, the improved lease mean square (LMS) 

algorithm [5-8]. Secondly, the sparse norm constraint, it is 

more much better and more precisely, a sparse penalty term 

(l21 norm or l1 norm) has been introduced into the LMS 

algorithm, in order to speeds up the convergence of 

small coefficients [9, 10]. As a result, in the deep 

underwater environment the cluster-sparse distribution of 

the channel impulse response (CIR) cannot be fully 

exploited by the existing sparse adaptive algorithms. The 

best solution for this issue, we introduced a uniform l21 

norm constraint to the adaptive algorithms [11], the 

channel taps could be uniformly group without an 

overlapped, the algorithm apply l21 norm constraint to the 

group and l1 norm constraint between two groups [12]. The 

main issue is propagation models for UWA and tracking 

the UWA channel in underwater depths in real time. There 

are many complementary approaches proposed toward 

water acoustic channel estimation and the most importing 

thing is the real-time channel tracking remain a bottleneck 

[13], to solve these issues we should have a well knowledge 

about two underwater acoustic channel properties [14]. The 

long time-varying delay spread due to the moving ocean 

surface and primary and secondary multipath reflection 

[15]. The second reason is unpredictable high-energy due 

to oceanographic events [16]. In this work, many 

techniques are combined to support real-time channel 

estimation for intermediate distance and shallow water 

depths. These techniques include: managing non-uniform 

with sparse channel matrices, exploiting the main and 

auxiliary input data, and applying various regularization 

constraints to the optimization framework to provide good 

signal recovery. We will discourse more detail and 

challenges in different types of multipath arrivals as well 

[17,18]. 

 

2 Motivations and Challenges 
The motivations of this paper revolve around providing 

channel state information (CSI). This is particularly 

challenging in underwater communications because the 

received underwater signal is often made up of many 

multipath components, each of which conveys very low 

energy. There are several complementary approaches have 

been discourse toward UWA channel tracking remain a 

bottleneck. To be more specific, these challenges 

are addressed by two well-known properties of the 

underwater acoustic channel. The first one is long time-

varying spread due to multipath reflection from moving 

ocean surface and static bottom as shown in figure (1). 

 



 
Figure 1. An underwater cooperative communication 

system 

 

3 Channel Estimation Algorithm 
The input data matrix U is a two-dimensional non-uniform 

matrix that can be bounded with L (number of the Doppler 

frequencies) × K (number of delay taps). Exploiting the 2D 

Fourier transform which can transform the channel 

estimation problem to spectral sampling problem as: 

𝑈 =  𝐹𝐻                                (1) 

where F is the 2D Fourier transform that can easily 

achieved with DFT transform and H it is the channel 

impulse response. In general, the received UWA signal will 

be disrupted with noise, i.e, 

𝑈𝑛 =  𝐹𝐻 +  𝑁                       (2) 

Where Un denoted the noisy input data matrix and N is an 

additive noise. 

Consider the auxiliary measured version of U as below 

𝑈𝑎𝑢𝑥 =  𝑅𝐹𝐻 +  𝑁                 (3) 

where R is a binary random sub sampling matrix that 

permits for any positions of a random selection in the 2D 

Fourier domain. It can lead to sampling rate variations. The 

sampling rate S % can be formed depending on the 

dimensionality of the input matrix 

 

𝑆% =
𝐾𝐿 × 𝑆

100
                               (4) 

 

As a result, to attain better generalization to the channel 

estimation, it can base on many regularizations that 

minimize the empirical error, i.e, it will be beneficial to 

take into account different penalties for different errors. 

These penalties are based on the Lp-norm like 𝑙1 , 𝑙2 and 

𝑙21-norms as follow: 

 

‖𝑋‖2 = √∑ (𝑋𝑖)
2.𝑛

𝑖=1               (5) 

 
‖𝑋‖1 = ∑ |𝑋𝑖|

𝑛
𝑖=1                       (6) 

 

‖𝑋‖21 = ∑ (∑ 𝑋𝑖𝑗
2 )1/2

𝑗𝑖                (7) 

 

where 𝑙2 is easy to be achieved but it cannot minimize the 

error especially for the noisy data. l1 can reject noisy data 

efficiently with the advantage of sparsity but with complex 

convex solution while l21 is often applied to tackle and 

overtake the difficulty of data. Finally, the resultant 

channel objective functions can be modelled with two main 

forms as in equations (8) and (9): 
𝑚𝑖𝑛

𝐻
‖𝑈𝑎𝑢𝒳 − 𝑅𝐹𝐻‖

2
2

    𝑠. 𝑡    ‖𝐻‖
 
1  ≤ 𝜎            (8) 

𝑚𝑖𝑛
𝐻

‖𝐽𝐻‖
 

21  𝑠. 𝑡     ‖𝑈𝑛 − 𝐹. 𝐻‖
2
2

 ≤ 𝜎               (9) 

Where 𝜎 = stander deviation of the noise 

 

4 Numerical Result 
In this section, the channel estimation performance of the 

proposed non-uniform 𝑙21 is compared with that of the 

𝑙1 for a simple channel model that includes the following 

parameters: 

L= number of the Doppler frequencies = 11 × K= number 

of delay taps = 200, frequency resolution = 25Hz, time 

resolution = 0.05 sec, H = [361 × 500]. 

Figures (2) and (3) show the MMSE for different window 

length and sampling ratios. It is clear that algorithm that 

based on 𝑙21 is of better response than that of  𝑙1. Also, the 

time required for achieving  𝑙21is two-third of that required 

for 𝑙1. 

 

 
Figure 2. Channel estimation MSE at SNR = 10 dB with 

norm 𝑙1 

 

 
Figure 3. Channel estimation MSE at SNR = 10 dB with 

norm 𝑙21 

 

 

 

 



5   Conclusion 
The underwater acoustic channel estimation accuracy and 

speed are vital in communication system. However, it is 

clear that the responsibility for improving underwater 

acoustic communication lies with channel estimation and 

be achieved via adopting robust algorithms. Herein, we are 

proposed different objective functions with norm 1 and 

norm 21 penalties that can minimize the MMSE error and 

increase the estimation speed. The results for some cases 

approve that the norm 21 is better than norm 1 in both 

MMSE and execution time. 
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