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Abstract

A significant part of human activity today consists of searching for a piece of infor-
mation online, utilizing knowledge repositories. This endeavor may be time-consuming
if the individual searching for the information is unfamiliar with the subject matter
of that information. However, experts can aid individuals find relevant information
by searching online. This paper describes a theoretical framework to model the dy-
namic process by which requests for information come to a system of experts, who then
answer the requests by searching for those pieces of information.

1 Introduction

The Internet today has been transformed from a network providing connectivity, to a
massive repository of human (and machine) knowledge, with information relevant to nearly
every aspect of human life stored in some corner. Search engines allow keyword-based search
of this knowledge, and while natural language queries are increasingly useful, searching for
complex information requires human thinking (augmented with the capabilities of search
engines) to obtain useful search results. While there are canonical ‘big problems’ in different
fields that require specialized experts, a large part of human life deals with a vast number
of small problems, each affecting a different individual in its own unique manner. These
problems require the individual to search the Internet for ideas relevant to solving that
problem, an activity that may receive mixed results, depending on the expertise of that
individual. But given pervasive online connectivity, there are potentially a large number of
‘experts’ available online that an individual can consult, who can contribute their knowledge
to problems related to their expertise [1].

Given the growing importance of such online requests for information, this paper envisions
a large number of requests for information being made, but also a large number of potential
experts available to answer those requests. Since the requests must be responded to in
a timely manner, we propose a dynamic framework, where requests arrive stochastically,
are handled by expert(s) who search for relevant information, and depart when the expert
provides a response. Preliminary results on scheduling requests, and on the resulting capacity
of the system are presented.

2 Theoretical Framework

The problem setting in the paper assumes that requests for information come into a social
network stochastically. Each request is handled by an expert (or experts), which searches
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for information to answer that request, and succeeds in providing information answering
that request after a random amount of time, based on the complexity of the search. This
requires describing a quantitative model for information search and also describing a model
for scheduling these requests, so that experts can answer them.

1. Model of Information Search

Time is assumed to be discretized finely, so that it is measured as t = 1, 2, 3, . . . time
slots. Let M be a large set of information facts. A topic x ⊂ M is a large subset of
facts - examples being ‘Windows 10 debugging’ or ‘Seventeenth century poetry’. The set
of topics X is assumed to be large but finite to avoid technical clutter. An expert is a
research time function T : X → [1,∞), where T (x) ≥ 1 is the mean time that expert
takes to answer a request concerning topic x; this average time is assumed to be known
to the expert. This time is required because the expert will typically need to search for
information relevant to the specific request before being able to answer it. We assume
that the time to answer a specific request is a geometrically distributed random variable
(with mean value T (x)). A typical request may be ‘Why does my Windows 10 laptop
become hot and shut down?’, which concerns the topic ‘Windows 10 debugging’. For
conciseness, we will simply call a request concerning topic x as request x.

2. Model of Dynamic Scheduling

It is assumed that there is a social network of n experts, represented as a graphG = (V,E),
where the vertices V represent experts and the edges E represented coordination oppor-
tunity between pairs of experts. By coordination, we mean that a scheduler (described
below) can assign a request in expert i’s queue to expert j, as long as (i, j) ∈ E in the
graph. For example, if experts exclusively use a Knowledge market (or an Internet Q&A
Forum) like Quora [2], they can all coordinate with each other, and so G is a complete
graph. On the other hand, if a social network like Twitter or Facebook is used, the
graph may have a complex structure, precluding arbitrary coordination. This paper only
considers a complete graph linking the experts.

We adopt a dynamic stochastic model of information searching. In each time slot t, at
each expert i ∈ V , each request x ∈ X may newly arrive with probability λpi(x), and so,
we need a multi-class queuing model. Denote as ax,i(t) = 0, 1 the non-arrival or arrival of
request x at expert i, respectively. Its arrival is independent of arrival of requests in other
topics, arrivals at other experts, and arrivals in other time slots. Here, 0 < λ < 1 and
pi(x) > 0 is a probability mass function (p.m.f.) over topics x (so,

∑

x∈X pi(x) = 1). λ can
be interpreted as the request load on the network, while pi(x) causes requests for certain
topics to appear more frequently. Due to independence, we allow multiple different topics
x to arrive at any expert, and also multiple experts to see requests from the same topic x.
Each expert i puts request x into its own virtual queue and increases the length Qx,i(t) of
that topic’s queue by one request (all requests will actually be written in random access
memory, so the virtual queue is a book-keeping artifact). In practice, the requests may
be given to the expert by users she knows in her social circle, or may be selected by the
expert from a knowledge market like Quora.

A scheduler then assigns different requests to different experts, subject to the social
network graph, allowing the experts to coordinate in handling the requests. Since this
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paper assumes a complete graph model, the scheduler can assign any request to any
expert.

Expert i works on its assigned request x by searching for information (equivalently, called
‘researching x’), and answers it successfully in that time slot with probability qi(x)

.
=

1
Ti(x)

≤ 1. Experts with larger qi(x) presumably have deeper knowledge that allows
them to quickly research problems, and so, a crude measure of expertise of an expert is
Ri =

∑

x qi(x). dx,i(t) = 0, 1 indicates failure or success of i finding the answer for x
during time slot t, respectively. If the request is not answered successfully, it goes back in
its queue. Future scheduling of that request does not utilize the past history of handling
that request. Thus, the number of (potentially non-consecutive) time slots needed to
answer a request is a geometric random variable with average time Ti(x). Clearly, the
queue lengths update as Qx,i(t+ 1) = Qx,i(t) + ax,i(t)− dx,i(t).

The maximum request load λ that can be researched by this system, while keeping the
request queues stable is called capacity. Queue stability can be defined either as stability-
in-the-mean [3], i.e.,

lim sup
T→∞

1

T

T
∑

t=1

∑

x

E[Qx,i(t)] < ∞, ∀i, (1)

or as positive recurrence of the queue Markov chain [4]. Given the large number of topics
(large X ), we may be willing to reject requests that do not match the expertise available
to research them, i.e., ex,i(t) ∈ {0, 1}, if a new arriving request x at expert i is kept
or rejected, respectively, at time t. So, we will also wish to characterize capacity under
ε−loss constraint. i.e., the maximum load that a system can handle while keeping queues
stable, with losses bounded as below.

lim sup
T→∞

1

T

T
∑

t=1

∑

x

E[ex,i(t)] ≤ ε, ∀i. (2)

3 Results

Based on the theoretical framework of information search presented in Section 2, we
present preliminary results on the performance of the system.

3.1 Single Expert

Consider a simple setting with only a single expert ‘1’, as shown in Figure 1(a). At discrete
time t, requests arrive and are placed in their respective queues. A scheduler assigns a
request x from one of the queues to the expert, who searches for information to answer it
and succeeds in answering it with probability q(x), which depends on the expert’s average
search time T (x) for that request.

Lemma 1 The capacity is λ∗ =
(

∑

x
p(x)
q(x)

)−1

. Further, any λ < λ∗ can be achieved using

any work conserving scheduler (such as one that assigns an arbitrary request in the queue to
the expert.)
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Evidently, capacity is high if the expertise of the expert matches closely with the pop-
ulation of requests coming in, so that none of the ratios p(x)

q(x)
is too large. In light of this

elementary result, we can call λj(p)
.
=
(

∑

x
p(x)
qj(x)

)−1

as the capacity of the expert j with

respect to p.m.f. p(x).
We can also characterize the capacity under loss constraint (2).

Lemma 2 If we are willing to accept average loss rate ε, the capacity is no less than the λ∗

specified by the Linear program below.

λ∗ = max
µ(x)

(

∑

x

µ(x)
p(x)

q(x)

)−1

where (3)

∑

x

µ(x)p(x)
q(x) + ε

q(x)
= 1, (4)

0 ≤ µ(x) ≤ 1, ∀x. (5)

Any λ < λ∗ can be achieved by an offline scheduler; one that first solves this optimization
problem assuming known p(x), q(x).

The offline scheduler first calculates the probabilities µ(x) by solving the optimization
problem (3) before considering requests. After that, when request ax(t) comes in, the sched-
uler drops it (so ex(t) = 1) independently with probability 1 − µ(x). Otherwise, it gets
inserted into its topic queue.

For ε = 0, the solution to (3) is the same as Lemma 1, because the equality (4) reduces
to
∑

x µ(x)p(x) = 1, and so, can only be satisfied by µ(x) ≡ 1 (since p(x) > 0 is a p.m.f.)
Lemma 2 is especially useful when there is a gross mismatch between the requests and the
expert. For example, if the expert has q(x) = 0 iff x ∈ X0, the lossless capacity is λ∗ = 0.
But if we allow loss, we can set µ(x) = 0, ∀x ∈ X0 and µ(x) = 1 otherwise, to achieve a load

λ =
(

∑

x/∈X0

p(x)
q(x)

)−1

> 0, while accepting a loss of ε = λ
∑

x∈X0
p(x).

Suppose that the expert has an erroneous estimate T̂ (x) of her average searching time
T (x). For example, the expert may have an intuitive approximation of these times based on
her past experience answering questions about these topics. Since the scheduler uses T̂ (x)
to schedule while the true search time is T (x), the capacity λ∗ calculated in Lemma 1 may
be an over-estimation, resulting in queue instability. However, an achievable load can be
guaranteed if we assume that the estimation error has a known bound, i.e., if we assume
T̂ (x) ≥ γT (x), ∀x, for some constant γ ≤ 1.

Corollary 1 Let λ∗ be the capacity in Lemma 1 calculated using the erroneous search times
T̂ (x) that have bounded errors. Then, any work conserving scheduler using T̂ (x) can achieve
any load less than λ < γλ∗ with stable queues.
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(a) Single expert
(b) Multiple coordinating experts in complete
graph

Figure 1: Expert scheduling scenarios.

3.2 Multiple Coordinating Experts

Now consider n experts on a social network with a complete graph (so that they can all see
requests in each others’ queues). Since the theoretical framework allows the scheduler to
schedule requests from a neighbor’s queue, in the complete graph case, we can equivalently
assume that the queues of all the experts are merged together for each topic x; i.e., Qx(t) =
∑

i Qx,i(t). Define p(x) =
∑

i pi(x) as the merged p.m.f. See Figure 1b. This models experts
that each monitor a single knowledge market like Quora. In this case, we have the following
result.

Lemma 3 The capacity with multiple coordinating experts is at least

λ∗ =

(

max
(αi)

∑

x

min
i

(

αi
p(x)

qi(x)

)

)−1

where (6)

∑

i

αi = 1, αi ≥ 0

Further, any λ < λ∗ can be achieved using an offline scheduler.

The offline scheduler is assumed to know p(x), qi(x). It maintains separate topic queues
Qx,i(t) for each expert i. Before considering requests, it first calculates the solution to the
convex dual problem [5] of the maximization problem over αi stated in (6). (For brevity, we
will simply call this maximization problem as the problem (6).) The dual problem is the
Linear program below (see Lemma 4).

min
µ, si,x

µ s.t. (7)

∑

x

p(x)

qi(x)
si,x ≤ µ, ∀i (8)

∑

i

si,x = 1, ∀x, si,x ≥ 0, ∀i, x (9)

Using these pre-computed si,x (which we note is a p.m.f. over i for each x), for each arriving
request x, the scheduler selects an expert i randomly and independently according to the
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p.m.f. si,x, and then inserts that request into the topic queue Qx,i of expert i. In each
time slot, the scheduler also assigns a request randomly to expert i from among the requests
queued up at that expert’s queues Qx,i. Expert i is kept idle if and only if her own queues
are all empty. Thus, the expert is work conserving with respect to her own queues.

As opposed to single expert scheduling, in this case, any one expert mismatched to
the request p.m.f. p(x) may not be catastrophic. In fact, the following case shows that
a diversity of experts may be preferable. Suppose there are n experts, with each expert i
having expertise Ri

.
=
∑

x qi(x) = 1. Consider a toy case where |X | = n and p(x) = 1
n
, ∀x.

If the experts are identical, i.e., qi(x) = q(x), ∀x, then the capacity in (6) is maximized for
q(x) = 1

n
, ∀x and it is λ∗ = 1. Instead, suppose we have diverse experts qi(x) = 1 (x = xi)

(where 1 (A) ∈ {0, 1} is the indicator function of statement A), each of which also has
expertise Ri = 1 as in the case of identical experts. Then, the capacity in (6) is increased to
λ∗ = n, showing the benefit of diversity.

4 Conclusions

This paper set up a theoretical framework to analyze the dynamic process by which
requests for information arrive in a social network, so that either a single expert or a collec-
tion of experts can search for the needed information. Preliminary results on queuing and
scheduling analysis in this framework were presented. Future work will look at online and
distributed schedulers for the scenarios analyzed in this paper.

A Proofs

We will use Lyapunov analysis and invoke the well-known Foster-Lyapunov theorem [4],
which we state below for completeness.

Theorem 1 (Foster-Lyapunov theorem) Suppose a Markov chain Q(t) in a countable
state space E is irreducible and suppose there exists a function L : E → R bounded below as
L ≥ 0. Suppose also that there is a finite set F and some δ > 0 such that,

E[L(Q(t + 1))|Q(t)] < ∞, ∀i ∈ F, (10)

E[L(Q(t + 1))|Q(t)] < L(Q(t))− δ, ∀i /∈ F. (11)

Then the Markov chain is positive recurrent.

With a slight abuse of notation, the Lyapunov function is often written as L(t).
Proof [Lemma 1]: Let Q(t)

.
= [Qx(t)] be the vector of topic queue lengths. Assume that

q(x) > 0, ∀x, since otherwise λ∗ = 0 and the Lemma is trivially proved . To show that
any load λ < λ∗ is achievable using any work conserving scheduler, consider the Lyapunov
function L(t) =

∑

x
1

q(x)
Qx(t) for the irreducible Markov chain Q(t). Then, ∆L(t)

.
= L(t +

1) − L(t) =
∑

x
1

q(x)
(ax(t) − dx(t)). So, E[∆L(t)|Q(t)] =

∑

x
1

q(x)
E[ax(t) − dx(t)|Q(t)] =

∑

x
1

q(x)
(λp(x)− q(x)σx(t)) = λ

∑

x
p(x)
q(x)

−
∑

x σx(t), where σx(t) = 1 if the scheduler assigns
a request from topic x to the expert, else 0. This is because, if an expert works on request x,
it has a probability q(x) of successfully answering it in that slot. Let B = {Q(t) : Q(t) = 0}.
For any work conserving scheduler,

∑

x σx(t) = 1 if Q(t) /∈ B. So, for the case Q(t) /∈ B,
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E[L(t+1)|Q(t)] = L(t)+λ
∑

x
p(x)
q(x)

−1 = L(t)−δ, where δ
.
= 1−λ

∑

x
p(x)
q(x)

> 0 since λ < λ∗.

Further, for the case Q(t) ∈ B, E[L(t+1)|Q(t)] ≤
∑

x
1

q(x)
E[ax(t)|Q(t)] =

∑

x
λp(x)
q(x)

= c < ∞

since we assumed q(x) > 0, ∀x.
Considering both cases, by Foster-Lyapunov theorem, the irreducible Markov chain Q(t)

is positive recurrent, which proves stability. Alternatively, stability-in-the-mean can be di-
rectly obtained by telescoping the E[∆L(t)|Q(t)] terms.
E[L(t)] ≤ E[L(0)] +

∑t
τ=1 (−δ1(Q(τ) 6= 0) + c1(Q(τ) = 0)) ≤ max(E[L(0)], c). So,

lim supT→∞

1
T

∑T
t=1

∑

xE[Qx(t)] ≤ (maxx q(x)) lim supT→∞

1
T

∑T
t=1E[L(t)]

≤ max(E[L(0)], c)(maxx q(x)) < ∞. Thus, the chosen λ also achieves queue stability-in-the-
mean.

For the converse, if λ > λ∗, E[L(t + 1)|Q(t)] = L(t) + E[
∑

x
1

q(x)
(ax(t) − dx(t))|Q(t)] =

L(t) +
∑

x(λ
p(x)
q(x)

− σx(t)) ≥ L(t) + λ
∑

x
p(x)
q(x)

− 1 = L(t)− δ, since the expert can only work
on one request in each time slot. However, since λ > λ∗, we now have δ < 0. Telescop-
ing this result, we get E[L(t)] ≥ E[L(0)] − tδ. Letting qmin = minx q(x) > 0, we have
1
T

∑T
t=1

∑

x E[Qx(t)] ≥ qmin
1
T

∑T
t=1

∑

x
1

q(x)
E[Qx(t)] = qmin

1
T

∑T
t=1 E[L(t)] ≥ qminE[L(0)] −

1
2
qminδ(T + 1) → ∞ as T → ∞. Thus, the queues are not stable-in-the-mean. �

Proof [Lemma 2]: Note that the stated optimization problem can be re-written as

max
µ(x)

λ s.t. (12)

λ
∑

x

µ(x)
p(x)

q(x)
≤ 1, (13)

λ
∑

x

(1− µ(x))p(x) ≤ ε, (14)

0 ≤ µ(x) ≤ 1, ∀x. (15)

This is because λ is maximized when both inequalities (13),(14) are equalities. Probability
µ(x) can be shifted from one inequality to the other until both are equalities. Thus, in the

optimal solution,
∑

x µ(x)
p(x)
q(x)

=
∑

x(1−µ(x))p(x)
ε
. This is equality (4) stated in the Lemma.

The offline scheduler, which drops requests randomly, is equivalent to reducing the ex-

pected arrival rate at the queue of x to λp(x)µ(x). So, by Lemma 1, λ =
(

∑

x
p(x)µ(x)

q(x)

)−1

is

indeed achievable with stable queues. For the losses, E[ex(t)] = E[ex(t)ax(t)] = λp(x)(1 −
µ(x)). So, lim supT→∞

1
T

∑T
t=1

∑

xE[ex(t)] = lim supT→∞

1
T

∑T
t=1

∑

x λp(x)(1 − µ(x)) ≤ ε
due to (14). Thus, loss is within the acceptable bound.

�

Proof [Corollary 1]: Here, λ∗ =
(

∑

x
p(x)
q̂(x)

)−1

, where q̂(x) = 1
T̂ (x)

, since the erroneous T̂ (x)

is used to calculate capacity. Since q̂(x) ≤ 1
γ
q(x), λ∗ ≤

(

∑

x γ
p(x)
q(x)

)−1

. Thus, if the load

satisfies λ < γλ∗, we also get λ <
(

∑

x
p(x)
q(x)

)−1

, where the right hand side is the true capacity

of the system. Therefore, by Lemma 1 (scheduling without errors), such λ is achievable with
stable queues.
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Lemma 4 The problem (7) is the convex dual of problem (6).

Proof: The problem (6) can be written as

max
αi, β(x)

∑

x

β(x), s.t. (16)

β(x) ≤ αi
p(x)

qi(x)
, ∀i, x, (17)

∑

i

αi = 1, αi ≥ 0

With si,x ≥ 0 being the dual variables for inequalities (17), the Lagrangian is J =
∑

x β(x)−
∑

i

∑

x si,x(β(x) − αi
p(x)
qi(x)

) =
∑

x β(x)(1 −
∑

i si,x) +
∑

i αi

∑

x
p(x)
qi(x)

si,x. Maximizing the

Lagrangian over β(x) shows that it is finite only when the condition
∑

i si,x = 1, ∀x is
imposed. Then, maximizing the Lagrangian over the p.m.f. αi gives the dual function
maxαi,β(x) J = 0 +maxi

∑

x
p(x)
qi(x)

si,x. Thus, the convex dual problem is

min
si,x

max
i

∑

x

p(x)

qi(x)
si,x, s.t. (18)

∑

i

si,x = 1, ∀x, si,x ≥ 0, ∀i, x (19)

The minimization in (18) can be re-written as minµ,si,x µ, where µ ≥
∑

x
p(x)
qi(x)

si,x, ∀i. This

gives the dual problem specified in (7).
�

Proof [Lemma 3]: Let si,x, µ
∗ be the optimal solution of the dual problem (7). Recollect that

the offline scheduler uses this optimal si,x to assign requests to experts’ individual queues.
For expert i, the arrival of request ax,i(t) into its queue Qx,i is independent of arrival of other
requests to its own queues or to other experts’ queues, and has a rate of λp(x)si,x with load λ.
Since the scheduling of expert i only considers its own queues, its schedule is independent of
schedules of other experts. So we can analyze the queue stability of each expert i separately.

By Lemma 1, expert i’s capacity is λ∗
i =

(

∑

x
p(x)si,x
qi(x)

)−1

≥ (µ∗)−1 by (8). By strong duality,

the solutions of (6) and (7) are the same, i.e., µ∗ = (λ∗)−1. So, λ∗
i ≥ λ∗ and also λ∗ > λ by

choice of the load. Thus, the load λ seen by expert i is indeed below its capacity λ∗
i , and so,

Lemma 1 guarantees its queue stability.
�
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