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Abstract

Recently, Blázquez-Salcedo, Knoll, and Radu (BSKR) have given a class of static,
spherically symmetric, traversable wormhole spacetimes with Dirac and Maxwell fields.
The BSKR wormholes are obtained by joining a classical solution to the Einstein–
Dirac–Maxwell (EDM) equations on the “up” side of the wormhole (r ≥ 0) to a cor-
responding solution on the “down” side of the wormhole (r ≤ 0). However, it can be
seen that the BSKR metric fails to be C3 on the wormhole throat at r = 0. We prove
that if the matching were done in such a way that the resulting spacetime metric, Dirac
field, and Maxwell field composed a solution to the EDM equations in a neighborhood
of r = 0, then all of the fields would be smooth at r = 0 in a suitable gauge. Thus, the
BSKR wormholes cannot be solutions to the EDM equations. The failure of the BSKR
wormholes to solve the EDM equations arises both from the failure of the Maxwell field
to satisfy the required matching conditions (which implies the presence of an additional
shell of charged matter at r = 0) and, more significantly, from the failure of the Dirac
field to satisfy required matching conditions (which implies the presence of a spurious
source term for the Dirac field at r = 0).

1 Introduction

In a recent paper [1], Blázquez-Salcedo, Knoll, and Radu (BSKR) have provided examples of
traversable wormhole spacetimes, which are claimed to be classical solutions to the Einstein–
Dirac–Maxwell (EDM) equations. The existence of traversable wormhole solutions without
unphysical matter would be of great interest, as it would open new possibilities for the
topology of spacetime and for causal connections between different regions of spacetime. The
existence of a traversable wormhole would require a violation of the averaged null energy
condition [2, 3], and such a violation would be of considerable interest in its own right.

The BSKR wormhole spacetimes have a static, spherically symmetric metric of the form

ds2 = −F 2
0 (r)dt

2 + F 2
1 (r)dr

2 + F 2
2 (r)dΩ

2 (1)
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where F2(r) is taken to be of the form

F2(r) =
√

(r2 + r20). (2)

The wormhole spacetimes are constructed by finding smooth solutions of the EDM equations
separately in the regions r ≥ 0 and r ≤ 0 and then joining these solutions along the timelike
hypersurface Σ at r = 0. In order that the resulting metric and fields solve the EDM
equations without the presence of spurious sources at Σ, it is necessary that suitable matching
conditions be satisfied. For the metric, the matching conditions [4] are that the induced
metric of Σ and the extrinsic curvature of Σ agree. For the electromagnetic field, the matching
conditions are that we can choose a gauge in which the 4-vector potential Aµ and its normal
derivative match. For the Dirac field, the matching conditions are that if we work in a tetrad
that is continuous at Σ and in an electromagnetic gauge where Aµ is continuous at Σ, the
Dirac field components must match. Failure to satisfy the matching of the induced metric
would yield a spacetime for which the normal derivative of the metric would have a delta-
function contribution at Σ, and the resulting Einstein tensor could not even be interpreted
distributionally [5]. Failure to satisfy any of the other matching conditions would correspond
to the presence of spurious distributional source terms at Σ in the EDM equations.

Satisfaction of the matching conditions directly requires that, in a suitable gauge, the
spacetime metric and vector potential must be C1 at Σ and the Dirac field must be C0 at
Σ. We will show in Sec. 2 that the satisfaction of the EDM equations for r ≥ 0 and r ≤ 0
then implies that, in a suitable gauge, all derivatives of the metric, Maxwell field, and Dirac
field must match on Σ, so for any solution of the EDM equations without spurious sources
on Σ, all of these fields must be smooth (C∞). However, for all of the BSKR wormholes, the
metric fails to be C3 on Σ. We therefore conclude that none of the BSKR wormholes can be
solutions to the EDM equations; i.e., they all must contain spurious sources on Σ.

BSKR properly impose the matching conditions for the metric. However, as we shall
see in Sec. 3, they did not impose proper matching conditions on the electromagnetic field,
resulting in the presence of an additional charged shell at r = 0. It is conceivable that such
a charged shell could be modeled by the presence of other physical charged matter, although
it is not obvious that traversable wormhole solutions could be obtained in this way, since
any physically acceptable charged matter also would contribute to the matter stress-energy
tensor. However, a failure of the matching conditions for the Dirac field would be more
serious, since the Dirac field does not have any known physical sources. Therefore, it is
important to check if the matching conditions for the Dirac field are satisfied. This is not
entirely straightforward to analyze, since BSKR use a tetrad whose radial vector ea3 points
in the positive r direction for r ≥ 0 and in the negative r direction for r ≤ 0. Thus, their
tetrad is discontinuous at r = 0, and this discontinuity must be taken into account when
considering the matching conditions. In Sec. 3, we obtain the proper matching conditions
required for the continuity of the Dirac field. We find that these matching conditions are
not satisfied by the BSKR wormholes.

In summary, the BSKR wormholes contain both shells of charged matter and, more
significantly, spurious sources for the Dirac field at the wormhole throat at r = 0. Therefore,
they are not solutions to the EDM equations.

Notation.—We will use lowercase latin letters from the early part of the alphabet (i.e.,
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a, b, . . . ) to denote abstract spacetime indices, e.g., the spacetime metric will be denoted as
gab. We will use greek letters from the middle part of the alphabet (i.e., µ, ν, . . . ) to denote
coordinate components of tensors. We also use mid-alphabet greek letters to enumerate
tetrad vectors (e.g., a tetrad will be denoted as {eaµ}, with µ = 0, 1, 2, 3). We will use lower-
case latin indices from the mid-part of the alphabet (i.e., i, j, . . . ) to denote the non-normal
components of tensors in Gaussian normal coordinates based on the timelike hypersurface Σ
at r = 0. (For Gaussian normal coordinates based on a spacelike hypersurface, these would
correspond to spatial components, but they correspond to the nonradial components in our
case.) Finally, we will use uppercase latin indices to denote Weyl spinors and use lowercase
greek indices from the early alphabet (i.e., α, β, . . . ) to denote components of Dirac spinors.
Thus φA denotes a Weyl spinor, and Ψα denotes a Dirac spinor.

2 Smoothness of Solutions at r = 0

In this section, we consider spacetimes that are obtained by gluing solutions along a nonchar-
acteristic (i.e., timelike or spacelike) boundary. Our arguments and results are extremely
general, but to keep the discussion simple, we will restrict consideration to the EDM system.

Suppose we are given a smooth (C∞) solution (g+ab, A
+
a ,Ψ

+
α ) to the EDM equations on

a manifold M+. Suppose that a boundary Σ+ can be attached to M+ such that M+ ∪ Σ+

is a manifold with boundary. Suppose that (g+ab, A
+
a ,Ψ

+
α ) can be smoothly extended to Σ+

and that Σ+ is everywhere noncharacteristic with respect to g+ab; i.e., it is either everywhere
spacelike or everywhere timelike. In the case of BSKR wormholes, M+ would correspond
to the region r > 0, and Σ+ would correspond to the timelike hypersurface r = 0. For
definiteness, we will assume in the following that Σ+ is timelike.

Now suppose we also are given another smooth solution (g−ab, A
−

a ,Ψ
−

α ) to the EDM equa-
tions on a manifold M− that smoothly extends to a timelike boundary Σ−. For the BSKR
wormholes, M− would correspond to the region r < 0, and Σ− would correspond to the
hypersurface r = 0. If we identify Σ+ with Σ− and denote the identified surface as Σ, we
will obtain the enlarged spacetime M =M+ ∪Σ ∪M− with fields (gab, Aa,Ψα). The BSKR
wormhole spacetimes are constructed in this manner. We wish to investigate the conditions
under which the fields (gab, Aa,Ψα) satisfy the EDM equations. In the case where they do
satisfy the EDM equations, we also wish to investigate their smoothness properties. Obvi-
ously, satisfaction of the EDM equations and smoothness needs to be investigated only in an
arbitrarily small neighborhood of Σ, since we have assumed that (gab, Aa,Ψα) is a smooth
solution of the EDM equations on M+ and M−.

It is useful to make appropriate gauge choices for our original solutions (g+ab, A
+
a ,Ψ

+
α ) and

(g−ab, A
−

a ,Ψ
−

α ) so that any nonsmoothness in the matching will not be a gauge artifact. It
is very convenient to use Gaussian normal coordinates (s+, x

i
+) on M+ in a neighborhood

of Σ+. Gaussian normal coordinates are defined by choosing coordinates xi+ on Σ+ and
extending them off of Σ+ by keeping them constant on normal geodesics. We then define s+
to be the proper distance from Σ+ along each normal geodesic. It follows that in Gaussian
normal coordinates, we have g+ss = 1 and g+si = 0. Similarly, we choose Gaussian normal
coordinates onM− in a neighborhood of Σ−, except that in this case we take s− to be minus
the proper distance from Σ− along the normal geodesic.
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For the electromagnetic field, it is very convenient to work in a gauge on M+ where
A+

s = 0, i.e., A+
a (∂/∂s)

a = 0. This gauge can be achieved starting in an arbitrary gauge
by choosing any function χ0(x

i
+) on Σ+ and solving ∂χ(s, xi+)/∂s = A+

s with the initial
condition χ(0, xi+) = χ0(x

i
+). The gauge transformed potential A′+

a = A+
a − ∇aχ then

satisfies the desired gauge condition. Similarly, we choose A−

s = 0 in a neighborhood of Σ−

in M−.
Finally, for the Dirac field, we must specify a tetrad in order to define its components.

We choose a tetrad in M+ by choosing an orthonormal triad, {e+i
0 , e

+i
1 , e

+i
2 }, on Σ+ tangent

to Σ+ and supplementing it with e+a
3 = (∂/∂s)a. We then propagate this tetrad into M+

by parallel transport along the normal geodesics. We choose a tetrad in M− in the same
manner. Note that since s takes negative values in M−, e−a

3 = (∂/∂s)a points toward Σ− in
M−.

As stated above, the spacetime M is obtained by identifying Σ+ and Σ−. Since our
gauge choices above do not place any restrictions on the choices of coordinates xi+ and xi

−

on Σ+ and Σ−, we may assume without loss of generality that the identification is such
that xi+ = xi

−
. We then may drop the plus and minus subscripts on xi. We then have the

following necessary conditions for (gab, Aa,Ψα) to be a solution of the EDM equations onM .
First, in order to satisfy Einstein’s equation, it is essential that the induced metric on

Σ+ and Σ− match, i.e.,
g+ij

∣

∣

s=0
= g−ij

∣

∣

s=0
. (3)

If this were not the case, the metric would be discontinuous on Σ. In that case, ∂g+ij/∂s
would have a delta-function singularity and, as previously mentioned, nonlinear terms in the
Einstein tensor involving this quantity could not even be defined [5]. It also is necessary for
a solution to the Einstein portion of the EDM equations that the extrinsic curvatures of Σ+

and Σ− match, i.e., that
∂g+ij
∂s

∣

∣

∣

∣

s=0

=
∂g−ij
∂s

∣

∣

∣

∣

s=0

. (4)

If this condition were not satisfied, it would give rise to a δ-function contribution to the
Einstein tensor, corresponding to the presence of an additional shell of matter [4].

Maxwell’s equations are first order differential equations involving the gauge invariant
field strength tensor Fµν . Given the matching of the metric and extrinsic curvature as
specified in the previous paragraph, it is necessary that

F+
µν

∣

∣

s=0
= F−

µν

∣

∣

s=0
(5)

since any failure of this matching to hold would give rise to a δ-function contribution to
Maxwell’s equations, which would correspond to the presence of an additional shell of electric
and/or magnetic charge and/or current. If this matching condition holds, then, in particular,
the tangential components F+

ij and F−

ij match. Since our gauge condition As = 0 allows the
freedom to perform any s-independent gauge transformation, we may use such gauge freedom
to require matching of the vector potentials on Σ

A+
i

∣

∣

s=0
= A−

i

∣

∣

s=0
. (6)
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The matching of the components F+
si and F−

si at s = 0 then requires

∂A+
i

∂s

∣

∣

∣

∣

s=0

=
∂A−

i

∂s

∣

∣

∣

∣

s=0

. (7)

If Eq. (3) holds, we may choose the triad on Σ+ to match the triad on Σ−. It then follows
that for a solution to the EDM equations, the Dirac field components must match on Σ, i.e.

Ψ+
α

∣

∣

s=0
= Ψ−

α

∣

∣

s=0
(8)

since otherwise there would be a spurious delta-function source term in the Dirac equation.
In summary, we have just shown that a necessary condition for (gab, Aa,Ψα) to satisfy

the EDM equations on M is that in Gaussian normal coordinates associated with Σ and in
the gauge As = 0, further gauge choices can be made, if necessary, so that Eqs. (3)–(8) hold.
The main result of this section is the following theorem:

Theorem 1. Let (gab, Aa,Ψα) be the fields on M obtained by gluing together solutions of the
EDM equations on M+ and M− in the manner described above. Suppose that in Gaussian
normal coordinates on Σ and in the gauge As = 0 the fields satisfy the matching conditions
(3)–(8). Then (gab, Aa,Ψα) is a solution to the EDM equations on M . Furthermore, all of
these fields are smooth (C∞).

Proof. We will show that, with our gauge choices, the fields (gab, Aa,Ψα) are smooth on
Σ. Once smoothness is established, it follows immediately by continuity that they satisfy
the EDM equations on Σ since, by construction, these fields satisfy the EDM equations
everywhere off of Σ.

By hypothesis, (g+ab, A
+
a ,Ψ

+
α ) is smooth for s ≥ 0 and (g−ab, A

−

a ,Ψ
−

α ) is smooth for s ≤ 0,
so the only way (gab, Aa,Ψα) could fail to be smooth is if these quantities or their derivatives
with respect to s fail to match at s = 0. Eqs.(3) and (4) require matching of the metric and
its first s derivative at s = 0, so the metric is at least C1. Similarly, Eqs. (6) and (7) imply
that the vector potential is at least C1 and Eq. (8) implies that the Dirac field is at least
C0. As we shall now show, smoothness of these quantities then follows from the basic form
of the EDM equations.

In order to write the Dirac equation, we must make a choice of tetrad. We will use the
tetrad {eaµ} introduced above. Since ea3 = (∂/∂s)a and the s component of each of the other
tetrad vectors vanishes, we need only be concerned with eiµ for µ = 0, 1, 2. The parallel
propagation evolution law takes the form

∂eiµ
∂s

= fT i
µ

[

gkl,
∂gkl
∂s

, ejν

]

. (9)

Here fT i
µ is a smooth function of the indicated variables together with finitely many of their

xk derivatives. The Dirac equation then takes the form

∂Ψα

∂s
= fD

α

[

Ak,Ψα, e
i
µ,
∂eiµ
∂s

]

(10)
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where fD
α is a smooth function of the indicated variables together with finitely many of

their xk derivatives. Note that the metric does not appear on the right side, since it can be
reconstructed from the tetrad via

gij =
2

∑

µ,ν=0

ηµνeiµe
j
ν . (11)

Einstein’s equation in Gaussian normal coordinates takes the form

∂2gij
∂s2

= fE
ij

[

eiµ,
∂eiµ
∂s

, Ak,
∂Ai

∂s
,Ψα,

∂Ψα

∂s

]

(12)

where fE
ij is a smooth function of the indicated variables together with finitely many of their

xk derivatives. Finally, Maxwell’s equations in the gauge As = 0 take the form

∂2Ai

∂s2
= fM

i

[

eiµ,
∂eiµ
∂s

, Ak,
∂Ai

∂s
,Ψα

]

. (13)

We now have all the ingredients necessary to prove smoothness. The quantities (g+ab, A
+
a ,Ψ

+
α , e

+i
µ )

satisfy Eqs. (9)–(13) for s > 0, whereas (g−ab, A
−

a ,Ψ
−

α , e
−i
µ ) satisfy Eqs. (9)–(13) for s < 0. By

hypothesis, the matching conditions (3)–(8) hold on Σ. By construction, the tetrad vectors
also match on Σ. It then follows from Eq. (9) that the normal derivatives of the tetrad
vectors match on Σ, so the tetrad is C1. It then further follows from Eq. (10) and the
matching conditions (6) and (8) that

∂Ψ+
α

∂s

∣

∣

∣

∣

s=0

=
∂Ψ−

α

∂s

∣

∣

∣

∣

s=0

. (14)

Thus, Ψα is C1. It then follows immediately from Eqs. (12) and (13) together with our
matching conditions that the metric and vector potential are C2 at s = 0. We now take
an s derivative of Eqs. (9), (10), (12), and (13) and repeat the argument to conclude that
the tetrad vectors and Dirac field are C2 and the metric and vector potential are C3. By
induction, all fields are C∞.

Remark. The fact that Σ is a noncharacteristic surface played an essential role in the proof.
If Σ were null, the field equations would not uniquely determine derivatives transverse to Σ
in terms of quantities on Σ. Consequently, it can be possible to produce nonsmooth solutions
by patching smooth solutions along a characteristic surface.

As already mentioned near the beginning of this section, the BSKR wormholes are pro-
duced by patching solutions together in the manner described above, so our results apply to
the BSKR wormholes. It follows that if the required matching conditions Eqs. (3)–(8) hold,
all of the fields must be smooth when written using our gauge choices. However, the BSKR
fields are not smooth. This is most readily seen for the metric, which must be smooth when
expressed in Gaussian normal coordinates. The Gaussian normal coordinate s is related to
the r coordinate of the metric Eq. (1) by

s(r) =

∫ r

0

F1(r)dr (15)
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However, in all of their solutions, dF1/dr is discontinuous at r = 0 [6]. Consequently, d2s/dr2

is discontinuous at r = 0. On the other hand, from the explicit expression (2), it can be seen
that F2(r) is a smooth function of r with dF2/dr = 0 at r = 0 but d2F2/dr

2 6= 0 at r = 0.
Using the chain rule, we obtain

d3F2

ds3
=
d3F2

dr3

(

dr

ds

)3

+ 3
d2F2

dr2
dr

ds

d2r

ds2
+
dF2

dr

d3r

ds3
(16)

The first and last terms on the right side are continuous at r = 0 but the middle term
is discontinuous. Thus, we see that the BSKR wormhole metric fails to be C3 at r = 0.
This fact also can be deduced from the plots given in [1] for the scalar curvature and the
Kretschmann scalar, which can be seen to have a discontinuous derivative at r = 0. It
follows that the BSKR wormholes cannot satisfy all of the necessary matching conditions
Eqs. (3)–(8).

The fact that the scalar curvature has a discontinuous derivative at r = 0 implies that
the trace of the stress-energy tensor also has a discontinuous derivative at r = 0. Since
the Maxwell stress-energy tensor has vanishing trace, the Dirac stress-energy tensor must
have a discontinuous derivative at r = 0. This strongly suggests that the Dirac field cannot
satisfy the required matching condition (8). In the next section, we will analyze the matching
conditions and show that this is the case.

3 Matching Conditions for BSKR Wormholes

We turn now to an analysis of the matching conditions for BSKR wormholes. This will require
some care for the treatment of the Dirac field, so we first review some basic properties of
Dirac spinors (see e.g. [7]).

In terms of Weyl spinors, a Dirac spinor is a pair composed of a Weyl spinor φA and
complex conjugate Weyl spinor ψ̄A′

. We introduce a basis oA and ιA for the Weyl spinor
space W satisfying oAι

A = 1 and use the complex conjugate basis ōA
′

and ῑA
′

for the complex
conjugate spinor space W̄ . From these bases, we can construct the quantities

tAA′

=
1√
2
(oAōA

′

+ ιA ῑA
′

) (17)

xAA′

=
1√
2
(oAῑA

′

+ ιAōA
′

) (18)

yAA′

=
i√
2
(oAῑA

′ − ιAōA
′

) (19)

zAA′

=
1√
2
(oAōA

′ − ιA ῑA
′

). (20)

which can be identified with an orthonormal tetrad {eaµ} in spacetime. Conversely, a choice
of orthonormal tetrad {eaµ} corresponds to a choice of spin basis oA, ιA up to sign.

In the presence of a vector potential Aa, the Dirac equation for the spinors φA and ψ̄A′

7



is given by the pair of equations

(i∇AA′

+ qAAA′

)φA = mψ̄A′

(21)

(i∇AA′ + qAAA′)ψ̄A′

= mφA (22)

We expand ψ̄A′

in the basis ōA
′

and ῑA
′

ψ̄A′

= αōA
′

+ βῑA
′

(23)

and we expand φA in the dual spinor basis o∗A = −ιA and ι∗A = oA

φA = γo∗A + δι∗A (24)

The Dirac spinor can then be represented by the components

Ψα =









α
β
γ
δ









(25)

In flat spacetime, we can choose the spinor basis oA, ιA and the corresponding orthonor-
mal tetrad {eaµ} to be constant (i.e., have vanishing derivative) over spacetime. The Dirac
equations (21) and (22) then take the form

γµ(i∂µ + qAµ)Ψ = mΨ (26)

where we have omitted the Dirac spinor indices and where

γ0 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









γ1 =









0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0









γ2 =









0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0









γ3 =









0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0









. (27)

This corresponds to the standard form of the Dirac equation in the chiral representation. In
curved spacetime (or in a nonconstant basis in flat spacetime), additional terms will arise in
(26) from the derivatives of the spinor basis, which may be computed in terms of the Ricci
rotation coefficients of the corresponding tetrad {eaµ}.

For the BSKR wormholes, the solution (g+ab, A
+
a ,Ψ

+
α ) is taken to be of the following form.

The metric is assumed to be given by Eq. (1), with M+ taken to be the region r > 0. The
vector potential on M+ is taken to be of the form

A+
a = V (r)dt (28)
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The Dirac field is taken to be an incoherent superposition of two solutions of the form

Ψ+
[1] =













cos
(

θ
2

)

z(r)ei(
φ

2
−tw)

iκ sin
(

θ
2

)

z̄(r)ei(
φ

2
−tw)

−i cos
(

θ
2

)

z̄(r)ei(
φ

2
−tw)

−κ sin
(

θ
2

)

z(r)ei(
φ

2
−tw)













, Ψ+
[2] =













i sin
(

θ
2

)

z(r)ei(−tw−
φ

2
)

κ cos
(

θ
2

)

z̄(r)ei(−tw−
φ

2
)

sin
(

θ
2

)

z̄(r)ei(−tw−
φ

2
)

iκ cos
(

θ
2

)

z(r)ei(−tw−
φ

2
)













(29)

where κ = ±1. An incoherent superposition of this sort is necessary in order to get a total
current and stress-energy that is spherically symmetric. BSKR obtain numerical solutions
to the EDM equations for (g+ab, A

+
a ,Ψ

+
α ) on M

+.
An obvious choice for (g−ab, A

−

a ,Ψ
−

α ) would be to take it to be an identical copy of
(g+ab, A

+
a ,Ψ

+
α ). In that case, the matching conditions (3) and (6) hold automatically. In

order for the matching condition (4) to hold, it is necessary and sufficient for the extrinsic
curvature of Σ+ to vanish. This holds if and only if

∂F0

∂r

∣

∣

∣

∣

r=0

= 0. (30)

This condition is imposed by BSKR. Similarly, in order for (7) to hold, it is necessary and
sufficient that

∂V

∂r

∣

∣

∣

∣

r=0

= 0. (31)

This condition was not imposed by BSKR [6]. The failure of this condition to hold implies
the presence of an additional charged shell of matter at r = 0.

We now consider the matching condition for the Dirac spinor. Equation (8) applies for
a continuous choice of tetrad. However, in the matching of (g+ab, A

+
a ,Ψ

+
α ) with its identical

copy (g−ab, A
−

a ,Ψ
−

α ), the tetrad vector e−a
3 points in the wrong direction as compared with the

continuous tetrad choice made in the previous section. Thus, we must take the discontinuity
of the tetrad vector ea3 at r = 0 into account when formulating the matching conditions
for the Dirac field. To do so, we note that the reversal of the tetrad vector ea3 at a point
x ∈ Σ corresponds to a parity transformation on the tetrad followed by a 180◦ rotation about
ea3. The application of these transformations to the tetrad while keeping the Dirac spinor
unchanged is equivalent to applying the inverse of these transformations to the Dirac spinor
while keeping the tetrad fixed. The parity operator on Dirac spinors is given by

P = ηγ0 (32)

where one can make any of the choices η = {1,−1, i,−i}. The inverse transformation is of
the same form. A 180◦ rotation about ea3 is given by1

R = ±









i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i









. (33)

1We assume here that the r direction in the BSKR Dirac spinor ansatz corresponds to what we are calling
the 3 direction. (BSKR do not explicitly say this, but any other choice would give rise to inconsistencies in
the angular dependence of the quantities being matched.)
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and the inverse also is of the same form. Thus, for the case where (g−ab, A
−

a ,Ψ
−

α ) is an identical
copy of (g+ab, A

+
a ,Ψ

+
α ), the matching condition (8) for a Dirac field becomes

Ψ+
∣

∣

r=0
= P−1R−1Ψ−

∣

∣

r=0
= P−1R−1Ψ+

∣

∣

r=0
(34)

where for the last equality we have used the equality of Ψ− and Ψ+ in the original tetrads
at r = 0. For the ansatz (29), this matching condition for Ψ+

[1] yields
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(35)

for some choice of η = {1,−1, i,−i}. It is easily seen that this condition cannot be satisfied
for any choice of η unless z(0) = 0. However, the Dirac fields obtained by BSKR have
z(0) 6= 0. Thus, the wormhole spacetimes obtained by taking (g−ab, A

−

a ,Ψ
−

α ) to be an identical
copy of (g+ab, A

+
a ,Ψ

+
α ) have a spurious delta-function source term for the Dirac field at r = 0.

As noted above, they also have a spurious charged shell of matter at r = 0.
One could also consider other possible choices of (g−ab, A

−

a ,Ψ
−

α ) that are related to (g+ab, A
+
a ,Ψ

+
α )

by symmetry operations that map Σ to itself. It would appear that the only potentially vi-
able option would be a time reflection operation. For the metric (1), time reflection takes g+ab
to g+ab, but for the vector potential (28), it takes A+

a to −A+
a . Thus the spacetime obtained

joining (g+ab, A
+
a ,Ψ

+
α ) to its time reflection would have V (−r) = −V (r). Since the vector

potential, Aa, flips sign between r > 0 and r < 0, it follows from Maxwell’s equations that
the charge-current vector Ja of the Dirac field must correspondingly flip sign. However, the
probability 4-current, P a, of any Dirac spinor is always a future-directed timelike vector, and
the charge-current vector is given by Ja = qP a. Therefore, in order to construct a wormhole
spacetime in this manner, the Dirac field for r < 0 must have charge that is of opposite sign2

to that of the Dirac field for r > 0. It is unclear to us what interpretation could be given
to a quantity obtained by combining a Dirac field of charge q for r > 0 with a Dirac field of
charge −q for r < 0, but it is clear that such a quantity cannot in any sense be considered
to be a classical solution to the Dirac equation on the wormhole spacetime.

A final possibility along these lines would be to take g−ab = g+ab and A−

a = A+
a , but take

Ψ−

α = T Ψ+
α , where T is the Dirac time reversal operator. For a vector potential of the form

(28), T Ψ+
α will satisfy the Dirac equation with the original q. The time reversal operator

reverses the spatial components of the Dirac charge-current Ja and the time-space compo-
nents of the Dirac stress-energy tensor Tab, but since these components vanish in the original
solution (g+ab, A

+
a ,Ψ

+
α ), it follows that (g+ab, A

+
a , T Ψ+

α ) will satisfy the EDM equations. For
this choice of (g−ab, A

−

a ,Ψ
−

α ), the metric matching conditions will again be satisfied, provided
that (30) has been imposed. Since Aa(−r) = Aa(r), the Maxwell matching condition (7)
again does not hold, thereby requiring an additional shell of charged matter at r = 0. We
now consider the matching conditions for the Dirac field.

2This fact is undoubtedly closely related to points raised in [8] and [9].
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The action of the time reversal map T on a Dirac spinor (25) is

T









α(t)
β(t)
γ(t)
δ(t)









= eiρ









β̄(−t)
−ᾱ(−t)
δ̄(−t)
−γ̄(−t)









(36)

where eiρ is an arbitrary phase. The required matching condition is now

Ψ+
∣

∣

r=0
= P−1R−1Ψ−

∣

∣

r=0
= P−1R−1T Ψ+

∣

∣

r=0
. (37)

If we apply this condition to Ψ+
[1] using the ansatz (29), we find that the angular factors do

not match, so (37) cannot be satisfied. Nevertheless, we can instead try to match Ψ+
[1] to

P−1R−1Ψ−

[2] = P−1R−1T Ψ+
[2] at r = 0. In this case, the angular factors do match. However,

a calculation similar to that of Eq. (35) shows that the required matching condition holds
only when z(0) = 0, which is not satisfied by any of the BSKR wormholes.

In summary, our analysis of the matching conditions shows that the BSKR wormholes
require the presence of an additional shell of charged matter and, more seriously, contain a
spurious distributional source for the Dirac field at r = 0. This confirms the conclusion of
Sec. 2 that the BSKR wormholes are not solutions to the EDM equations.
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