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Integrable hard rod deformation of the Heisenberg spin chains
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We present new integrable models of interacting spin-1/2 chains, which can be interpreted as
hard rod deformations of the XXZ Heisenberg chains. The models support multiple particle types:
dynamical hard rods of length ℓ and particles with lengths ℓ

′
< ℓ that are immobile except for the

interaction with the hard rods. We encounter a remarkable phenomenon in these interacting models:
exact spectral degeneracies across different deformations and volumes. The algebraic integrability
of these systems is also treated using a recently developed formalism for medium range integrable
spin chains. We present the detailed Bethe Ansatz solution for the case ℓ = 2.

I. INTRODUCTION

The T T̄ deformation of Quantum Field Theories [1–4]
together with certain generalized deformations have at-
tracted considerable interest in the last couple of years,
see the review paper [5]. In Field Theory the generalized
T T̄ deformations can be formulated for any pair of local
conserved charges, and for integrable Field Theories this
gives new possibilities for integrable deformations. Very
recently it has been argued that this enlarged family of
deformations is so rich that it spans the tangent space of
integrable systems [6]. In other words, if there are two in-
tegrable models that can be transformed into each other
continuously, then it should be possible to perform this
transformation using only the generalized T T̄ deforma-
tions.

There are various geometrical interpretations of the
T T̄ deformation, and one of them is that the fundamen-
tal particles acquire a momentum dependent width [7–
12]. Similar interpretation can be given also for the gen-
eralized deformations. A particular case is the so-called
hard rod deformation, where the particles acquire a fi-
nite and fixed width. This implies that starting from a
free theory one can build quantum mechanical or field
theoretical models of moving hard rods [11, 12].

The study of the hard rod systems has a long history,
going back to the classical physical hard rod gas [13–15].
This is a many body system with a very simple interac-
tion: the hard rods move freely as long as they do not
collide. The collisions are elastic, and if the rods are in-
distinguishable then a collision can be interpreted as a
finite displacement of the particle coordinates given di-
rectly by the hard rod length. This simplicity of the inter-
action lead to the proofs that hydrodynamical behaviour
emerges in the thermodynamic limit [16, 17], and this
is a very important direct link between the microscopic
and macroscopic descriptions of many body systems (see
also [18]). This success motivates the search for analogous
models in the quantum realm, in the hope that emergent
hydrodynamics could be established rigorously, despite
having non-trivial interactions in the system.

An obvious question one can ask is whether the T T̄ de-
formation and the various generalizations can be formu-

lated for lattice systems or non-relativistic field theories.
In [19, 20] it was found that the generalized T T̄ deforma-
tions do exist on integrable spin chains. What is more,
they are special cases of a large family of long range defor-
mations that were studied in the context of the AdS/CFT
correspondence a decade earlier [21]. However, the re-
sults [19, 20] can not be applied for those transformations
which would involve the momentum operator, simply be-
cause there is no local momentum operator on the lattice.
This means in particular that the actual T T̄ deformation
and the hard rod deformation (which involve the momen-
tum) are not included in the possibilities provided by the
formalism of [19, 20]. This motivates further research to-
wards the lattice realization of these deformations.

In this paper we investigate the hard rod deformation
for lattice systems, and we show that the deformation
can be performed for the integrable XXZ spin chains,
such that it preserves the integrability of the models.

We pose two main requirements for the hard rod de-
formation: a) the fundamental particles should acquire a
finite width, and b) the Hilbert space of the new model
should have the same structure as that of the original
model, i.e. it should be a simple tensor product space.
The second one is a very important requirement. Ear-
lier works already studied a number of models where
the particles show hard rod behaviour [22–33], but there
the Hilbert space was restricted so that the kinetic con-
straints coming from the finite length are automatically
satisfied. Such models can be interesting for a variety of
reasons, see for example the recent works [34–36]. How-
ever, we intend to find local Hamiltonians such that the
hard rod behaviour emerges dynamically, and it is not
encoded in the Hilbert space structure. Naturally this
means that if the dynamical hard rods have length ℓ then
particles with lengths ℓ′ < ℓ should also be present in
the system, otherwise we could not produce a complete
Hilbert space of the tensor product form.

A particular model with the desired requirements is
the “folded XXZ model” which was studied in the recent
works [37–40]. It was explained in [39] that it can be re-
garded as the hard rod deformation of the XX chain. The
folded XXZ model has a number of interesting dynami-
cal features, such as exponentially large degeneracies for
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excited states, Hilbert space fragmentation, particle-hole
transmutation [41] and persistent oscillations after cer-
tain quantum quenches; its hydrodynamic behaviour was
treated in [38]. It is our goal in the present paper to give a
generalization of the “folded XXZ model” such that it be-
comes the hard rod deformation of the interacting XXZ
models.

To this order we used the recent methods of [42]
where a general framework was given for spin chains with
medium range interactions. In fact, the Hamiltonian of
the hard rod deformed XXZ model with rod length ℓ = 2
was already announced in that work. Here we analyze this
model in detail and also give the hard rod deformation
for arbitrary rod length ℓ ≥ 2.

In the next Section we summarize our main results,
leaving the technical details to the later Sections. The
hard rod deformation with ℓ = 2 is discussed first in Sec-
tion III, the coordinate Bethe Ansatz solution is given
with open and periodic boundary conditions in IV, and
the algebraic construction ensuring its integrability is
presented in Section V. In this Section we also treat
the so-called chiral charges of the folded XXZ model, for
which there was no algebraic result available in the previ-
ous literature. The hard rod deformed model with ℓ = 3
is introduced and briefly discussed in VI, and Section VII
includes our conclusions.

II. SUMMARY OF THE MAIN RESULTS

In this Section we summarize some key properties of
the original XXZ spin chain, and we also present the main
results for the hard rod deformations. The solution of the
new models and the discussion of its algebraic properties
are given in later Sections.

A. Notations

We treat spin-1/2 chains. Let C2 be the local Hilbert
space at a site of the chain, and let |↑〉 and |↓〉 be the
usual basis vectors. Furthermore σx,y,z denote the Pauli
matrices, and σ± are the raising and lowering operators.
The models that we treat conserve the global Sz quan-
tum numbers, but they are not symmetric with respect
to a global spin flip, therefore we need to make a clear
distinction between the up and down spins. We inter-
pret the up spins as the vacuum and the down spins as
particles, and throughout this work we use the following
alternative notation for the basis vectors:

|◦〉 ≡ |↑〉, |•〉 ≡ |↓〉. (II.1)

Furthermore we introduce the local projectors onto these
states:

P ◦ =
1 + σz

2
, P • =

1− σz

2
. (II.2)

The reference state is defined as |∅〉 = |◦ ◦ ◦ . . . 〉.

We also define a particle number operator as

N =
∑

j

P •
j . (II.3)

All our Hamiltonians preserve N .

B. The Heisenberg chain

The XXZ Heisenberg spin chain is defined as

H =
∑

j

[
σx
j σ

x
j+1 + σy

j σ
y
j+1 +∆(σz

j σ
z
j+1 − 1)

]
. (II.4)

We chose an additive normalization such that the ref-
erence state is an eigenstate with zero energy. The real
number ∆ is the so-called anisotropy parameter.

Using the operators introduced above an alternative
representation of the XXZ Hamiltonian is

H = 2
∑

j

hj,j+1 (II.5)

with

hj,j+1 = σ−
j σ

+
j+1 + σ+

j σ
−
j+1 −∆(P ◦

j P
•
j+1 + P •

j P
◦
j+1).

(II.6)
The interpretation of this Hamiltonian is straightfor-

ward: The first two terms generate propagation of par-
ticles to the left and to the right, and the third term
describes the interaction between particles. It is useful
to discuss how the interaction emerges. The interaction
term is diagonal in the computational basis and it gives
a contribution of −∆ for each pair of neighbouring sites
if one of them is empty and one of them is occupied. For
a single particle state the summation over these diago-
nal terms gives −2∆. For two particle states the diagonal
contribution is −4∆ if the particles are at distance more
than 1, and −2∆ if they occupy neighbouring positions.
This difference is the source of the interaction between
them.

The XXZ spin chain is integrable and is possesses a
set of local conserved charges {Qα} which are indexed
by an integer α ≥ 1. The charges are extensive and can
be expressed as

Qα =
∑

j

qα(j), (II.7)

where qα(j) is the operator density positioned at site j.
We choose a normalization such that the range of the
qα(j) is α and it spans the sites j . . . j + α − 1. Thus
Q1 can be identified with the particle number operator
N , and Q2 is identified with (or proportional to) the
Hamiltonian. The charges form a commuting set:

[Qα, Qβ] = 0. (II.8)

They can be constructed either using the so-called boost
operator [43–45], or from a commuting set of transfer



3

matrices. Below we will review the latter construction,
which is based on the famous Yang-Baxter relation.

It is an interesting consequence of the Yang-Baxter in-
tegrability, that (up to normalization) the density of the
next conserved charge Q3 can be expressed as

q3(j) = [h(j), h(j + 1)], (II.9)

where we used the simplified notation h(j) = hj,j+1. This
relation seems to hold in every nearest neighbour inte-
grable model [46–50].

C. Hard rod deformed models

We introduce a new integrable hard rod deformation
of the XXZ Heisenberg spin chains. The idea is that the
main propagating degrees of freedom should be “hard
rods” of length ℓ, where a hard rod is simply a sequence
of • states, with ℓ ≥ 1.

Our requirements for the construction of the model are
the following:

1. The model should describe the propagation of the
hard rods of length ℓ, which should be stable par-
ticles.

2. The Hilbert space of the model should be the stan-
dard tensor product space of the spin chains.

3. The Hamiltonian should be strictly local: it should
have a Hamiltonian density which is a short range
operator, but the range can depend on the hard rod
length ℓ.

4. The model should be integrable: it should have a
set of conserved charges and it should be solvable
by the Bethe Ansatz.

We propose the following family of Hamiltonians with
integer parameter ℓ, which satisfy all requirements:

H =
∑

j

[

hj,j+ℓ

ℓ−1∏

k=1

P •
j+k

]

. (II.10)

Here the two-site operator hj,j+ℓ is the same as in (II.6)
but now it acts on sites that are at distance ℓ from each
other. The insertion of the projection operators between
sites j and j + ℓ can be understood as a control for the
action of the original Hamiltonian density hj,j+ℓ. The
case of ℓ = 1 corresponds to the original XXZ chain.

Substituting (II.6) into (II.10) we obtain two terms: a
kinematical and an interaction term.

The kinematical term in (II.10) generates the following
moves (transition matrix elements) on a segment of ℓ+1
sites:

• · · · •
︸ ︷︷ ︸

ℓ

◦ ↔ ◦ • · · · •
︸ ︷︷ ︸

ℓ

. (II.11)

We can see that this term moves the hard rods of length
ℓ on the chain, but it leaves sequences of • states with
length shorter than ℓ invariant. This means that parti-
cles of length ℓ′ < ℓ are not dynamical on their own.
However, they can become dynamical through their in-
teraction with the hard rods of length ℓ.

The interaction term is

−∆
∑

j

(P ◦
j P

•
j+ℓ + P •

j P
◦
j+ℓ)

(
ℓ−1∏

k=1

P •
j+k

)

. (II.12)

In the computational basis this operator measures the
number of separate segments consisting only of • states
with length greater than ℓ. Thus it gives an interaction
term for hard rods of length ℓ, similar to how the inter-
action works in the nearest neighbour case. On the other
hand, this operator does not take into account shorter
immobile particles with length ℓ′ < ℓ.

D. Connection with other models

Let us now discuss the connections with some models
that appeared earlier in the literature.

The idea of describing particles with finite width on a
spin-1/2 chain appeared much earlier in the works [22–
24], which treated the so-called constrained XXZ models.
Here the idea is to have just a single down spin (or •) as
the fundamental particle, but the models are engineered
to mimic a finite width. This is achieved by forbidding
that two particles occupy sites that are closer to each
other than the given minimum length ℓ. The Hamiltonian
is then written as

H = P (ℓ)




∑

j

σx
j σ

x
j+1 + σy

j σ
y
j+1 +∆σz

j σ
z
j+ℓ



P (ℓ),

(II.13)
where P (ℓ) is a global projector that selects those states
in the Hilbert space where no two down spins are closer
to each other than ℓ. In the case of ℓ = 1 this projector is
just the identity, and we obtain simply the XXZ Hamil-
tonian. For ℓ ≥ 2 we obtain a new solvable model, whose
integrability was established both by coordinate Bethe
Ansatz, and by a long range vertex model [24].

The relation between (II.13) and our models is the fol-
lowing. In our model the hard rods are represented by
a sequence of •’s, but sequences with arbitrary lengths
are allowed and there is no global projector. However, if
we project our model to the sector that consists only of
the hard rods with length ℓ and no other lengths, then
we obtain a Hamiltonian identical to (II.13). This is seen
by directly computing the matrix elements of the two
Hamiltonians.

We believe that one of the advantages of our new mod-
els is that the Hamiltonians are completely local and
there is no need for a global projector to define the theory.
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For other closely related constrained models see for exam-
ple [25–31] and the super-symmetric spin chains treated
in [32, 33].

E. Conserved charges

The hard rod deformed models belong to the family
of “medium range” spin chains treated in detail in [42].
Therefore the general algebraic methods developed in [42]
can be applied in these cases as well.

Using these methods we found that the models given
by (II.10) also possess a family of conserved charges
{Qα}α∈S where now S is a subset of the integers. The
particle number operator is always conserved, thus 1 ∈ S.
The next charge is the Hamiltonian, which spans ℓ + 1
sites, thus we identify

Qℓ+1 = H. (II.14)

The next few charges have range 2ℓ+ 1, 3ℓ+ 1, . . . , thus
the allowed set of charge indices for a given hard rod
length ℓ is

S = {1, ℓ+ 1, 2ℓ+ 1, 3ℓ+ 1, . . . }. (II.15)

The situation that different models can have charges with
different indices is very well known from integrable QFT,
where the indices correspond to the “spin” of the charge
under Lorentz boost [51].

F. Special dynamical properties

Below we show that these hard rod deformed models
can be solved by coordinate Bethe Ansatz, both with
periodic and with open boundary conditions. The latter
case will prove to be simpler.

We observe an interesting phenomenon: spectral degen-

eracies across different deformations and different vol-

umes. This means that the spectrum of a hard rod de-
formed model with parameters ∆ and ℓ in a volume L
consists of the spectra of the original XXZ chain with
the same ∆ and various volumes L′ ≤ L. And while the
original XXZ chain does not have degeneracies on top of
those required by symmetry, the energy levels of the hard
rod deformed models are typically exponentially degen-
erate with respect to the volume, with an exponent that
depends on the physical content of the excited state in
question.

The phenomenon of spectral degeneracies across differ-
ent deformations and different volumes might seem nat-
ural from the point of view of classical physics, where the
only effect of the hard rod length is the modification of
the volume available to the particles. However, it is re-
markable that the degeneracies hold exactly even in the
quantum case. All our Hamiltonians are local, and we do
not exclude particles with length ℓ′ < ℓ, therefore it is
indeed remarkable to find exact equalities between the

energy levels. We stress in advance that these spectral
degeneracies connecting different deformations and dif-
ferent volumes hold only if open boundary conditions are
applied; in the periodic case they only hold for a subset
of energy levels.

The exponential degeneracy of a given level of a de-
formed model is caused by the various ways of how we
can add particles with length ℓ′ < ℓ to a given configu-
ration of dynamical hard rods. This can be interpreted
as Hilbert space fragmentation: the presence of the parti-
cles with length ℓ′ < ℓ fragments the Hilbert space into
disconnected sectors. Typically the degeneracies grow ex-
ponentially with the volume, but the exponent depends
on the particle content. The mechanism for the degenera-
cies is the same as discussed in [37–39], and it is discussed
also in Section IV.

We expect that our new models also display persistent
oscillations after specific quantum quenches, similar to
the folded XXZ model [39]. However, we do not treat
quench problems in this work.

III. HARD ROD DEFORMATION WITH ℓ = 2

Let us now focus on the hard rod deformed model with
ℓ = 2. In this case the Hamiltonian is

H =
∑

j

[
σ−
j P

•
j+1σ

+
j+2 + σ+

j P
•
j+1σ

−
j+2

−∆(P ◦
j P

•
j+1P

•
j+2 + P •

j P
•
j+1P

◦
j+2)

]
. (III.1)

This model was announced in [42] as one of the U(1)-
invariant three site interacting families of integrable spin
chains.

A. Connection with existing models

At the special point ∆ = 0 we obtain a relatively simple
Hamiltonian:

H =
∑

j

[
σ−
j P •

j+1σ
+
j+2 + σ+

j P
•
j+1σ

−
j+2

]
. (III.2)

This coincides with a specific version of the “folded XXZ”
model treated recently in [37–39, 52]. To be precise, the
Hamiltonian given by (III.2) is the “dual model” of [37,
38] and the “bond picture” model of [39]. It is useful to
discuss this connection in more detail.

The original “folded XXZ model” is defined by the four-
site Hamiltonian [37, 38, 53]

H =
L∑

j=1

1 + σz
jσ

z
j+3

2
(σ+

j+1σ
−
j+2 + σ−

j+1σ
+
j+2). (III.3)

This model is spin-flip invariant; its dynamics was dis-
cussed at length in [37–39]. The Hamiltonian density gen-
erates propagation of single particles between sites j + 1
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and j +2, such that the hopping amplitude is controlled
by the state of the sites j and j + 3. It was explained
in [39], that in this model the propagating particles are
either a single down spin embedded into a vacuum of up
spins, or vice versa, a single up spin embedded into a sea
of down spins. Furthermore, one observes particle-hole
transmutation [41].

The dynamics of (III.3) appears different from the one
generated by (III.2), however the two models are con-
nected by a non-local transformation which we now de-
scribe. The main idea is to perform a bond-site trans-
formation: we construct a non-local mapping from the
Hilbert space of the model (III.3) to that of (III.1) where
we put variables on the bonds (links) between the spin
chain sites. The mapping is worked out in the computa-
tional basis. Taking a specific basis state, for each bond
we write down a • if the neighbouring sites have different
spin, and a ◦ if they have identical spin. Explicit compu-
tations with local basis states show that the Hamiltonian
(III.3) is mapped to the three-site Hamiltonian (III.2);
this was performed in [39]. For other examples of this
bond-site transformation see [42].

It was already argued in [39] that the model given by
(III.3)-(III.2) should be regarded as the hard rod defor-
mation of the XX model, which is defined by the Hamil-
tonian

HXX =
∑

j

[
σ−
j σ+

j+1 + σ+
j σ

−
j+1

]
. (III.4)

The hard rod deformation appears through the insertion
of the projectors P • between the hopping operators in
(III.4), leading to (III.2). The new addition of [42] and
the present work is that the hard rod deformation can be
extended to the interaction terms as well, which gives the
interacting Hamiltonian (III.1) starting from the original
XXZ model given by (II.6).

It is useful to perform the bond-site transformation
backwards from (III.1). Then we obtain the four site
Hamiltonian

H =
∑

j

1 + σz
j σ

z
j+4

4
×

×
[
σx
j+1σ

x
j+2 + σy

j+1σ
y
j+2 +∆(σz

j+1σ
z
j+2 − 1)

]
. (III.5)

Quite interestingly a similar Hamiltonian was also pro-
posed in [52]. That work studied the model given by

H =
1

8

∑

j

(1 + σz
j σ

z
j+4)

[
σx
j+1σ

x
j+2 + σy

j+1σ
y
j+2

]
+

+∆
∑

j

σz
j σ

z
j+2. (III.6)

We modified the normalization given in [52] to match our
conventions. It was found in [52] that the Hamiltonian
(III.6) is not integrable, although it has an integrable
sector. This sector consists of those states where the par-
ticle do not occupy neighbouring sites, and the sector is

completely identical to the constrained XXZ model de-
fined by (II.13) with ℓ = 2.

Our results give an explanation for the non-integrable
sectors of (III.6): the interaction term added in (III.6) is
not compatible with integrability, and the only integrable
term is the one given in (III.1).

It is worthwhile to mention one more connection with
existing models in the literature. The so-called Bariev
model [54] describes two coupled XX chains, which can
be considered as a zig-zag spin ladder. Alternatively the
Hamiltonian can be written in a translationally invariant
form with a three site interaction:

H =
∑

j

[
σ−
j σ

+
j+2 + σ+

j σ
−
j+2

] 1− Uσz
j+1

2
, (III.7)

where U is a coupling constant (our multiplicative nor-
malization differs from that of [54] in the factor of 1/2
that we added). We can see that the Bariev model be-
comes identical with the hard rod deformed XX model
(III.2) at the special point U = 1. This connection was
already noted in [37, 38].

The one-parameter families of Hamiltonians (III.1) and
(III.7) overlap only at one point, corresponding to ∆ = 0
and U = 1.

B. Conserved charges

The hard rod deformed model possesses an infinite set
of conserved charges, which can be obtained from the
algebraic construction discussed in Sec. V. Here we just
give some simple remarks.

As discussed above, the global Sz is conserved, there-
fore we identify the first charge as Q1 = N . Furthermore
we identify Q3 = H . Writing H =

∑

j hj,j+1,j+2 we ob-
tain the next non-trivial charges as

Q5 =
∑

j

q5(j) (III.8)

with

q5(j) = [h(j), h(j + 1) + h(j + 2)], (III.9)

where we used h(j) = hj,j+1,j+2. This relation is a gen-
eralization of (II.9) and it was derived in [42].

For the concrete model we find

q5,j = i(q−5,j − q+5,j), q+5,j =
(
q−5,j
)†

(III.10)

with

q−5,j = σ−
j σ−

j+1σ
+
j+2σ

+
j+3 + σ−

j P
•
j+1σ

z
j+2P

•
j+3σ

+
j+4+

+ 2∆(−σ−
j P

•
j+1σ

+
j+2 + P •

j P
•
j+1σ

−
j+2P

•
j+3σ

+
j+4+

+ σ−
j P

•
j+1σ

+
j+2P

•
j+3P

•
j+4). (III.11)

The commutativity of Q3 and Q5 can be checked by di-
rect computation; we also used computer programs for
checks of the formulas.
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In the special case of the hard rod deformed XX model
(folded XXZ model) we find that there are actually two
families of charges that are conserved. We denote them
by Q±

α , where α = 3, 5, 7, . . . . These charges are “chi-
ral”, which means that they move hard rods only in one
direction. This is discussed in detail in Subsection VC.

IV. COORDINATE BETHE ANSATZ FOR ℓ = 2

In this Section we present the coordinate Bethe Ansatz
solution of the model. The solution is a simple generaliza-
tion of the one presented in [39] for the hard rod deformed
XX model.

A. Coordinate Bethe Ansatz – open boundary

conditions

We consider the XXZ and the deformed XXZ mod-
els with free boundary conditions. The Hamiltonians are
defined now as

H
(1)
L =

L−1∑

j=1

σ+
j σ

−
j+1 + σ−

j σ+
j+1 −∆

(
P ◦
j P

•
j+1 + P ◦

j P
•
j+1

)

(IV.1)

and

H
(2)
L =

L−2∑

j=1

σ+
j P

•
j+1σ

−
j+2 + σ−

j P
•
j+1σ

+
j+2−

−∆
(
P ◦
j P

•
j+1P

•
j+2 + P •

j P
•
j+1P

◦
j+2

)
. (IV.2)

Let us denote the eigenvectors of the XXZ model as

ΨL(pN ) =
∑

1≤x1<···<xN≤L

χ(pN ) |x1, . . . , xN 〉L (IV.3)

such that

H
(1)
L Ψ

(1)
L (pN ) = E(pN )Ψ

(1)
L (pN ). (IV.4)

We can construct the eigenvectors of the family H(2) sim-
ply by a linear transformation FyM

which acts on the
basis vectors.

We define for an arbitrary set x1, . . . , xk

|x1, . . . , xk〉 = σ−
x1

. . . σ−
xk
|∅〉. (IV.5)

It is important that in writing down the basis states we
do not require that the set of coordinates is ordered.

However, we define now the ordered sets x1, . . . , xN

and y1, . . . , yM . For a given set y1, . . . , yM for which
yi+1 − yi > 1 and y1 > 2N we define the linear transfor-
mation as

FyM
(|x1, . . . , xN 〉L) =

= |x̃1, x̃1 + 1, . . . , x̃N , x̃N + 1, ỹ1, . . . , ỹM 〉L+N+M

(IV.6)

where we defined the shifted coordinates

x̃k = xk + k − 1 +

M∑

j=1

Θ(xk − yj + 2N − k + 2j − 2),

(IV.7)

ỹj = yj − 2

N∑

k=1

Θ(xk − yj + 2N − k + 2j − 2). (IV.8)

Here Θ is unit-step function. Note that the concatena-
tions of the x and y variables is not ordered in the no-
tations, but the ordering is taken into account when we
actually compute the effective coordinates.

Using this transformation the eigenvectors of the hard
rod deformed Hamiltonian can be found from those of the
original one, simply by using the transformation FyM

.

This is based on the observation

FyM
(H

(1)
L |x1, . . . , xN 〉L) = H

(2)
L+N+M |x̃1, x̃1 + 1, x̃2, x̃2 + 1, . . . , x̃N , x̃N + 1, ỹ1, . . . , ỹM 〉L+N+M . (IV.9)

Applying the linear transformation FyM
to (IV.4) we obtain that

H
(2)
L Ψ

(2)
L (pN ,yM ) = E(pN )Ψ

(2)
L (pN ,yM ), (IV.10)

where

Ψ
(2)
L (pN ,yM ) = FyM

(Ψ
(1)
L−N−M (pN )) =

∑

1≤x1<···<xN≤L−N−M

χ(pN )FyM
(|x1, . . . , xN 〉L−N−M ). (IV.11)

In this way we find all solutions. For fixed N and M we have N magnon states of the XXZ chain with effective
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length L−N−M . The Bethe Ansatz solution of the XXZ
chain is complete therefore we obtain

(
L−N −M

N

)

(IV.12)

states. We can choose the positions of the DW for a rep-
resentative

(
L+ 1− 2N −M

M

)

(IV.13)

ways therefore we found

L/2
∑

N=0

(L−2N+1)/2
∑

M=0

(
L−N −M

N

)(
L+ 1− 2N −M

M

)

= 2L,

(IV.14)
which is the dimension of the Hilbert space.

We can summarize the hard rod deformation as fol-
lows: It is a transformation which reshuffles the energy
levels and the eigenstates of the XXZ model into those
of the hard rod deformed models with different lengths.
Every eigenvector of the deformed model originates from
one of the eigenstates of the undeformed model with some
smaller volume. This is what we call “spectral degener-
acy across different models and different volumes”. It is
a quantum mechanical generalization of the much sim-
pler phenomenon from the classical hard rod gas, namely
that the only effect of the deformation is that the volume
available to the particles is changed, and the difference
depends on the number of the particles within the sys-
tem. It is remarkable that this transformation can be
formulated on the quantum level, even if we include the
particles with length ℓ′ = 1 which are not dynamical on
their own.

B. Coordinate Bethe Ansatz – periodic boundary

conditions

It is also possible to compute the exact wave functions
in the periodic case. This will mirror the procedure de-
veloped in [39] for the case ∆ = 0.

We construct excitations above the vacuum state.
There are two types of excitations: single particles rep-
resented by a • that are not mobile on their own, and
hard rods represented by •• that are dynamical. Corre-
sponding to these excitations we introduce local creation
operators

Aa
j =

{

σ−
j if a = 1

σ−
j σ

−
j+1 if a = 2.

(IV.15)

Note that we have automatic exclusions:

A2
xA

2
x+1 = A2

xA
1
x+1 = 0. (IV.16)

Let us consider a state with N hard rods and M single
particles; the set of their momenta will be denoted as

pN and kM . The wave function can be written down
by merging these sets. Therefore we introduce a set of
momenta qN ′ and a set of particle types aN ′ with N ′ =
N+M . We assume that there are no coinciding rapidities.

We find that the wave function computed in [39] can be
used even in the present case. In real space representation
we have

|Ψ〉 =
∑

x1≤x2≤···≤xN′

∑

P∈SN′

ei
∑

N′

j=1
qPj

xj

×
∏

j<k

Pj>Pk

Saj ,ak
(qj , qk)

N ′

∏

j=1

A
aPj

xj |∅〉.
(IV.17)

Here Saj ,ak
(qj , qk) are scattering phase factors, which can

be computed from solving the two-particle problems.
We find the following scattering factors for all possible

particle pairs:

S1,1(q1, q2) = −e−i(q1−q2),

S2,2(q1, q2) = e−i(q1−q2)SXXZ(q1, q2),

S1,2(q1, q2) = e−i(q1−2q2),

(IV.18)

where SXXZ(q1, q2) is the scattering factor of the original
XXZ model with the same anisotropy ∆ given by

SXXZ(q1, q2) = −
ei(q1+q2) + 1− 2∆eiq2

ei(q1+q2) + 1− 2∆eiq1
. (IV.19)

This function is usually written in terms of rapidity vari-
ables, and then it takes a difference form. However, for
our present purposes it is convenient to keep the momen-
tum variables only.

Apart from the addition of SXXZ(q1, q2) these for-
mulas coincide with those given in [39]. In fact, they
are exactly reproduced in the limit of ∆ → 0, when
SXXZ(q1, q2) → −1.

It was assumed in (IV.17) that the original ordering of
particle types is 2, 2, 2, . . . , 2, 1, 1, 1, . . . , 1.

The phase factors above are such that for single par-
ticles the occupation of neighbouring sites is forbidden.
This ensures that we do not mistake two single particles
with an actual hard rod.

The energy of this state is

E =
∑

aj=p

e(pj). (IV.20)

The sum runs over the hard rods only.
Let us now also write down the separate Bethe equa-

tions for the hard rod and single particle momenta:

eipjL
N∏

l=1
l 6=j

S2,2(pj , pl)

M∏

m=1

S2,1(pj , km) = 1,

eiklL
M∏

m=1
m 6=l

S1,1(kl, km)

N∏

j=1

S1,2(kl, pj) = 1.

(IV.21)
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Substituting the factors we get the simplified Bethe equa-
tions

eipj(L−N−M)
N∏

l=1
l 6=j

SXXZ(pj , pl) = e−iP e−2iK ,

eikl(L−2N−M) = (−1)M−1e−iKe−iP ,

(IV.22)

where we defined

P =

N∑

j=1

pj , K =

M∑

j=1

kj . (IV.23)

We see that the apparent volume is changed for both
the hard rods and the immobile single particles, and we
also observe twists to the Bethe equations, which depend
on the overall momenta P and K. However, apart from
this twist the first equation is completely equivalent to
the usual Bethe equations for the hard rod momenta in
the modified volume. This leads to a similar effect as
in the open boundary case: some of the eigenvalues of
the deformed model will be given by the spectra of the
XXZ chains from smaller volumes. However, the exact
correspondence will only work for those states that have
P + 2K = 0, so that there is no apparent twist for the
Bethe equations of the hard rod momenta.

V. ALGEBRAIC CONSTRUCTION FOR ℓ = 2

Here we present the algebraic construction of the
charges of the hard rod deformed models, by applying
the recent results of [42] to these models. We start with a
brief review of the Quantum Inverse Scattering Approach
[55].

A. Standard construction

The central objects in this framework are the mon-
odromy matrix and the transfer matrix. The monodromy
matrix is constructed as follows. We take an auxiliary
space isomorphic to Cd, where d might or might not be
equal to the dimension of the physical space, which is 2 in
our cases. The Lax operator La,j(u) is a spectral param-
eter dependent operator acting on the tensor product of
an auxiliary space (denoted by the index a) and a phys-
ical space with site index j.

Then the monodromy matrix for a finite volume L is

Ma(u) = La,L(u) . . .La,2(u)La,1(u). (V.1)

Its trace over the auxiliary space is the transfer matrix:

t(u) = Tra Ma(u). (V.2)

The transfer matrices with different values of u form a
commuting set of operators if the Lax operators satisfy

the exchange relations in the case of two auxiliary spaces
a and b:

Rb,a(ν, µ)Lb,j(ν)La,j(µ) = La,j(µ)Lb,j(ν)Rb,a(ν, µ).
(V.3)

Here R(u, v) is the so-called R-matrix which satisfies the
Yang-Baxter relations

R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3) =

= R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2).
(V.4)

In many models the R-matrix satisfies the so-called reg-
ularity property

Rab(u, u) ∼ Pab, (V.5)

where Pab is the permutation operator acting on the ten-
sor product space. In such cases one can use the R-matrix
itself as a Lax operator:

La,j(µ) = Ra,j(µ, ξ0), (V.6)

where ξ0 is a fixed parameter of the model. In such cases
the YB relation is equivalent to the RLL relation.

The regularity condition ensures that the value of the
transfer matrix at the special point ξ0 is

t(ξ0) = U , (V.7)

where U is the cyclic shift operator on the chain.
A commuting set of local charges is then obtained as

Qα ∼ (∂u)
α−1 log(t(u))

∣
∣
u=ξ0

. (V.8)

Generally different values of ξ0 lead to different inte-
grable models. However, the R-matrix is often of differ-
ence form, which means that

R(u, v) = R(u− v). (V.9)

In these cases the parameter ξ0 is irrelevant, and it is
conventional to set it to ξ0 = 0.

Performing the first derivative in (V.8) we obtain the
Hamiltonian

H = Q2 =
∑

hj,j+1 (V.10)

with

hj,j+1 = ∂uŘj,j+1(u)
∣
∣
u=0

, (V.11)

where

Ř(u) = Pj,j+1Rj,j+1(u). (V.12)

B. Modification for 3 site interacting models

For the three site interacting models we apply a con-
struction which was first published in [42] (with certain
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elements already appearing in [56]). This framework al-
lows for the embedding of the medium range spin chains
into the QISM method.

In the case of the three site interacting models we take
two auxiliary spaces a and b, a physical space j and a
Lax operator La,b,j(u) that acts on the tensor product of
these three spaces. Using this Lax operator we define a
new transfer matrix acting on L spins as

t(u) = Tra,b [La,b,L(u) . . .La,b,2(u)La,b,1(u)] . (V.13)

The trace is taken over both auxiliary spaces.

The commutativity of the transfer matrices is proven
by finding an R-matrix that intertwines the Lax opera-
tors in the so-called RLL relations. Let us label the pairs
of auxiliary spaces as A = ab and B = cd. Then the
corresponding version of (V.3) is

RB,A(v, u)LB,j(v)LA,j(u) = LA,j(u)LB,j(v)RB,A(v, u).
(V.14)

Here RB,A(v, u) acts on the product of the two paired
auxiliary spaces A and B, which are themselves 4 dimen-
sional. Thus R is a matrix of size 16× 16.

For local spin chains with three site interaction the Lax
operator has the initial condition

La,b,j(0) = Pa,jPb,j , (V.15)

which translates into the initial condition t(0) = U2 for
the transfer matrix.

We define the conserved charges from the derivatives

(∂u)
α−2 log(t(u))

∣
∣
u=0

. (V.16)

Using the initial condition (V.15) we obtain that the
Hamiltonian is

H = Q3 =
∑

j

hj,j+1,j+2 (V.17)

where

hj,j+1,j+2 = ∂u Ľj,j+1,j+2(u)
∣
∣
u=0

, (V.18)

with

L1,2,3(u) = P1,3P2,3Ľ1,2,3(u). (V.19)

In our concrete case the Lax operator is constructed
from the corresponding operator of the XXZ model. We
found that the following Lax operator describes the inte-
grable hard rod deformation:

Ľ1,2,3(u) = Ľ
(XXZ)
1,3 (u)P •

2 + P ◦
2 (V.20)

Here Ľ(XXZ)(u) is the Lax operator of the original XXZ
spin chain, which is given by

Ľ(XXZ)(u) =








1
sinh(η)

sinh(u+η)
sinh(u)

sinh(u+η)
sinh(u)

sinh(u+η)
sinh(η)

sinh(u+η)

1








. (V.21)

Taking the derivative of the Lax operator as described
by (V.18) we obtain the Hamiltonian (III.1).

The R-matrix of the model can be found by solving the
linear equation (V.14). We obtain the explicit solution as

R(λ, µ) =






E11 + E44ρ1 E21 + E43ρ2 E31 E41ρ5
E12 E22 + E44ρ6 E32 E42ρ5

E13 + E24ρ2 E23ρ3 E33 + E44ρ6 E21ρ4 + E43ρ5
E14ρ5 E13ρ4 + E24ρ5 E34ρ5 E11ρ7 + (E22 + E33)ρ6 + E44




 , (V.22)

with the functions

ρ1 =
sinh(λ− µ) sinh(µ)

sinh(λ − µ+ η) sinh(µ− η)
, ρ2 = −

sinh(λ− µ) sinh(η)

sinh(λ− µ+ η) sinh(µ− η)
,

ρ3 =
1

sinh(λ − µ+ η)

(
sinh(η) sinh(η + µ)

sinh(η + λ)
+

sinh(λ− µ) sinh(µ)

sinh(µ− η)

)

,

ρ4 =
sinh(λ− µ) sinh(η)

sinh(λ − µ+ η) sinh(λ+ η)
, ρ5 =

sinh(η)

sinh(λ− µ+ η)
,

ρ6 =
sinh(λ− µ)

sinh(λ − µ+ η)
, ρ7 =

sinh(λ− µ) sinh(λ)

sinh(λ − µ+ η) sinh(λ + η)
.

(V.23)

It is noteworthy that the R-matrix satisfies the factor- ization condition

Ř12,34(λ, 0) = Ľ2,3,4(λ)Ľ1,2,3(λ). (V.24)
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This condition was derived in [42].
The Lax operator satisfies the inversion relation

Ľj,j+1,j+2(u)Ľj,j+1,j+2(−u) = 1. (V.25)

As explained in [42], it follows from this relation and
the construction of the transfer matrix that the operator
density of the next charge Q5 is given by formula (III.9)
announced earlier.

In the special case of ∆ = 1 we find rational expres-
sions, as expected. These formulas can be derived from
the scaling limit λ → ηλ and η → 0. For the Lax operator
we find

Ľ1,2,3(u) = Ľ
(XXX)
1,3 (u)P •

2 + P ◦
2 (V.26)

where now

Ľ(XXX)(u) =
1 + uP

1 + u
=







1
1

1+u
u

1+u
u

1+u
1

1+u

1







. (V.27)

The resulting Hamiltonian is

h1,2,3 = (P1,3 − 1)P •
2 . (V.28)

An alternative expression of the Lax operator (V.26) is
simply

Ľ1,2,3(u) = 1 +
u

1 + u
h1,2,3 (V.29)

For the R-matrix we find in this special case

Ř12,34(u, v) = 1 +
u− v

u− v + 1

(

h234 + h123+

+
u

u+ 1
h234h123 +

v

v − 1
h123h234

)

. (V.30)

The factorization condition (V.24) can be checked easily
after substituting v = 0.

C. Chiral charges in the folded XXZ model

The folded XXZ model corresponds to the point ∆ = 0,
and as we discussed above, it also coincides with a special
point of the Bariev model. In our framework this point is
interpreted as the hard rod deformation of the XX model.
In this case the set of conserved charges is larger than
for finite ∆, and this mirrors the situation known from
the standard XX model [49]. Let us therefore discuss the
algebraic structure of this model in more detail.

The Lax operator for the canonical charges can be ob-
tained from those presented above by the direct substi-
tution ∆ = 0 or equivalently η = iπ/2; the formulas were
already presented in [56]. The R-matrix that we find ac-
tually coincides with the U → 1 limit of the R-matrix
of the Bariev model presented in [57], but the limiting
procedure is delicate.

However, as stated above, in this model the set of
the conserved charges is actually doubled. The canoni-
cal charges derived from the transfer matrix above can
be written as

Qα = Q+
α + (−1)

α+1

2 Q−
α , (V.31)

where the two chiral parts Q+
α and Q−

α move particles
only to the right and left, respectively. It was already ob-
served in [37], that for this model the chiral charges are
separately conserved, similar to the situation in the orig-
inal XX model [49]. Nevertheless the algebraic construc-
tion behind the chiral charges of the folded XXZ model
remained unknown. We now provide this construction.

We start with the elementary chiral move of a single
hard rod:

Mj = σ+
j P

•
j+1σ

−
j+2. (V.32)

These operators satisfy the relations

M2
j = 0, [Mj,Mk] = 0 for |j − k| > 2 (V.33)

and also

MjMj+1 = 0, MjMj+2Mj+1 = 0. (V.34)

The first chiral charge can be written as

Q+
3 =

∑

j

Mj . (V.35)

We find that the next chiral charge with range 5 is

Q+
5 =

∑

j

[Mj+1 +Mj+2,Mj] =

=
∑

j

σ+
j σ

+
j+1σ

−
j+2σ

−
j+3 + σ+

j P
•
j+1σ

z
j+2P

•
j+3σ

−
j+4.

(V.36)

The corresponding space reflected charges are

Q−
3 = (Q+

3 )
†, Q−

5 = (Q+
5 )

†. (V.37)

Direct computation shows that all four charges commute
with each other, and the Hamiltonian of the model is

H = Q3 = Q−
3 +Q+

3 . (V.38)

Let us now define a formal “height” or “center of mass”
operator as

D =
∑

j

jP •
j . (V.39)

All the charges defined above are eigenoperators under
the commutator with D. Specifically we have

[D, Q±
3 ] = ±2Q±

3

[D, Q±
5 ] = ±4Q±

5 .
(V.40)
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Thus the chiral charges change the center of mass by a
well defined amount.

The structure of the first two chiral charges suggests
that we can find a Lax operator using our formalism for
medium range chains, and that this operator could be
a rational function of the spectral parameter. Indeed we
found that the Lax operator given by (V.19) and

Ľ±
1,2,3(u) = 1± uσ±

1 P
•
2 σ

∓
3 (V.41)

satisfies the requirements. The chiral transfer matrices
defined as

ts(u) = Tra,b
[
Ls
a,b,L(u) . . .L

s
a,b,2(u)L

s
a,b,1(u)

]
,

s = ±1 (V.42)

form commuting families

[tp(u), ts(v)] = 0, (V.43)

where p = ± and s = ± independently. The chiral charges
are given by their logarithmic derivatives.

The commutativity of the transfer matrices follows
from the Yang-Baxter relations. For s, p = ± we find
that

Rsp
B,A(v, u)L

s
B,j(v)L

p
A,j(u) = Lp

A,j(u)L
s
B,j(v)R

sp
B,A(v, u)

(V.44)

is satisfied by the following chiral-chiral

Ř++(u, v) = 1 + (u− v)






0 E4,3 0 uE4,1

0 0 0 (E3,1 + E4,2)
0 0 0 E4,3

0 0 0 0






(V.45)
and chiral-antichiral R-matrices

Ř+−(u, v) = 1 +






−uv(E1,1 + E2,2 + E3,3) uE4,3 0 u2E4,1

vE3,4 −uv(E1,1 + E2,2) 0 u(E3,1 + E4,2)
0 0 −uv(E1,1 + E2,2 + E3,3) uE4,3

v2E1,4 v(E1,3 + E2,4) vE3,4 0




 . (V.46)

The remaining two R-matrices read as

Ř−−(u, v) = Ř++(v, u)T , (V.47)

Ř−+(u, v) = Ř+−(v, u)−1. (V.48)

The Yang-Baxter equations were checked by direct sub-
stitution using the program Mathematica.

The structure of the Lax operators imply the following
generalization of relations (V.40):

[D, Q±
α ] = ±

α+ 1

2
Q±

α . (V.49)

VI. HARD ROD DEFORMATION WITH ℓ = 3

Now the Hamiltonian is given by

H =
∑

j

hj,j+1,j+2,j+3 (VI.1)

with the 4-site operator

hj,j+1,j+2,j+3 = (σ−
j σ+

j+3 + σ+
j σ

−
j+3)P

•
j+1P

•
j+2

−∆(P ◦
j P

•
j+1P

•
j+2P

•
j+3 + P •

j P
•
j+1P

•
j+2P

◦
j+3). (VI.2)

We identify Q4 = H . The next charge is a 7-site operator,
and its density is given by

q7(j) ∼ [h(j), h(j + 1) + h(j + 2) + h(j + 3)]. (VI.3)

Based on the earlier result we conjecture that the asso-
ciated Lax operator takes the form

L1,2,3,4(u) = P1,4P2,4P3,4Ľ1,2,3,4(u) (VI.4)

with

Ľ1,2,3,4(u) = Ľ1,4(u)P
•
2 P

•
3 + (I23 − P •

2 P
•
3 ) . (VI.5)

where Ľ1,4(u) is again the Lax operator of the XXZ chain
(V.21), but now acting on the spaces 1 and 4. The trans-
fer matrix is then constructed using 3 auxiliary spaces
as

t(u) = Tra,b,c [La,b,c,L(u) . . .La,b,c,2(u)La,b,c,1(u)] ,
(VI.6)

where 1 . . . L denote the physical spaces.
This model describes the interaction of dynamical hard

rods of length ℓ = 3, but it also supports particles of
length 1 and 2. These latter particles are not dynamical
on their own, but again they do interact with the hard
rods. A full Bethe Ansatz solution can be given analo-
gously to the case of ℓ = 2, but we do not pursue this
direction here.

VII. CONCLUSIONS

In this paper we studied new integrable spin-1/2
chains, which can be considered as hard rod deforma-
tions of the interacting XXZ spin chains. The folded
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XXZ model [37, 39] is a special member of this fam-
ily, corresponding to the hard rod deformation of the
free XX chain, this explains its relative simplicity. How-
ever, we found that many of the special features of that
model are also displayed by the interacting cases: for ex-
ample, we observe exponential degeneracies for excited
states, Hilbert space fragmentation, and we also conjec-
ture that persistent oscillations could be found in certain
non-equilibrium problems.

One of the most interesting phenomena is the pres-
ence of the exact degeneracies across different deforma-
tions and volumes. This phenomenon has a clear classical
counterpart: if we have systems with hard rods, then the
available volume is the total volume minus the sum of the
lengths of the rods, and this apparent volume determines
the finite volume properties of the system. We find that
the same effect holds in the quantum case, with exact
degeneracies in the open boundary case. It is remarkable
that the degeneracies are indeed exact, and that the wave
functions of the deformed models can be obtained by a
simple non-local transformation from the original, unde-
formed ones; this was discussed in detail in Section IVA.
While it is not surprising to see a quantum version of
the hard rod deformation, we believe that it is quite re-
markable to find these exact correspondences in our truly
interacting spin chains with strictly local Hamiltonians.

We applied the methods of [42] to prove the algebraic
integrability of the models. As a by-product we also found
the full set of chiral charges for the folded XXZ model,

which were not yet found in [37, 39].
There are various open questions. Perhaps the most

interesting one is whether hard rod deformations exist
for other integrable spin chains. As we explained in the
Introduction, the hard rod deformation is a special gen-
eralization of the famous T T̄ deformation. It is known
that other generalizations exist on every integrable chain
[19, 20], but the question is open for those deformations
which involve the momentum, such as the hard rod or
the actual T T̄ deformation. If the hard rod deformation
exists for other spin chains, it would be a general method
to construct a new medium range integrable chain start-
ing from a known nearest neighbour model. Somewhat
similar “model generating” transformations were studied
recently in [58]. The specific form of our Lax operators
suggests that perhaps the hard deformation is more gen-
eral and not restricted to the XXZ chains, but this ques-
tion needs further study.

Also, it would be useful to get a better understand-
ing of the algebra behind our Lax operator and the R-
matrices. Our Lax operators have a very suggestive struc-
ture which mirrors the real space representation of the
hard rod deformation. However, we don’t have a trans-
parent representation of our R-matrices. It would be in-
teresting to clarify their origin and their interpretation.
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