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1 Introduction

Given two quadratic functions

f(x) = xTAx + 2aTx, g(x) = xTBx+ 2bTx+ c,

where A,B ∈ Rn×n are symmetric and possibly not positive semidefinite,
a, b ∈ Rn and c ∈ R, we consider the inequality and equality constrained
versions of generalized trust-region subproblem:

(GT) min{f(x) : g(x) ≤ 0, x ∈ Rn},
(GTe) min{f(x) : g(x) = 0, x ∈ Rn}.

The Euclidean-ball constrained (GT) (B = I, b = 0, c < 0) is known as
the classical trust-region subproblem (T). Problem (T) plays a great role in
each iteration of the trust-region method [9,51] in nonlinear programming. It
also has applications in robust optimization [16], constrained linear regression
and tensor decomposition [30]. In the early 1980s, Gay [12], Sorensen [37],
Moré and Sorensen [27] established the necessary and sufficient optimality
condition for the global minimizer of (T) even it is nonconvex. Based on this
optimality condition, (T) is shown to be polynomially solvable in the early
1990s, see [40,49]. After that, many other polynomial-time algorithms were
proposed to globally solve (T), for example, see [1,13,33]. Recently, first-order
methods were proposed to globally solve large dimensional (T) [6,14,15,42].
These make sense due to the inherent hidden convexity of (T), see the recent
survey [46] and references therein.

In addition to the applications of its special case (T), (GT) (or (GTe)) not
only frequently appears as a subproblem in some algorithm schemes [5,19,45],
but also has direct applications in constrained least squares [11], regularized
total least squares [3], GPS localization and circle fitting problem [4].

(GT) and (GTe) have attractive properties similar to (T). In 1993, Moré
[28] established the necessary and sufficient optimality condition for the global
minimizer of (GT). Under mild assumptions, (GT) and (GTe) admit strong
duality thanks to the fundamental S-lemma [31,48] and S-lemma with equal-
ity [47], respectively. Under assumptions such as primal and/or dual Slater
conditions, there are many polynomial-time algorithms [2,10,28,32,38] and
first-order methods [22,41] for globally solving (GT). Among these assump-
tions, a notable assumption for (GT) is simultaneously diagonalizable (SD)
by congruence for matrices A and B, see [20] and references therein. We refer
to [8,24] for understanding hidden convexity of (GT) under SD assumption.
Efficient algorithms based on SD assumption can be found in [7,21,23,35].
Beyond these regular assumptions, (GT) may be either unbounded below or
bounded below but the optimal value is unattainable. Necessary and sufficient
conditions were established for these two irregular cases by Hsia et al. [18].

Local nonglobal minimizers of (T) also have some nice properties. In 1994,
Mart́ınez [26] surprisingly proved that (T) has at most one local nonglobal min-
imizer. The proof is based on univariate reformulations of the standard second-
order necessary and sufficient optimality conditions for the local nonglobal
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minimizer of (T). In 1998, the strict complementarity condition is proved to
hold at the local nonglobal minimizer of (T) [25]. In 2020, Wang and Xia [43]
proved that, at local nonglobal minimizer of (T), the standard second-order
sufficient optimality condition is surprisingly necessary. This theoretical ob-
servation implies that, by an improved version of generalized eigenvalue-based
algorithm [1,34], finding the local nonglobal minimizer of (T) or proving the
nonexistence can be done in polynomial time [43]. Very recently, Wang et al.
[44] proved that the local nonglobal minimizer of (T), if exists, has the second
smallest objective function value among all KKT points.

Local nonglobal minimizers of (GT) take an irreplaceable role in globally
solving the extended generalized trust-region subproblem [39]:

min
{

f(x) : g(x) ≤ 0, hTx ≤ d, x ∈ Rn
}

,

where h ∈ Rn and d ∈ R. The unique global optimization solution approach,
dating back to [17], is to enumerate (candidates of) all local minimizers of
(GT) satisfying hTx < d and the global minimizer of the reduced version of
(GT) in the hyperplane hTx = d, in the worst case that the linear constraint
hTx ≤ d cuts the optimal solution set of (GT).

To our knowledge, there are few investigations on local nonglobal mini-
mizers of (GT) or (GTe). In 2020, Taati and Salahi [39] extended Mart́ınez’s
analysis [26] to (GT) and established only necessary optimality condition for
local nonglobal minimizers of (GT). In the same paper, they extended the
eigenvalue-based algorithm [34] to find candidates of local nonglobal mini-
mizers of (GT). Very recently, Song et al. [36] proved that there is no local
nonglobal minimizer for homogeneous (GT) (or (GTe)). They also analyzed
local optimality conditions for homogeneous quadratic optimization with two
quadratic constraints under a strong assumption, which only covers a special
case of homogenized (GT) with a positive definite matrix B. Comparing with
(T), the following questions are unknown.

(1) How many local nonglobal minimizers may (GT) (or (GTe)) have?
(2) Does the strict complementarity condition hold at any local nonglobal min-

imizer of (GT)?
(3) Is there a necessary and sufficient optimality condition for any local non-

global minimizer of (GT) (or (GTe))?
(4) Can we find all local nonglobal minimizers of (GT) (or (GTe)) in polyno-

mial time?

The goal of this paper is to (partially) answer the above four questions.
We overestimate the number of local nonglobal minimizers of (GT) (or (GTe))
and show that our bound is tight for two-dimensional case. We can construct
an instance of two-dimensional (GT) with two local nonglobal minimizers. In
contrast, we prove that the complex-valued (GT) in arbitrary dimension has no
local nonglobal minimizer. We provide positive answers to Questions (2)-(4).
More precisely, we prove that, at any local nonglobal minimizer of (GT) (or
(GTe)), the standard second-order sufficient optimality condition is necessary.
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As a corollary, finding all local nonglobal minimizers of (GT) (or (GTe)) or
proving the nonexistence can be done in polynomial time.

The remainder of the paper is organized as follows. Section 2 presents
assumptions made on (GT) and (GTe) and existing characterizations of local
and global minimizers. Section 3 proves not only the strict complementarity
condition, but also second-order necessary and sufficient optimality condition.
The complexity of finding all local nonglobal minimizers of (GT) (or (GTe)) is
presented. Section 4 overestimates the number of local nonglobal minimizers
of (GT) and (GTe), presents an example with more than one local nonglobal
minimizers, and proves that (GT) (or GTe) in complex domain has no local
nonglobal minimizer. Conclusions are made in Section 5.

Notations. Let Rn and Cn be the n-dimensional real and complex spaces,
respectively. The real and imaginary part of scalars, vectors, and matrices are
denoted by ℜ(·) and ℑ(·), respectively. Denote by Rn×n (Cn×n) the set of real
(complex) square matrices of order n. 0 represents a zero number, an all-zero
vector, or an all-zero matrix. For a symmetric matrix A, A ≻ (�)0 denotes
that A is positive (semi)definite. Diag(a1, . . . , an) returns a diagonal matrix
with diagonal components a1, · · · , an. Denote by [a1; a2] the column vector
composed of vectors a1 and a2. For a real number a, |a| represents its absolute
value. For any smooth vector-valued function h : R → Rm (m ≥ 1), h′, h′′ and
h′′′ denote the first, second and third derivatives of h, respectively.

2 Preliminaries

We present in this section some basic assumptions and existing global and
local optimality conditions for (GT) and (GTe).

2.1 Assumptions

We assume that g(x) is nonlinear, since otherwise, (GT) (or (GTe)) reduces to
a quadratic programming problem, which has no local nonglobal minimizer.
Moreover, through a suitable linear transformation if necessary, we can make
the following assumption to simplify g(x).

Assumption 1

B =

[

B1

0

]

, b =

[

0
b2

]

, c ∈ {−1, 1, 0}, B1 ∈ Rn1×n1 , b2 ∈ Rn2 ,

where B1 is symmetric and nonsingular, n1 and n2 are nonnegative integers
satisfying n1 ≥ 1 (so that g(x) is nonlinear) and n1 + n2 = n.

The primal Slater conditions for (GT) and (GTe) are presented as follows.

Assumption 2 The primal Slater condition holds for (GT), i.e., there exists
x̂ ∈ Rn such that g(x̂) < 0.
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Assumption 3 The primal Slater condition holds for (GTe), i.e., there exist
x̂, x̄ ∈ Rn such that g(x̂) < 0 < g(x̄).

It follows from Assumptions 2 and 3 that the feasible regions of (GT) and
(GTe) are both nonempty. Moreover, if Assumption 2 is violated, then there
is no local nonglobal minimizer for (GT) (see [39], Proposition 2.3). If As-
sumption 3 does not hold, according to [28, Lemma 3.1], the feasible region of
(GTe) is either a linear manifold or a single point. Therefore, (GTe) has no
local nonglobal minimizer.

In global optimization of (GT) and (GTe), the following standard dual
Slater conditions are often used, respectively, see for example, [2,21,28].

Assumption 4 There exists λ̂ ≥ 0 such that A+ λ̂B ≻ 0.

Assumption 5 There exists λ̂ ∈ R such that A+ λ̂B ≻ 0.

Assumption 5 is slightly weaker than Assumption 4. It was proved in [28] that
under Assumption 5 (or 4), (GT) (or (GTe)) has a global minimizer. For the
necessary and sufficient condition on the existence of the global minimizer of
(GT) (or (GTe)), we refer to [18].

In local optimality analysis of (GT), Taati and Salahi [39] made Assump-
tions 1, 2 and 5. In particular, if Assumption 5 holds but Assumption 4 fails,
Taati and Salahi presented a lower unbounded example with one local non-
global minimizer, see [39, Example 1].

Our local optimality analysis in this paper is based on the following further
relaxed assumption, which was first introduced for (GT) in [10].

Assumption 6 There exist µ1, µ2 ∈ R such that µ1A+ µ2B ≻ 0.

Actually, Assumption 6 is a well-known sufficient condition for simultaneous
diagonalization (via congruence) of A and B.

If Assumption 6 is satisfied but Assumption 5 fails, (GT) may still have a
local nonglobal minimizer even if it is unbounded below.

Example 2.1 Consider the following three-dimensional case of (GT):

min{x2
1 + 2x2

2 − x2
3 + 2x1 − 2x3 : x2

1 − x2
2 + 2x1 + 2x3 + 1 ≤ 0, x ∈ R3}.

We can check the lower unboundedness of this instance. We can further verify
that x∗ = [−1, 0, 0]T is a local nonglobal minimizer of (GT) with the corre-
sponding Lagrangian multiplier λ∗ = 1.

2.2 Optimality conditions

The necessary and sufficient optimality conditions for global minimizers of
(GT) and (GTe) are due to Moré [28].
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Theorem 2.1 ([28], Theorem 3.2) Under Assumptions 1 and 3, x∗ is a
global minimizer of (GTe), if and only if g(x∗) = 0 and there exists λ∗ ∈ R
such that

(A+ λ∗B)x∗ + a+ λ∗b = 0, (2.1)

A+ λ∗B � 0. (2.2)

Theorem 2.2 ([28], Theorem 3.4) Under Assumptions 1 and 2, x∗ is a
global minimizer of (GT), if and only if g(x∗) ≤ 0, and (2.1)-(2.2) are satisfied
for some λ∗ ≥ 0 with λ∗ = 0 if g(x∗) < 0.

In order to study local minimizers of (GT), we first show that the inequality
constraint is always active at any local nonglobal minimizer of (GT).

Lemma 2.1 Let x∗ be a local nonglobal minimizer of (GT). Then g(x∗) = 0.

Proof Suppose, on the contrary, g(x∗) < 0. The assumptions on x∗ imply that
it is a local minimizer of the unconstrained optimization min f(x). We have

∇f(x∗) = 0, ∇2f(x∗) � 0.

As f(x) is a quadratic function, x∗ is a global minimizer of min f(x). Therefore,
x∗ is a global minimizer of (GT), which contradicts the assumption on x∗. �

Local optimality conditions require some regular assumptions such as the
linear independence constraint qualification (LICQ). Taati and Salahi [39,
Lemma 2.5] proved that LICQ always holds at any local nonglobal minimizer
of (GT). We extend this result to (GTe). Our proof is new and elegant.

Theorem 2.3 Under Assumptions 1 and 2 (or 3), if x∗ is a local nonglobal
minimizer of (GT) (or (GTe)), then LICQ holds at x∗.

Proof Suppose on the contrary that LICQ fails at x∗, that is,

∇g(x∗) = 2(Bx∗ + b) = 0. (2.3)

By Lemma 2.1, g(x∗) = 0 even for (GT). Then, it holds that

g(x∗ + d) = g(x∗) +∇g(x∗)T d+ dTBd = dTBd, ∀d ∈ Rn.

Therefore, for any d ∈ Rn satisfying dTBd ≤ 0(= 0), x∗+d is feasible to (GT)
(or (GTe)). Define

h(t) = f(x∗ + td) = f(x∗) + 2(Ax∗ + a)T dt+ dTAdt2.

It follows from the local optimality of x∗ that h′(0) = 0 ≤ h′′(0), i.e.,

dTBd ≤ 0(= 0) =⇒ (Ax∗ + a)T d = 0, dTAd ≥ 0. (2.4)

We partition the remainder of the proof into three cases.

(a) B � 0. By the fact g(x∗) = 0 and (2.3), g(x) ≥ 0 holds for any x ∈ Rn.
Neither Assumption 2 nor Assumption 3 holds. Consequently, neither (GT)
or (GTe) has a local nonglobal minimizer.
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(b) B � 0. Similar to (a), we have g(x) ≤ 0, ∀x ∈ Rn. Then (GT) reduces to the
unconstrained optimization min f(x) without local nonglobal minimizer.
(GTe) has no local nonglobal minimizer as Assumption 3 does not hold.

(c) B is indefinite. According to [29, Lemma 3.10], span{v : vTBv = 0} = Rn.
Then it follows from (2.4) that (Ax∗ + a)Td = 0 for all d ∈ Rn, which
implies that

Ax∗ + a = 0. (2.5)

By applying S-lemma [31,48] (S-lemma with equality [47]) to

dTBd ≤ 0 (dTBd = 0) =⇒ dTAd ≥ 0,

which is given in (2.4), we have

∃λ ≥ 0 (λ ∈ R) : A+ λB � 0. (2.6)

Combining (2.3), (2.5)-(2.6) with (2.1)-(2.2), we conclude that x∗ is a global
minimizer of (GT) (or (GTe)) according to Theorem 2.2 (or 2.1). This
contradicts the assumption on x∗.

�

For completeness, we write down the standard second-order necessary and
sufficient optimality conditions for local minimizers of (GT) and (GTe), re-
spectively.

Theorem 2.4 (1) (Necessary optimality condition for (GT)) If x∗ is a
local minimizer of (GT) at which LICQ holds, then g(x∗) ≤ 0 and there
exists λ∗ ≥ 0 such that (2.1) holds. Moreover, if g(x∗) = 0 and λ∗ > 0,
then

vT (A+ λ∗B)v ≥ 0, ∀v ∈ Rn such that vT (Bx∗ + b) = 0, (2.7)

and if g(x∗) = 0 and λ∗ = 0, it holds that

vT (A+ λ∗B)v ≥ 0, ∀v ∈ Rn such that vT (Bx∗ + b) ≤ 0. (2.8)

(2) (Sufficient optimality condition for (GT)) Suppose that g(x∗) = 0 and
there exists λ∗ > 0 satisfying (2.1) and

vT (A+ λ∗B)v > 0, ∀v ∈ Rn such that vT (Bx∗ + b) = 0, v 6= 0.(2.9)

Then x∗ is a strict local minimizer of (GT).
(3) (Necessary optimality condition for (GTe)) If x

∗ is a local minimizer
of (GTe) at which LICQ holds, then g(x∗) = 0 and there exists λ∗ ∈ R
such that (2.1) and (2.7) hold.

(4) (Sufficient optimality condition for (GTe)) Suppose that g(x∗) = 0
and there exists λ∗ ∈ R satisfying (2.1) and (2.9). Then x∗ is a strict local
minimizer of (GTe).
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3 Local optimality condition for local nonglobal minimizer

In this section, we first show that the strict complementary condition holds
at any local nonglobal minimizer of (GT), and then prove that the standard
second-order sufficient optimality condition for any local minimizer of (GT)
(or (GTe)) is surprisingly necessary.

Theorem 3.1 Under Assumptions 1 and 2, if x∗ is a local nonglobal mini-
mizer of (GT), then the strict complementary condition holds at x∗, i.e., the
corresponding Lagrangian multiplier is positive.

Proof By Lemma 2.1, g(x∗) = 0. According to Theorem 2.3, LICQ holds at
x∗. Let λ∗ be the Lagrangian multiplier corresponding to x∗. According to
Theorem 2.4, (2.1) holds. Now it is sufficient to prove λ∗ > 0. Suppose, on the
contrary, it holds that λ∗ = 0. By (2.8), we have

vTAv ≥ 0, ∀v ∈ Rn such that vT (Bx∗ + b) ≤ 0,

which is equivalent to
vTAv ≥ 0, ∀v ∈ Rn,

since vTAv = (−v)TA(−v). Therefore, we obtain A � 0. Now (2.1)-(2.2) hold
with λ∗ = 0. According to Theorem 2.2, x∗ is a global minimizer of (GT).
This contradicts the assumption that x∗ is a local nonglobal minimizer. �

For local nonglobal minimizer of (GT) (or (GTe)) x∗ and its Lagrangian
multiplier λ∗, according to Theorem 2.2 (or Theorem 2.1), A+λ∗B has at least
one negative eigenvalue. On the other hand, as a direct corollary of Theorems
2.3, 2.4 and 3.1, A+ λ∗B has at most one negative eigenvalue. Consequently,
we have established the following necessary optimality condition for any local
nonglobal minimizer of (GT) (or (GTe)).

Corollary 3.1 ([39], Lemma 3.1) Let x∗ be a local nonglobal minimizer of
(GT) (or (GTe)) and λ∗ ≥ 0 (or λ∗ ∈ R) be the corresponding Lagrangian
multiplier. Under Assumptions 1 and 2 (or Assumptions 1 and 3), A + λ∗B
has exactly one negative eigenvalue.

As a main result, we prove that the standard second-order sufficient opti-
mality condition for any local nonglobal minimizer of (GTe) is necessary.

Theorem 3.2 Suppose Assumptions 1, 3 and 6 hold, and x∗ is not a global
minimizer of (GTe). Then x∗ is a local minimizer of (GTe) if and only if
g(x∗) = 0 and there exists a λ∗ ∈ R satisfying (2.1) and (2.9).

Proof Suppose that x∗ is a local nonglobal minimizer of (GTe). Let λ∗ ∈ R
be the corresponding Lagrangian multiplier. Then g(x∗) = 0, (2.1) and (2.7)
hold by Theorem 2.4. Then A+ λ∗B � 0 by Theorem 2.1. Let G = A+ λ∗B.
We rewrite the corresponding Lagrangian function as follows:

L1(x) = f(x) + λ∗g(x) = xTGx+ 2(a+ λ∗b)Tx+ λ∗c

= xTGx− 2x∗TGx+ λ∗c, (3.1)
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where the second equality (3.1) follows from (2.1).
It is sufficient to prove that (2.9) holds. Suppose, on the contrary, there

exists a vector v̄ 6= 0 such that

v̄TGv̄ = 0, (3.2)

v̄T (Bx∗ + b) = 0. (3.3)

We first claim that

v̄TBv̄ 6= 0. (3.4)

If this is not true, we have v̄TBv̄ = 0. By (3.2), we obtain v̄TAv̄ = 0. Thus,
for any µ1, µ2 ∈ R, we have

v̄T (µ1A+ µ2B)v̄ = 0,

which contradicts Assumption 6.
We partition the remainder of the proof into two cases.
Case (a). Assume

Gv̄ = 0. (3.5)

According to Corollary 3.1, G has exactly one negative eigenvalue. Let w ∈ Rn

be a nonzero eigenvector of G corresponding to the unique negative eigenvalue.
Then we must have

wT (Bx∗ + b) 6= 0,

since otherwise, according to (2.7), it holds that wTGw ≥ 0, which contradicts
the definition of w.

Define the function h : R2 7→ R as

h(s, t) := g(x∗ + tv̄ + sw)

= (x∗ + tv̄ + sw)TB(x∗ + tv̄ + sw) + 2bT (x∗ + tv̄ + sw) + c

= v̄TBv̄ · t2 + wTBw · s2 + 2wT (B(x∗ + tv̄) + b) · s, (3.6)

where (3.6) follows from the fact g(x∗) = 0 and (3.3). We can verify that

h(0, 0) = 0,
∂h

∂s
(0, 0) = 2wT (Bx∗ + b) 6= 0.

According to the implicit function theorem in multi-variable calculus, there
are two open intervals I1, I2 ⊂ R with 0 ∈ I1

⋂

I2 and a continuous function
s(t) : I1 7→ I2 such that s(0) = 0. Moreover, for any t ∈ I1, the point s(t) ∈ I2
is a unique point satisfying

h(s(t), t) = 0. (3.7)

By (3.4), (3.6) and (3.7), it holds that

s(t) 6= 0, ∀t 6= 0. (3.8)
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Define x(t) := x∗ + tv̄ + s(t)w. By the definition of h(s, t) and (3.7), we have
g(x(t)) = 0. Therefore, for any sufficiently small |t| and t 6= 0, x(t) is a feasible
point in the neighborhood of x∗. Moreover, according to (3.1), (3.5) and (3.8),
we can verify that

f(x(t)) = L1(x(t)) = wTGw · s(t)2 + L1(x
∗) < L1(x

∗) = f(x∗),

which contradicts the assumption that x∗ is a local minimizer of (GTe).
Case (b). Assume

Gv̄ 6= 0. (3.9)

We further consider three subcases with different values of c ∈ {−1, 1, 0}.
Subcase (b1). c = −1. For any real number t, we can verify that

(x∗ + tv̄)TB(x∗ + tv̄) + 2bT (x∗ + tv̄)

= x∗TBx∗ + 2bTx∗ + 2v̄T (Bx∗ + b) · t+ v̄TBv̄ · t2 (3.10)

= 1 + v̄TBv̄ · t2, (3.11)

where (3.11) follows from the fact g(x∗) = 0, (3.3) and c = −1.
Let x∗ = [x∗

1;x
∗

2] and v̄ = [v̄1; v̄2], where x
∗

1, v̄1 ∈ Rn1 and x∗

2, v̄2 ∈ Rn2 . We
define x(t) = [x1(t);x2(t)] as

x1(t) =
x∗

1 + tv̄1√
1 + v̄TBv̄ · t2

, x2(t) =
x∗

2 + tv̄2
1 + v̄TBv̄ · t2 . (3.12)

Then for any sufficiently small |t|, the parametric curve x(t) is well defined.
In the remainder of the proof, we always assume that |t| is sufficiently small.
According to (3.10)-(3.12), we have x(0) = x∗ and g(x(t)) = 0. Thus, for any
t, x(t) is a feasible solution of (GTe). Consequently, 0 is a local minimizer of
the univariate function defined by

F (t) := f(x(t)) = L1(x(t)) = x(t)TGx(t)− 2x∗TGx(t)− λ∗.

Notice that both x(t) and F (t) are sufficiently smooth. By elementary analysis,
we can verify that

x′(0) = v̄, (3.13)

x′′(0) = −v̄TBv̄ · [x∗

1; 2x
∗

2], (3.14)

F ′(0) = 0,

F ′′(0) = 2x′(0)TGx′(0) = 2v̄TGv̄ = 0, (3.15)

F ′′′(0) = 6x′(0)TGx′′(0) = 6v̄TGx′′(0), (3.16)

where the item x′(0) in (3.15)-(3.16) is replaced by v̄ due to (3.13), and the
last equality in (3.15) follows from (3.2).

Let W ∈ Rn×(n−1) be a full column-rank matrix whose columns form a
basis of the (n− 1)-dimensional subspace given by

{v ∈ Rn : vT (Bx∗ + b) = 0}. (3.17)
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That is, WT (Bx∗ + b) = 0. By (2.7) in Theorem 2.4, we have

WTGW = WT (A+ λ∗B)W � 0. (3.18)

According to (3.3) and v̄ 6= 0, there exists a nonzero ū ∈ Rn−1 such that

v̄ = Wū. (3.19)

Substituting (3.19) into (3.2) yields that

ūTWTGWū = 0. (3.20)

Then it follows from (3.18)-(3.20) that

0 = WTGWū = WTGv̄. (3.21)

Since WT (Bx∗ + b) = 0 and W is of full column-rank, (3.21) implies that

Gv̄ = γ(Bx∗ + b) (3.22)

with γ 6= 0 due to (3.9). Substituting (3.14) and (3.22) into (3.16) leads to

F ′′′(0) = −6γ · v̄TBv̄ · (x∗TBx∗ + 2bTx∗) = −6γ · v̄TBv̄ 6= 0,

where the second equality holds as g(x∗) = 0 and c = −1, and the last in-
equality follows from γ 6= 0 and (3.4). Therefore, t = 0 is not a local minimizer
of F (t). This contradicts the fact that x∗ is a local minimizer of (GTe).

Subcase (b2). c = 1. By (3.10), we have

(x∗ + tv̄)TB(x∗ + tv̄) + 2bT (x∗ + tv̄) = −1 + v̄TBv̄ · t2.

Then we define x(t) = [x1(t);x2(t)] by

x1(t) =
x∗

1 + tv̄1√
1− v̄TBv̄ · t2

, x2(t) =
x∗

2 + tv̄2
1− v̄TBv̄ · t2 ,

as a replacement of the definition x(t) in (3.12). Based on a proof similar to
that of Subcase (b1), we can obtain a contradiction for Subcase (b2).

Subcase (b3). c = 0. We first consider the case that n2 ≥ 1 and b2 6= 0.
For any feasible point of (GTe) with the partition x = [x1;x2] where x1 ∈ Rn1

and x2 ∈ Rn2 , we have

g(x) = xT

1 B1x1 + 2bT2 x2 + 0 = xT

1 B1x1 + 2bT2

(

x2 +
b2

2‖b2‖2
)

− 1.

Then by a linear transformation, we are back to Subcase (b1) with respect to
the new variables

x̂ :=

[

x1;x2 +
b2

2‖b2‖2
]

.



12 Jiulin Wang et al.

The remainder case is either n2 ≥ 1 and b2 = 0 or n2 = 0. In this case, we
always have b = 0. (GTe) can be equivalently homogenized to the following
equality-constrained quadratic optimization:

(QQ2) min
{

q0(y) : q1(y) = 1, q2(y) = 1, y ∈ Rn+1
}

,

where qi(y) = yTAiy for i = 0, 1, 2, and

A0 =

[

A a
aT 0

]

, A1 =

[

0 0
0 1

]

, A2 =

[

B 0
0 1

]

. (3.23)

Clearly, x∗ is a local nonglobal minimizer of (GTe), if and only if y∗ := [x∗; 1] is
a local nonglobal minimizer of (QQ2). The corresponding Lagrangian function
is given by

L2(y) = q0(y) + λ1(q1(y)− 1) + λ2(q2(y)− 1)

= yT (A0 + λ1A1 + λ2A2)y − λ1 − λ2. (3.24)

Since LICQ clearly holds at y∗, by the first-order optimality condition, it holds
that

(A+ λ2B)x∗ + a = 0, (3.25)

aTx∗ + λ1 + λ2 = 0. (3.26)

Substituting (2.1) into (3.25) yields that

(λ2 − λ∗)Bx∗ = 0.

By Theorem 2.3, ∇g(x∗) = 2Bx∗ 6= 0. Therefore, we have λ2 = λ∗. It follows
from (2.1) and g(x∗) = 0 that

aTx∗ = −x∗T (A+ λ∗B)x∗ = −x∗TAx∗. (3.27)

Then, by (3.26)-(3.27) and λ2 = λ∗, we have λ1 = x∗TAx∗ − λ∗. Therefore,
by introducing H = A0 + (x∗TAx∗ − λ∗)A1 + λ∗A2, (3.24) reduces to

L2(y) = yTHy − x∗TAx∗.

Define w̄ := [v̄; 0] ∈ Rn+1, where v̄ satisfies (3.2)-(3.3) and (3.22) with γ 6= 0.
We can verify that

Hy∗ = 0, (3.28)

w̄THw̄ = v̄TGv̄ = 0, (3.29)

w̄TA1y
∗ = 0, w̄TA2y

∗ = 0, (3.30)

aT v̄ = −x∗TGv̄ = −γx∗TBx∗ = 0, (3.31)

where (3.28) follows from (2.1) and (3.27), (3.29)-(3.30) hold due to (3.2)-(3.3),
and the three equalities in (3.31) are implied from (2.1), (3.22) and the fact
g(x∗) = 0, respectively. Then, by (3.22) and (3.31), we have

Hw̄ = [Gv̄; aT v̄] = [γBx∗; 0]. (3.32)
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The following proof is extended from the proof for Case (c) in Theorem 4.2
in [36]. Actually, [36, Theorem 4.2] states that the standard second-order suf-
ficient optimality condition for any strict local nonglobal minimizer of (QQ2)
is necessary under the assumption µ1A1 + µ2A2 ≻ 0 for some µ1, µ2 ∈ R.
However, according to the definitions (3.23), this assumption fails to hold for
our case except that B ≻ 0.

Under Assumption 6, A and B are simultaneously diagonalizable by con-
gruence. Through a suitable linear transformation, we can directly assume
that both A and B are diagonal matrices. Let

A = Diag(α1, · · · , αn), B = Diag(β1, · · · , βn1
, 0, · · · , 0), (3.33)

where n1 ≥ 1 and β1, · · · , βn1
6= 0. Since ∇g(x∗) = 2Bx∗ 6= 0 due to Theorem

2.3, without loss of generality, we can assume that the first component of y∗

(the same as the first component of x∗) is nonzero, i.e., y∗1 6= 0. We further
assume y∗1 > 0, as the negative case can be proved similarly.

Let Ī = Diag(0, 1, · · · , 1) and e1 = [1, 0, · · · , 0]T and define

z(t) = Ī(y∗ + tw̄), y(t) = z(t) +

√

1− z(t)TA2z(t)

β1
· e1.

Notice that

z(0) = [0, y∗2 , · · · , y∗n, 1]T ,
1− z(0)TA2z(0)

β1
= y∗21 > 0, (3.34)

y(0) = z(0) +

√

1− z(0)TA2z(0)

β1
e1 = Īy∗ + y∗1e1 = y∗. (3.35)

It follows from (3.34) that y(t) is well defined for sufficiently small |t|. More-
over, we can verify that y(t) is a feasible point of (QQ2) by the following
equalities:

y(t)TA1y(t) = 1,

y(t)TA2y(t) = z(t)TA2z(t) + β1





√

1− z(t)TA2z(t)

β1





2

= 1.

According to (3.3), we can verify that

z′(0) = Īw̄, z′′(0) = 0,

y′(0) = w̄, y′′(0) = − v̄TBv̄

β1y∗1
e1. (3.36)

For any sufficiently small |t|, we define

φ(t) := q0(y(t)) = L2(y(t)) = y(t)THy(t)− x∗TAx∗.
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Under the assumption that y∗ is a local minimizer of (QQ2), t = 0 is a local
minimizer of φ(t). Elementary analysis shows that

φ′(0) = 2y(0)THy′(0),

φ′′(0) = 2y(0)THy′′(0) + 2y′(0)THy′(0),

φ′′′(0) = 2y(0)THy′′′(0) + 6y′(0)THy′′(0).

By (3.28)-(3.29), (3.32) and (3.35)-(3.36), we can simplify the above three
equalities as

φ′(0) = 0, (3.37)

φ′′(0) = 2w̄THw̄ = 0, (3.38)

φ′′′(0) = −6
v̄TBv̄

β1y1
eT1 Hw̄ = −6γv̄TBv̄.

According to the fact γ 6= 0 and (3.4), we have φ′′′(0) 6= 0, which, together
with (3.37)-(3.38), implies that t = 0 is not a local minimizer of φ(t). This
contradiction completes the proof. �

Based on Theorem 3.1 and the proof of Theorem 3.2, we can show the
necessity of the standard second-order sufficient optimality condition for any
local nonglobal minimizer of (GT).

Theorem 3.3 Under Assumptions 1, 2 and 6, x∗ is a local nonglobal min-
imizer of (GT) if and only if g(x∗) = 0 holds, and there exists a λ∗ > 0
satisfying (2.1), (2.9) and A+ λ∗B � 0.

Since the standard second-order sufficient optimality condition implies
strictness of any local nonglobal minimizer, according to Theorems 3.2 and
3.3, we have the following result.

Corollary 3.2 Under Assumptions 1, 2 (or 3) and 6, any local nonglobal
minimizer of (GT) (or (GTe)) is isolated.

Taati and Salahi [39] extended the eigenvalue-based algorithm [34] to find
at most 2n+ 1 candidates of local nonglobal minimizers of (GT) (or (GTe)).
The worst-case complexity is O(n4). With the help of Theorem 3.2 (or 3.3),
now one can check whether a candidate solution is a local nonglobal minimizer
of (GT) (or (GTe)) inO(n3) time. As a conclusion, we have the following result.

Corollary 3.3 All local nonglobal minimizers of (GT) (or (GTe)) can be
found in O(n4) time.

4 Number of local nonglobal minimizers

In this section, we first overestimate the number of local nonglobal minimiz-
ers of (GT) (or (GTe)). Then, by an example, we show that (GT) (or (GTe))
may have two local nonglobal minimizers. In contrast, we can prove that (GT)
(or (GTe)) in complex domain has no local nonglobal minimizer. It demon-
strates that real-valued optimization problem is more difficult to solve than
its complex version.
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4.1 Real case

Based on the above results, we can now overestimate the number of local
nonglobal minimizers of (GT) (or (GTe)).

Theorem 4.1 Under Assumptions 1, 2 (or 3) and 6, the number of local
nonglobal minimizers of (GT) (or (GTe)) is at most min{n1 + 1, n}.

Proof Let x∗ be a local nonglobal minimizer of (GT) (or (GTe)) and λ∗ ≥ 0
(or λ∗ ∈ R) be the corresponding Lagrangian multiplier. Under Assumptions
1, 2 (or 3) and 6, according to Corollary 3.1, Theorems 3.2 and 3.3, we have
that A+ λ∗B is nonsingular. It then follows from (2.1) that

x∗ = −(A+ λ∗B)−1(a+ λ∗b). (4.1)

By substituting (4.1) into g(x∗) = 0, we can see that λ∗ is a zero point of the
following secular function

ϕ(λ) = (a+λb)T (A+λB)−1B(A+λB)−1(a+λb)−2bT (A+λB)−1(a+λb)+c.

According to (3.33) under Assumption 6, we can rewrite ϕ(λ) as

ϕ(λ) =

n1
∑

i=1

βi(ai + λbi)
2

(αi + λβi)2
+

n1+n2
∑

i=n1+1

βi(ai + λbi)
2

α2
i

− 2

n1+n2
∑

i=n1+1

bi(ai + λbi)

αi

+ c.

Therefore, if n1 < n, the fraction polynomial ϕ(λ) has at most 2(n1 + 1) zero
points, and otherwise n1 = n, then ϕ(λ) = 0 has at most 2n1 roots. As a
summary, ϕ(λ) has at most 2min{n1 + 1, n} zero points.

On the other hand, based on the proof of Theorem 3.7 in [39], one can
observe that (2.9) (which holds due to Theorems 3.2 and 3.3) implies

ϕ′(λ∗) > 0. (4.2)

Since ϕ(λ) is a univariate fraction polynomial and hence ϕ′(λ1)ϕ
′(λ2) ≤ 0

for any two adjacent zero points of ϕ(λ) denoted by λ1 and λ2, half of the
2min{n1 + 1, n} zero points satisfy (4.2). This completes the proof. �

The next example shows that the upper bound given in Theorem 4.1 is
tight at least for two-dimensional (GT) (or (GTe)).

Example 4.1 Consider an example of (GTe) with n = 2:

min{y2 + z2 + 12y + 8z : yz = 1, (y, z) ∈ R2}. (4.3)

By substituting z = 1/y into the objective function, we obtain the following
equivalent univariate unconstrained optimization:

min

{

y2 +
1

y2
+ 12y +

8

y
: y ∈ R

}

. (4.4)

As plotted in Fig. 1, the problem (4.4) is upper unbounded and has four crit-
ical points including two local nonglobal minimizers. We modify (4.3) to the
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Fig. 1: Variation of the objective function of (4.4).

following two-dimensional example of (GT):

min{y2 + z2 + 12y + 8z : yz − 1 ≤ 0, (y, z) ∈ R2}. (4.5)

Problem (4.5) has the same two local nonglobal minimizers as (4.3).

Example 4.1 also implies the following observation.

Proposition 4.1 (GT) (or (GTe)) may have more than one local nonglobal
minimizer.

4.2 Complex case

Complex-valued optimization problems naturally arise in many applications
including estimation problems in Fourier domain, signal constellations and
narrow-band array processing. The subproblem (34) in [50] for designing the
hybrid precoder in millimeter wave MIMO system is exactly a complex-valued
trust-region subproblem. In this subsection, we study the generalized trust-
region subproblem in the complex domain:

(GTc) min{zHAz + 2ℜ(aHz) : zHBz + 2ℜ(bHz) + c ≤ 0, z ∈ Cn},
(GTc

e) min{zHAz + 2ℜ(aHz) : zHBz + 2ℜ(bHz) + c = 0, z ∈ Cn},

where A,B ∈ Cn×n are Hermitian matrices, a, b ∈ Cn and c ∈ R. Notice that
with the setting x = ℜ(z) and y = ℑ(z), we can verify that

zHAz + 2ℜ(aHz) = xTℜ(A)x + yTℜ(A)y + 2ℜ(a)Tx+ 2ℑ(a)T y
− xTℑ(A)y + yTℑ(A)x,

where ℑ(A) ∈ Rn×n is a skew-symmetric matrix, i.e., ℑ(A)T = −ℑ(A). Then
(GTc) and (GTc

e) can be rewritten as the following problems in R2n:

(GTr) min{F (w) : G(w) ≤ 0, w ∈ R2n},
(GTr

e) min{F (w) : G(w) = 0, w ∈ R2n},
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respectively, where

F (w) = wT

[

ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]

w + 2(ℜ(a),ℑ(a))Tw,

G(w) = wT

[

ℜ(B) −ℑ(B)
ℑ(B) ℜ(B)

]

w + 2(ℜ(b),ℑ(b))Tw + c.

The above linear transformation establishes the following equivalence.

Lemma 4.1 z̄ is a local/global minimizer of (GTc) (or (GTc
e)) if and only if

(ℜ(z̄),ℑ(z̄)) is that of (GTr) (or (GTr
e)).

Different from real-valued generalized trust-region subproblem, the com-
plex version has no local nonglobal minimizer.

Theorem 4.2 Under complex versions of Assumptions 1, 2 (or 3) and 6,
neither (GTc) nor (GTc

e) has a local nonglobal minimizer.

Proof Under complex versions of Assumptions 1, 2 (or 3) and 6, we can first
verify that Assumptions 1, 2 (or 3) and 6 are satisfied for (GTr) (or (GTr

e)).
Notice that the Hessian matrix of the Lagrangian function of (GTr) (or

(GTr
e)) is given by

H(λ) :=

[

ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]

+ λ

[

ℜ(B) −ℑ(B)
ℑ(B) ℜ(B)

]

.

For any fixed λ ∈ R, let µ be an eigenvalue of H(λ) and [v1; v2](6= 0) be the
corresponding eigenvector, then [v1; v2]

T [−v2; v1] = 0 and

H(λ)[v1; v2] = µ[v1; v2] ⇐⇒ H(λ)[−v2; v1] = µ[−v2; v1].

Thus, for any λ ∈ R, the multiplicity of each eigenvalue of H(λ) is greater
than or equal to two. Therefore, according to Corollary 3.1, (GTr) (or (GTr

e))
has no local nonglobal minimizer. By Lemma 4.1, there is no local nonglobal
minimizer for (GTc) (or (GTc

e)). �

As an application of Theorem 4.2, the extended generalized trust-region
subproblem in complex domain

min{zHAz + 2ℜ(aHz) : zHBz + 2ℜ(bHz) + c ≤ (=)0, hHz + d ≤ 0, z ∈ Cn}

with h ∈ Cn and d ∈ R can be solved efficiently. More precisely, we first check
whether there is a global minimizer of (GTc) (or(GTc

e)) satisfying h
Hz+d ≤ 0,

and if not then it is sufficient to solve

min{zHAz + 2ℜ(aHz) : zHBz + 2ℜ(bHz) + c ≤ (=)0, hHz + d = 0, z ∈ Cn},

which can be reformulated as (GTc) (or (GTc
e)) in Cn−1 via variable reduction.
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5 Conclusions

Trust-region subproblem (T) is fundamental in the area of nonconvex opti-
mization. It is polynomially solvable based on the inherent hidden convexity.
(T) is shown to have at most one local nonglobal minimizer, which has been
fully characterized recently. We study in this paper the generalized trust-region
subproblem (GT). It inherits the hidden convexity and the global optimality
condition from (T). Different from (T), we show that there may be more than
one local nonglobal minimizer of (GT). Our main contribution in this paper
is to prove that, at any local nonglobal minimizer of (GT), not only the strict
complementarity condition holds, but also the standard second-order sufficient
optimality condition surprisingly remains necessary. As a corollary, finding all
local nonglobal minimizers of (GT) or proving the nonexistence can be done
in O(n4) time, where n is the dimension. It is unknown whether there is an
algorithm with lower complexity. We also study (GT) in complex domain, and
show that it has no local nonglobal minimizer. It is the future work to further
tighten the upper bound of the number of local nonglobal minimizers of real-
valued (GT). Though we have proved that two is tight for two-dimensional
problems, in general, the tight upper bound remains unknown.
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