2109.00594v2 [cs.LG] 23 Sep 2021

arxXiv

Wearable-based Classification of Running Styles with Deep Learning

Setareh Rahimi Taghanakil, Michael Rainbow?2, Ali Etemad?®

Abstract— Automatic classification of running styles can en-
able runners to obtain feedback with the aim of optimizing per-
formance in terms of minimizing energy expenditure, fatigue,
and risk of injury. To develop a system capable of classifying
running styles using wearables, we collect a dataset from 10
healthy runners performing 8 different pre-defined running
styles. Five wearable devices are used to record accelerometer
data from different parts of the lower body, namely left and
right foot, left and right medial tibia, and lower back. Using
the collected dataset, we develop a deep learning solution which
consists of a Convolutional Neural Network and Long Short-
Term Memory network to first automatically extract effective
features, followed by learning temporal relationships. Score-
level fusion is used to aggregate the classification results from
the different sensors. Experiments show that the proposed
model is capable of automatically classifying different running
styles in a subject-dependant manner, outperforming several
classical machine learning methods (following manual feature
extraction) and a convolutional neural network baseline. More-
over, our study finds that subject-independent classification of
running styles is considerably more challenging than a subject-
dependant scheme, indicating a high level of personalization
in such running styles. Finally, we demonstrate that by fine-
tuning the model with as few as 5% subject-specific samples,
considerable performance boost is obtained.

I. INTRODUCTION

Running is a common aerobic exercise which many people
worldwide partake in as a sport. It is often considered
one of the most historic types of competitive sport, dating
back centuries [1]. Despite its pervasiveness, running can be
performed in a wide variety of different ‘styles’ [2], [3], often
as a result of different physiological/biomechanical factors
[4], training [5], and even the intention of the runner. These
variations can play major roles in energy expenditure [6],
speed/endurance [7], and even injury [2], [8], [9].

Based on the above, we believe it is highly valuable
and beneficial to develop systems capable of automatically
detecting different running styles. Such a system can be used
for injury analysis, coaching and training, and other appli-
cations. Moreover, we believe the use of wearable sensors
for such a system, as opposed to cameras for instance, will
allow for more detailed, exact, and targeted monitoring as
well as lack of occlusions of key body parts.

The notion of using wearables and machine learning to
classify different activities has been widely studied in the
literature. For instance, in [10], hand-crafted features were
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used along with an ensemble of Support Vector Machine
(SVM) learners to classify daily activities using wearable
data. Similar approaches have been used in [11], [12], and
[13], where different classical machine learning solutions
have been used. In [14], deep learning, in the form of a
Convolutional Neural Network (CNN) was used to perform
end-to-end classification of different activities. In [15], the
learned representations from a CNN were fed to a Long
Short-Term Memory (LSTM) network to classify actions.
More recently, self-supervised solutions have been proposed
in [16], [17], [18], and [19] to reduce reliance on labels
and learn more generalized representations by means of pre-
text training with a number of transformations applied to
wearable data. However, despite the rich available literature
on classification of different activity classes, the notion
of detecting specific running styles with machine learning,
which may be manifested as a result of very minor and subtle
changes in running patterns, has not yet been explored.

To tackle the problem of automatic wearable-based run-
ning style classification, we design a system for automatic
wearable-based classification of different running styles with
deep learning. We first record a rich dataset of different
subjects running in a number of different pre-defined running
styles. The data are recorded using several wearable sensors
placed strategically on different parts of the body including
each foot, each medial tibia, and on the lower back. We
then use this dataset to train deep neural networks for
classification of the different styles. Our results show that our
proposed CNN can accurately classify the different running
styles and outperforms some classical machine learning mod-
els, namely support vector machine (SVM), naive Baysed
(NB), decision tree (DT), random forest (RF). Interestingly,
however, we find that the performance considerably drops
when the experiments are performed in a leave-one-subject-
out manner, even when different CNN architectures are
explored. This finding points to the fact that running styles,
even in pre-defined categories, are highly subject-specific and
vary across different runners.

Lastly, we demonstrate that by fine-tuning the model with
small portions of unseen subjects’ samples, a more robust
performance is achieved.

II. METHODOLOGY
A. Dataset

10 healthy and unimpaired runners (5 women and 5 men),
ranging in age between 20 to 26 years, were recruited for this
study [20]. One of the inclusion criteria was for participants
to have been running around 10 km per week over the last
three months leading to the data collection session. For each



subject, a set of 5 IMeasureU [21] Inertial Measurement
Units (IMUs) sensors were placed on each foot (top of the
shoe, attached through laces), each medial tibia (attached
with elastic Velcro straps), and one at the centre of mass
on the lower back (attached with Velcro to a torso wrap)
to record the accelerations and angular changes of their
body segments when running. The accelerometer data are
sampled at 500 Hz and collected by a personal computer via
Bluetooth. For each subject, their height, weight, age, and sex
were also recorded. For all the experiments, an instrumented
treadmill was used. First, the participants were asked to
start running on the treadmill at 1.5 m/s and then gradually
increase their speed. This helped the runners to warm up and
also was used to determine the comfortable speed for each
runner to perform the experiments. Eight different running
styles were considered for this experiment: (1) Egg-Beater
Gait (where instead of only moving forward, the leg also
travels laterally to the side); (2) Bouncing Gait (where the
vertical bounce after each step is higher than normal); (3)
Heel Strike (where landing occurs on the heels as opposed
to mid-foot landing); (4) Toe Strike (where landing occurs
on the fore-foot); (5) Lengthened Strides (where the strides
are abnormally longer than normal); (6) Shortened Strides
(where the strides are abnormally shorter than normal);
(7) Wide Stance (where the horizontal space between the
two feet is wider than normal); and (8) Narrow Stance
(where the horizontal space between the two feet is shorter
than normal). These particular classes were selected as they
encapsulate exaggerated common variations in running styles
among people. Each subject was asked to perform these
running styles for approximately 5 minutes after each style
was verbally described to them. This approach allowed for
subjects to perform slight variations of each style given their
own comfort and physiology. Ethics approval was secured
from Queen’s General Research Ethics Board.

B. Proposed Model

In this study, we propose a CNN-LSTM architecture to
classify different running styles based on input multi-sensor
accelerometer data. The first part of our model is a CNN
which learns to automatically extract representations from
the 3-D accelerometer signals. This network consists of
3 blocks with 2 1-D convolutional layers in each block.
Figure[I[a) demonstrates the CNN component of our model.
The kernel size is set to 3 and the numbers of filters for
the convolutional layers in each block are 64, 128, and
256, respectively. These blocks are then followed by a 1D
maxpooling layer with a pool size of 2 and a flatten layer to
generate the output features from the input signals.

Following the CNN, a Recurrent Neural Network is used
in the form of a 2-layer Bidirectional LSTM (BLSTM), each
consisting of 256 hidden units. The BLSTM aims to learn the
temporal traits and relationships between the representations
extracted by the CNN from input raw accelerometer data
in both forward and backward directions. The output of the
final bidirectional layer is then fed to 2 fully connected layers
(where the first one is followed by ReL.U activation) of sizes

200 and 8 (number of running classes) and a softmax layer.
A similar CNN-LSTM architecture is used for the data from
each sensor, and the final outputs of the 5 CNN-LSTM
networks are fused through score-level fusion (averaging
the output probabilities). Figure [T[b) presents the overall
architecture of our proposed solution. The dashed green
rectangle in the figure illustrates the details of the network
used for each sensor.

To feed each CNN-LSTM model, we divide the running
data into segments of 10 seconds in duration, with 50%
overlap. As shown in Figure [l| the input of the network
is a 10-second 3-D acceleration signal collected from each
of the five IMUs placed on different parts of the body.
Each 10-second input signal is segmented into 8 successive
sub-segments of 1.25 seconds in duration with no overlap.
The 1.25 second sub-segments are fed to the CNN network
to generate vector representations, to subsequently feed 8
LSTM cells organized in 2 bidirectional layers.

C. Implementation and Evaluation

We implement our proposed model using Keras with
TensorFlow backend on an NVIDIA GeForce RTX 2080 Ti
GPU. The models are trained over 300 epochs with a batch
size 64 and Adam optimizer with a learning rate of 0.0002.

In order to evaluate our method, we use 2 schemes: k-
folds cross-validation and Leave-One-Subject-Out (LOSO).
For k-folds, we randomly picked 20% of the segments for
testing, while using the rest for training. We carried out this
approach for 5 trials and presented the means and standard
deviations of accuracy and F1 scores among all 5 folds.
In each trial, 10% of the training set was allocated for
validation. In LOSO, for each trial, 20% of the subjects were
selected for testing and the remaining subjects were set to
train the model. Similar to the previous approach, 10% of
the training data was set aside for validation.

D. Baselines

In order to better evaluate the robustness of our proposed
method, several common classification methods are applied
for comparison. Specifically, 4 classical machine learning
classifiers are used. These classifiers are: Naive Bayes,
Decision Tree, SVM, and Bagged Tree Ensemble (BTE). We
extract 8 common manual features (mean, standard deviation,
minimum, maximum, root mean square, skewness, kurtosis,
and peak-to-peak time) from each segment to train these
classical models.

The hyperparameters for each model are tuned with the
help of Bayesian optimization. For SVM, cubic kernel and
one-vs-one scheme were the best fits for all the sensors, with
the exception of the LFoot sensor where a Gaussian kernel
function and one-vs-all scheme showed the best results. For
the Decision Tree, maximum deviance reduction was set as
the Split criterion for all sensors except for the COM sensor
which used the Towing rule.

In addition to the 4 classical machine learning methods,
a CNN was designed to automatically extract the features
from each input signals and classify the running styles
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Fig. 1: The architecture of the proposed CNN-LSTM model.
TABLE I: Results for the k-fold cross-validation scheme.
Models [ COM [ LFoot [ LShank RFoot [ RShank i Fusion
) | Acc. [ F1 | Acc. [ F1 | Acc. [ F1 | Acc. [ F1 | Acc. [ F1 [[ Ace. [ F1
Naive Bayes | 0.309£0.012 | 0.294£0.012 | 0.30620.016 | 02890013 | 0.323£0.015 | 0.298:£0.013 | 0.31620.019 | 0.291£0015 | 0.332E0.014 | 030220010 || 0.317£0.018 | 0.295+0.014
Decision Tree | 0.5600.020 | 0.560£0.019 | 0.478+0.016 | 0.4770.016 | 0.603£0.012 | 0.603:0.013 | 0.4722£0.010 | 047140010 | 0.610+0.012 | 0.610£0.011 || 0.545£0.061 | 0.54420.061
SVM 0.689+0.011 | 0.688+0.012 | 0.658+0.013 | 0.657+0.012 | 0.715+0.013 | 0.714+0.013 | 0.614+0.008 | 0.613+0.007 0.745+0.011 | 0.74540.011 0.685+0.046 | 0.683+0.046
BTE 0.763£0.015 | 0.763+0.015 | 0.676:£0.003 | 0.675+0.003 | 0.750£0.007 | 0.750£0.008 | 0.669:£0.013 | 0.0.668+0.011 | 0.765£0.004 | 0.765+0.005 || 0.724:0.044 | 0.724:0.044
CNN 0.812+0.004 | 0.814+0.004 | 0.823+0.012 | 0.826+0.013 | 0.817£0.010 | 0.820£0.007 | 0.834+0.011 | 0.839+0.012 0.813£0.015 | 0.815+0.015 0.863+£0.010 | 0.865+0.010
CNN-LSTM | 0.857£0.010 | 0.8590.009 | 0.865£0.005 | 0.866:£0.004 | 0.860£0.007 | 0.86120.007 | 0.870£0.014 | 0.87120.014 | 0.870£0.010 | 0.87320.010 || 0.931£0,008 | 0.932£0.007
TABLE II: Results for the LOSO scheme. FT indicated fine-tuning with 5% of unseen subjects’ data.
Models [ COM [ LFoot [ LShank [ RFoot [ RShank i Fusion
| Ace. [ FI | Acc. [ FI | Acc. [ F1 | Acc. [ FI | Acc. [ FI [[ Ace. [ FI
Naive Bayes 0.1444+0.035 | 0.103+0.032 | 0.172£0.029 | 0.118+0.038 | 0.183+0.043 | 0.129£0.032 | 0.259+0.0.118 | 0.214+0.134 | 0.287+0.169 | 0.262+0.191 0.209+0.027 | 0.165+0.043
Decision Tree 0.1404+0.033 | 0.12640.031 | 0.150+0.031 | 0.139+0.030 | 0.168+0.047 | 0.148+0.042 | 0.423+0.324 0.4144+0.331 | 0.452+0.352 | 0.440+0.362 0.2674+0.093 | 0.25340.096
SVM 0.187+0.028 | 0.1684+0.031 | 0.196+0.029 | 0.174+0.027 | 0.20740.084 | 0.193+0.077 | 0.491+0.358 0.4754+0.371 | 0.440+0.283 | 0.421+0.294 0.3044-0.086 | 0.286+0.093
BTE 0.193+0.029 | 0.16740.028 | 0.184+0.052 | 0.167+0.050 | 0.1924+0.035 | 0.169+0.039 | 0.520+0.393 0.5024+0.407 | 0.525+0.389 | 0.507+0.402 0.32340.100 | 0.303+0.106
CNN 0.2594+0.062 | 0.26440.055 | 0.347+0.085 | 0.351+0.082 | 0.408+0.111 | 0.443£0.102 | 0.298+0.114 0.29040.105 | 0.339+0.111 | 0.356=£0.105 0.376+0.083 | 0.401+0.063
CNN (FT) 0.4754+0.059 | 0.47540.057 | 0.484+0.096 | 0.491+0.091 | 0.489+0.061 | 0.493+0.057 | 0.479+0.040 0.51940.047 | 0.530+0.091 | 0.578+0.084 0.61840.067 | 0.654+0.067
CNN-LSTM 0.265+0.044 | 0.276+0.054 | 0.365+0.084 | 0.372+0.091 | 0.374+0.095 | 0.378+0.105 | 0.293+0.029 0.30140.031 | 0.337£0.094 | 0.360+0.091 0.385+0.045 | 0.404+0.038
CNN-LSTM (FT) | 0.608:0.086 | 0.638:0.084 | 0.609-0.080 | 0.6370.081 | 0.636:£0.072 | 0.663£0.063 | 0.585+0.058 | 0.615£0.062 | 0.578+0.084 | 0.607-:0.080 || 0.714£0.053 | 0.746:£0.052

TABLE III: Results for fine-tuning the proposed CNN-LSTM

model with LOSO.

method outperforms all the baselines in both k-fold and
LOSO schemes. Table |I| presents the accuracy and F1 scores

Tuning Acc. F1 for all the models with k-fold cross-validation. It can be ob-
No Tuning  0.385+0.045  0.404+0.038 served that the proposed CNN-LSTM model obtains the best
Tuning 2%  0.596+0.084  0.637+0.076 ‘o

Tuning 5% 071440053  074640.052 results achieving an accuracy and Fl-score of 0.931+0.008
Tuning 10%  0.7662-0.050  0.789+0.047 and 0.93240.007 respectively. Among the baseline models,
Tuning 20%  0.8067£0.041  0.82540.040

based on the 5 wearable accelerometers. This also forms
an ablated version of our model, where the BLSTM is
removed. Successive to removal of the BLSTM network, the
hyperparameters of the CNN were further optimized to yeild
the best results. The CNN baseline consists of 4 convolution
blocks with 128, 256, 384, and 512 filters, followed by 4 FC
layers with 384, 200, 120, and 8 hidden neurons. For all the
convolution layers, the kernel size was set to 3. The models
were trained over 300 epochs with a batch size 64 and Adam

optimizer with a learning rate of 0.0002.

In this section, we present the results of our experiments
described in the previous section. Our proposed CNN-LSTM

IIT. RESULTS

the CNN shows the best performance, outperforming the
classical machine learning solutions. Exploring the perfor-
mance of the model on different parts of the body (sensor
locations) indicates that all the sensors provide effective
information for classification of running styles. Moreover,
we observe that by fusing the 5 sensors pipelines, a boost in
performance is achieved, demonstrating that different parts
of the body contain complimentary information that can
be exploited for automatic classification of running styles.
We also present the confusion matrix for this model in
Figure [2] where we observe that different running styles have
been classified consistently across the board. Meanwhile, the
‘wide-stance’ style proves the easiest to classify whereas the
‘bouncing’ style proves the most difficult.

The results of the models in the LOSO scheme are
presented in Table [} It can be observed that while our
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Fig. 2: Confusion matrix for the proposed method.

proposed CNN-LSTM model outperforms the baselines, the
overall performance of all the models, both baselines and
the proposed, significantly drop. It can therefore be inferred
that variations in running styles are highly subject-specific,
making it difficult for automatic subject-independent clas-
sification, highlighting the need for solutions capable of
learning generalized representations via transfer learning or
self-supervised learning. Moreover, the fact that subjects
performed the running styles based on their comfort could
be another contributing factor to this matter. To further
evaluate this matter, we fine-tune both CNN and CNN-
LSTM models with a small fraction of test data (5%). As
observed in Table |H|, for both models, the performance is
significantly improved, reaching an accuracy of 0.618 for
CNN model and 0.714 for CNN-LSTM model. The results
of fine-tuning the proposed CNN-LSTM model with various
portions of test data are presented in Table [l As expected,
increasing the amount of data used for fine-tuning improves
the performance of the model, while we observe that utilizing
even a very small amount of user-specific data (2%), results
in a significant boost in performance.

IV. CONCLUSIONS AND FUTURE WORK

In this study, we implemented a system for classifying
running style variations. For this purpose, we collected data
using 5 wearable accelerometers from 10 healthy runners
while performing 8 different running styles on a treadmill.
We then proposed a deep CNN-LSTM architecture to detect
these target classes by learning to automatically extract
effective representations followed by learning temporal de-
pendencies in the time-series. We compared the performance
of our solution to a number of baseline techniques, where
CNN-LSTM model showed the best results. Our findings
suggest that even pre-defined running styles are personalized
for different people and based on comfort and physiology,
making it difficult for machine learning and deep learning
methods to automatically classify them, however fine-tuning
the model with a small portion of each subject’s samples,
significantly improved the LOSO performance.

For future work, we will explore approaches such as
transfer learning, self-supervised learning, and contrastive

learning, that have proven effective in enabling deep learning
solutions to extract highly generalized features from input
data. Moreover, domain transfer techniques may be explored
to perform cross-subject domain adaptation.
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