
Brief View and Analysis to Latest Android Security

Issues and Approaches

Ruicong Huang

Guangzhou, China

Abstract

Due to the continuous improvement of performance and functions, Android
remains the most popular operating system on mobile phone today. However,
various malicious applications bring great threats to the system. Over the
past few years, significant changes occured in both malwares and counter
measures. Specifically, malwares are continuously evolving, and advanced
approaches are adopted for more accurate detection. To keep up with the
latest situation, in this paper, we conduct a wide range of analysis, including
latest malwares, Android security features, and approaches. We also provide
some finding when we are gathering information and carrying on experiments,
which we think is useful for further researches and has not been mentioned
in previous works.

Keywords: Android, Malware, Detection

1. Introduction

Android has become the most popular operation system on mobile phone
for more than ten years. Nowadays, Android applications have covered the
range of communication, business, education, economy, entertainment, etc.
Due to the open-source feature, Android application developers have gained
a lot of convenience, which also brings benefits to end users. However, these
convenience also provides a good environment for malware developers. As
more valuable information is stored on Android devices, the threat of mali-
cious apps remains a concern for many users, because these malwares could
cause privacy leaks or even economic loss. According to a report published
by 360 Internet Security Center[1], approximately 920 thousand new mali-
cious program samples on Android were intercepted in the first half of 2019

Preprint submitted to None September 3, 2021

ar
X

iv
:2

10
9.

00
80

5v
1 

 [
cs

.C
R

] 
 2

 S
ep

 2
02

1



(50 thousand every day on average). Among these malwares, privacy leak
is the main type, accounting for 66.2%, followed by expense cost (23.6%),
rogue behavior (4.9%), remote control (4.3%), malicious deduction (0.7%)
and fraud apps (0.2%).

The fight against Android malwares never stops, and various approaches
have been proposed to enhance the security of the system. In this case, it is
necessary to have in-depth analyses to these researches, conclude pros and
cons, and seek for improvements. As far as we know, existing works[2, 3]
have stayed at pre-2015 for a long time, and there is no further review to
keep up with the latest researches. This paper aims at a comprehensive
analysis towards the latest researches on Android security, most of which were
proposed after 2015, and the methods they used to overcome the advanced
penetration techniques. We collect the researches from three libraries: IEEE,
ACM, and ScienceDirect. The contributions are listed as follows:

1. We present the latest situation of Android security (Section 2), in-
cluding the evolution of Android malwares in last few years, and the
security promotion of Android. Similar studies did not address this,
but it is necessary for future work, because malwares are becoming
more sophisticated, and knowledge of the malwares is of great help for
counter measures. Besides, Android system have changed significantly
with various security features, which could be combined with existing
detection approaches.

2. We have a comprehensive collection and reasonable classification of
the latest researches (Section 3). Unlike previous studies, we do not
use common static/dynamic/hybrid categorization, because traditional
static and dynamic analyses are known to have non-negligible flaws,
and most works combines multiple features and methods. Instead, we
classify them according to the approaches they used. We also have an
analysis to their pros and cons.

3. We discuss some missing parts that are ignored by existing researches
with detailed description or statistics, and introduce some promising
directions for future works (Section 4).

2. Latest Situation

Android has significant changes in the last few years with more security
features, and provides a better experience for end users. However, the rapid

2



evolution of malwares still brings great challenges. In this section, we first
take a look at the security promotion of Android, and then describe the
threats of novel malwares.

2.1. Android Security Features

The open-source feature of the Android system is one of the main reasons
leading to the proliferation of Android malwares. Therefore, Google and
Android developers have added security enhancement features to the system
in version iterations. Android has five major version changes since 2015, from
M (6.0) to Q Preview (10.0). Here, we discuss some major features.

Dynamic permission granting mechanism (Android M, O) Since
Android M, permissions are no longer granted permanently like previous
versions. They are divided into “normal” and “dangerous”, and each dan-
gerous permission belongs to a specific permission group. When a dangerous
permission is requested, the application is required to pop up a dialog box
describing the related permission group to ask for granting consent. If the
user agrees, all declared permissions in this group will be granted at the same
time. In Android O, the mechanism is refined. Permissions in the same group
as a granted permission should also be requested explicitly, or a “Permission
Denial” exception will be thrown.

Forbidding HTTP protocol (Android P) Applications running on
Android P are required to use HTTPS protocol for encrypted connections,
and HTTP protocol is prohibited by default. If HTTP is truly needed in an
application, the developer should make a specific declaration in the manifest
file.

Storage sandbox (Android Q Beta 1) To help the users controlled the
files at their will, the latest system uses new storage permission mechanism
without “READ EXTERNAL STORAGE” and “WRITE EXTERNAL STORAGE”,
and create storage sandbox for each application. With the sandbox, an ap-
plication could access its own files on external storage without any permis-
sions, and prevent unauthorized accesses from other applications. However,
this mechanism may be too aggressive for most developers, and Google was
forced to postpone it for the time being.

Protection of unique device identifier (Android Q Beta 1) Leak
of unique device identifier, such as device id (IMEI), serial number and MAC
address, is a long-standing problem. In Android P, Google rolled out a de-
veloper option to enable MAC address randomization, but it was turned

3



off by default. With Android Q, the address will stay random even af-
ter you connect to a network, thus hiding your unique MAC. Besides, ac-
cess for IMEI and serial number is restricted in Q, and the information
is only available for platform and system apps. A privileged permission
“READ PRIVILEGED PHONE STATE” is created and third-party apps
cannot declare this permission.

2.2. New Threats

Android malwares has been evolving these years, and malwares of new
families (as listed in Table 1) keep occurring after 2015. Some of them
successfully bypassed Bouncer, the official malware scanner of Google Play
Store. With the development of virtual cryptocurrencies (bitcoin, monero,
etc.), some malwares are developed to mine these coins for criminals in in-
fected devices. Most of them are more sophisticated, compared to malwares
in early stage, and more advanced techniques are used to hide themselves
from detection. They do not show malicious behaviors at first. Instead, the
malicious modules are activated using triggers, or by treating users to allow
privileges. Most of them combine multiple abnormal behaviors.

Malware
family
(variants)

Risk and threats First
found
in

First found by

Gunpoder Privacy leak 2015 Unit 42[4]
Adware
Additional payload execu-
tion

Chamois Botnet 2016 Google[5]
Premium SMS fraud

GM Bot Obtaining root privilege 2016 IBM XForce[6]
(Bankosy, C&C communication FireEye[7]
MazarBot, Trojan
SlemBunk) Ransomware
Triada Zygote modification

Remote access trojan
Adware

2016 Kaspersky
Lab[8]

Ztorg Trojan
Premium rate SMS

2016 FortiGuard
Lab[9, 10]

Dvmap Code injection 2017 Kaspersky[11]

4



Hiddad Hidden ads 2017 Kaspersky
Lab[12]

Xavier Trojan
Ad library

2017 Trend Micro[13]

GnatSpy Privacy leak 2017 Trend Micro[14]
Loapi Monero mining

DDoS
2017 Kaspersky

Lab[15]
FunkyBot C&C communication

Phishing
2018 FortiGuard

Lab[16]
Venus Trojan 2019 GBHackers[17]

Premium ads subscription
Table 1: New Malwares on Android after 2015

3. Approach Analysis

In this section, we will first review traditional detection approaches briefly,
and then introduce latest approaches in detail.

3.1. Traditional Approaches

There is something similar between malware detection on PC and on An-
droid, since Android is an operating system based on Linux kernel, and An-
droid apps are usually written in Java. Traditional methods can be broadly
divided into static, dynamic, and hybrid analysis, and this classification is
usually seen in existing reviews[2, 3]. Static analysis analyzes the code with-
out running the app. AndroidManifest.xml and classes.dex are the most com-
mon files to obtain the metadata, which contains permissions, components,
call graph etc. Dynamic analysis depends on a virtual machine or sand-
box, which is used to run the suspicious applications. The behaviors of the
applications will be monitored and recorded for further analysis. Both meth-
ods have non-negligible limitations. Static analysis can only be adopted to
analyze apps without code protection mechanisms, because it relies on a com-
plete graph to find the paths between “sources” and “sinks”. Dynamic class
loading, Java reflection and native methods could easily break the chains.
Besides, it’s time-consuming and error-prone to analyze a whole set of paths.
According to our experiment, using FlowDroid to find a taint propagation
path from source “getDeviceId” method to sink “send http request” of an
Android app “Today’s Headline” (6.68MB with only two dex files) on a PC

5



with Intel i5-6500 CPU and 8GB memory spends more than 10 minutes, be-
cause there are up to 70 thousand Java methods in this app. Out-of-memory
exception is also frequently seen when constructing the graph. Dynamic
analysis executes only one path per run, so the code coverage is not as good
as static analysis. According to Wang’s research[18], performing dynamic
analysis on mobile devices is challenging since it requires sufficient execu-
tions to improve code coverage. Some methods require modification to the
source codes of Android systems, which increases difficulty of development
and deployment. Besides, some advanced malwares will could detect mo-
bile sandbox, such as Android AVD, genymotion, BlueStacks, and buildroid,
which brings extra challenges to detection engines.

3.2. Advanced Approaches

3.2.1. Graph-based Approaches

Most of approaches of this kind aims at improvement of traditional static
analysis by building a graph to describe the app’s behaviors more accurately.
The most representative research is Amandroid[19]. Amandroid made a large
modification to the traditional static CG built by FlowDroid[20]. First, the
inter-procedural control flow graph (ICFG), which contains edges represent-
ing inter-component communication (ICC), is constructed, so that control
flow and data flow could pass through these edges like common function
calls. Secondly, the data flow graph (DFG) and data dependency graph
(DDG) are constructed based on ICFG to record the data pass, to perform
various types of analysis, such as searching for specific data dependency chain
or privacy leaks between specific sources and sinks. In April 2018, the au-
thors provided an extended version[21], including a new analysis algorithm
and more experimental details.

Fan et al.[22] proposed DAPASA, an approach to detect repackaged apps
using sensitive subgraph (SSG) analysis. An SSG is a subgraph of CG with
the highest sensitivity, representing the most sensitive Android API. Two
assumptions were established and TF-IDF model was adopted to calculate
the sensitivity, which reflects the maliciousness of the application.

Monet proposed by Sun et al.[23] combined the runtime behavior graph
(RBG) and the suspicious system call set to detect malware variants. Graph
decoupling method is also used to improve accuracy and efficiency. Monet is a
client-server structure. The client is installed in Android devices, to monitor
malware behaviors and generate signatures by Binder call and system call
interception, and the back-end server is used to evaluate the signature.

6



Feng et al.[24] proposed LinkDroid to monitor unregulated usage of pri-
vate information. Dynamic linkability graph (DLG) is used to track app-level
linkability during runtime. Two apps are defined to be linkable if there is a
path between them in DLG. The authors listed two kinds of sources of linka-
bility that an adversary can exploit: OS-level information and inter-process
communication (IPC). According to these information, LinkDroid is able to
monitor linkability across apps.

Sokolova et al.[25] introduced a detection approach with graph-based per-
mission patterns. Applications are grouped into categories according to func-
tionality, and a graph representing normal permission requests is built as the
permission pattern of each category. The pattern contains seven associated
metrics, which are used as inputs for classification feature construction, to
verify abnormal permission requests and measure the risk level of an appli-
cation.

Researches mentioned in this section are listed in Table 2 with their graph
information and aims. The graph type is static or dynamic, meaning that
the graph is constructed during static or dynamic analysis.

Research Graph Name Graph
Type

Aim

Wei et al.
(Amandroid)

Inter-procedural control
flow graph
Data flow graph
Data dependency graph

Static Analysis
Privacy leak
detection

Fan et al.
(DAPASA)

Sensitive subgraph Static Piggybacked
app detection

Sun et al.
(Monet)

Runtime behavior graph Dynamic Malware vari-
ant detection

Feng et al.
(LinkDroid)

Dynamic linkability graph Dynamic Monitoring

Sokolova et al. Permission pattern Static Analysis
Risk assessment

Table 2: Graph-based Approaches

3.2.2. Machine-learning-based Approaches

Machine learning techniques have been widely used in detection. Gen-
erally, machine learning algorithms are used to build a classification model.

7



These approaches usually focus on binary classification (verify whether the
app is malicious or benign) or multiple classification (verify whether the app
belongs to a particular malware family).

Approaches with Single-layer Features
System call and network data are two common sources that provide useful

features for machine learning. The two types of research mainly focus on
system call frequency/sequence pattern and HTTP packet, respectively.

Chen Da et al.[26] proposed a malware detection method based on fre-
quency analysis of system calls. App samples are divided according to their
categories, such as tools, social networking apps, games, etc., to refine and
distinguish various types of features. Then, a normalization method is used
to process system call frequency information to improve detection accuracy.
Finally, a random forest model is built to establish the training model.

Canfora et al.[27] focused on system call sequences, to learn the associ-
ations between the sequences and malicious behaviors. To obtain the most
useful features, different length of subsequence is chosen with a feature se-
lection step based on class difference. SVM with Gaussian radial kernel is
used to train the classification model. In addition to dataset evaluation, the
authors also assess their method in zero-day attacks using unseen execution
trace, new malwares and new families.

Dimjašević, M. et al.[28] considered both frequency and dependency rep-
resentation, and implemented MALINE, an open-source tool. Based on the
conclusion that a program’s behavior can be characterized by dependencies
formed through information flow between system calls, distances between
system calls in the system call dependency graph are extracted as feature
vectors, as well as the frequency of each call. The authors experimented
several classification algorithms, including random forest, SVM, LASSO and
ridge regression, and discussed some questions about validity, including hid-
den malicious behavior, architecture and randomness.

Ren et al.[29] proposed Recon, a real-time monitoring system for per-
sonally identifiable information (PII) leak based on network traffic tracking.
More than 70 thousand data packets generated by applications were used as
training samples, and crowdsourcing method was applied to guarantee the
rationality of the data transmission. The author showed that a simple clas-
sifier based on C4.5 decision tree is able to identify PII leaks accurately, and
is more efficient than ensemble methods.

Wang et al.[18] also focused on network traffic analysis. All HTTP packets
are considered as plaintext documents, so that text semantics of network

8



flows could be obtained using natural language processing (NLP) algorithm.
Then, the authors proposed an automatic feature selection algorithm based
on chi-square test to identify meaningful features for each HTTP document,
and these features were used to build an SVM model for detection.

MalDozer proposed by Karbab et al.[30] extracts features automatically
using deep learning, to simplify the preprocessing step. API sequences are
used as raw data to generate semantic vectors. As neural network could be
applied to NLP problems[31], apps, basic blocks, and APIs are treated as
paragraphs, sentences, and words respectively. The system achieves good
accuracy on datasets, and is easy to deployed, even on resource-limited de-
vices such as Raspberry Pi. Similar work is Pektas et al.[32], using opcode
sequences as raw data and a network of different architecture.

Approaches with Multi-layer Features
Andrea Saracino et al.[33] proposed MADAM, a novel multi-level and

behavior-based malware detector. 14 features extracted from four different
levels (kernel, application, user, package) were used. Since all features are
continuous, and it is assumed that the behavior of the malicious applica-
tion have a large deviation from the standard, k-nearest neighbor (k-NN)
algorithm, which is similarity-based, was chosen for classification. As for
implementation, MADAM performs risk assessment of application metadata
(before installation), system global monitoring and application behavior pat-
tern recognition (at runtime). If malicious behavior occurs, a warning window
is popped up to inform users.

DroidScribe proposed by Dash et al.[34] focuses on dynamic analysis
of runtime behavior, and is able to classify malware samples into fami-
lies. The features used in DroidScribe for classification inherited the ones
in CopperDroid[35], including files, network, binder process, and executes.
To overcome the shortcomings of low coverage, the authors combined support
vector machine (SVM) with conformal prediction to increase the accuracy of
prediction, even in the case of insufficient information.

Papadopoulos et al. [36] proposed a novel approach. Similar with Droid-
Scribe, conformal prediction is also applied in this approach with a random
forest classifier, to quantify uncertainty and provide provable confidence guar-
antees. Recorded features include six categories: battery, binder, CPU and
memory usage, network, and permissions, and the values are calculated in
six different ways.

Adversarial Learning
Adversarial learning is a new aspect, and it brings challenges to ma-

9



chine learning approaches. According to Grosse’s research[37], most machine
learning models are not robust enough against adversarial examples. They
trained neural network for malware detection on Drebin dataset[38], and pro-
posed a crafting algorithm to generate adversarial examples, which caused
a misclassification rate of about 63%. Further, they introduced two defense
mechanisms (distillation[39] and adversarial training[40, 41]) to solve the
problem.

Similarly, Chen X et al.[42] proposed an innovative method of crafting
adversarial examples to evade detection. The authors customized Grosse’s
algorithm and demonstrated a successful black-box attack on the original
Drebin system. They also pointed that the perturbations can be implemented
directly onto APK’s Dalvik bytecode, rather than the Android manifest file
only. Besides Drebin, the adversarial examples were also adopted against
MaMaDroid with high evasion rates. Finally, they presented the effect of
ensemble learning methods against the attack.

Chen S et al.[43] proposed a complete solution, namely KuafuDet, against
generated adversarial examples. KuafuDet is a two-phase learning enhancing
approach, including an offline training phase and an online detection phase.
The two phases are designed to be interactive and adversarial-based with a
camouflage detector to identify the false negatives, so that the resilience and
robustness of the system could be reinforced.

Researches listed above are summarized in Table 3.

Research Feature
Range

Period of
Obtaining
Features

Algorithm
(usage)

Aim Dataset Metrics

Chen Da et al. System calls Runtime Random forest Malware
detection

Google Play
Contagio

Accuracy

Canfora et al. System calls Runtime SVM Malware
detection

Google Play
Drebin

Accuracy
FNR
FPR

Dimjašević, M.
et al.
(MALINE)

System calls Runtime Random forest
SVM
LASSO
Ridge regression

Malware
detection

Google Play
Drebin

Accuracy
Precision
Sensitivity
Specificity

Ren et al.
(Recon)

Network traf-
fic

Runtime Bag of words (fea-
ture extraction)
TF-IDF (feature
selection)
C4.5 (model train-
ing)

Leak de-
tection

Google Play
AppsApk

Accuracy
AUC
FNR
FPR

10



Wang et al. Network traf-
fic

Runtime NLP (prepro-
cessing)
Chi-square test
(feature extrac-
tion)
SVM (model
training)

Malware
detection

VirusShare
Baidu

F1-Score
FPR
Precision
Recall

Andrea Sara-
cino et al.
(MADAM)

App metadata
APIs
User activity
System calls

Installation
(app meta-
data)
Runtime
(others)

k-NN Real-time
malware
detection

Genome
Contagio
VirusShare

FPR

Dash et al.
(DroidScribe)

Files
Network
Binder
Executes

Runtime SVM with
conformal
prediction

Family
classifica-
tion

Drebin Accuracy
Precision
Recall

Grosse et al. Permissions
APIs
Components
Intents
Network
addresses

Static
analysis

DNN Adversarial
learning

Drebin FNR(MR)
FPR

Chen X et al. Dexcodes
Strings
APIs
Permissions

Static
analysis

Random forest
k-NN (k=3)
SVM
DNN

Adversarial
learning

PlayDrone
Drebin
VirusShare
APKPure

F1-Score
Evasion Rate

Chen S et al.
(KuafuDet)

Permissions
Intents and
events

Static
analysis

SVM
Random forest
k-NN

Adversarial
learning
defenses

Google Play
AMD
Contagio
Drebin

Accuracy
FNR

Table 3: Machine-learning-based Approaches

3.2.3. Approaches for Native Code Analysis

Native code is not an Android-specific feature, but programming code
that is configured to run on a specific processor. For Android applications,
Android native development kit (NDK) provides support for native develop-
ment in C and C++ by using Java native interface (JNI), and the C/C++
code will be compiled into dynamic loading libraries. Most researches have
limited analysis to native code, because it is low-level and is not architecture-
independent like Dalvik bytecode. The convenience of native development
and the difficulty of detection have brought a problem: native code has be-
come a good choice for malwares to evade detection. To fill this gap, some
approaches have been proposed.

To transfer instructions of different platforms (X86, ARM and MIPS)

11



into unified patterns, Alam, S. et al. proposed MAIL[44], an intermediate
language. With MAIL, bytecode and native code of an application is trans-
ferred to a set of patterns for further analysis, such as DroidNative[45], a
malware detection system based on MAIL, annotated control flow graph and
sliding window of difference, and DroidClone[46], an approach to find code
clones by comparing similarity between two MAIL programs.

Kalysch, A. et al.[47] proposed novel improvements to the centroid ap-
proach, and implemented a plugin for IDA Pro disassembler for code similar-
ity measures. The centroid approach works on a 3D-CFG, a 3-dimentional
vector transferred from traditional CFG where each basic block has a unique
coordinate. Native libraries are represented as the centroid, and parallelized
DBSCAN is adopted for fingerprint-based parallel clustering. In addition to
the accuracy, the authors also discussed the efficiency and the robustness
against obfuscation.

Nowadays, Obfuscator-LLVM (O-LLVM)[48], a project founded by Se-
curity Lab of Northwestern University of Applied Sciences in June 2010, is
often used to protect native libraries from reverse engineering[49, 50]. At the
same time, deobfuscation techniques[51, 52] is also promising, although there
are not much analyses for the time being.

In general, native code analysis is a challenging topic of Android security,
and relies heavily on manual analysis with disassembler like IDA Pro[53].
However, this issue could be handled from other aspects, because regardless
of whether the program is written in bytecode or native code, the process will
be under supervision of Android built-in security mechanisms (permission
mechanism, Linux UGO model, SELinux, etc.). To successfully launch an
attack, the malware containing native code must be accompanied by other
sensitive behaviors, such as obtaining root privilege or sending SMS, which
are more obvious and easier to detect. Existed researches and reports[4–
10, 13, 15–17, 54] have confirmed that most malwares have more than one
potentially harmful behavior.

4. Discussion

4.1. Finding

4.1.1. Abandoned Android Malwares

With the development of new malwares, a lot of old malwares are aban-
doned at the same time. We found an interesting phenomenon when we are
conducting traffic analysis on Android malwares: there are a lot of HTTP

12



requests with 502 response code (hereinafter referred to as HTTP502). 502
response code means a bad gateway, and it is a common server-side error
when the address of the server could not be found. In our opinion, these
servers are either closed by the cloud manager, if they are found to be en-
gaged in illegal activities, or migrated by the malware developers, to better
hide themselves from detection. Once the servers are migrated, malware de-
velopers will release a batch of new apps, and the old ones will be abandoned.
When the old apps send requests to the original IPs or hosts, the server will
always return 502 responses. However, the old apps may run without visible
errors if exceptions are correctly handled. We collected 200 apps from Google
Play, AppChina and VirusShare respectively, and ran each app on Xiaomi
3S for 30 seconds. Fig 1 shows the distribution of HTTP502 number when
the app is running.

Google Play AppChina VirusShare
markets

0

5

10

15

20

25

30

nu
m

be
r o

f 5
02

 re
qu

es
ts

 (3
0s

)

Figure 1: Number of HTTP502s of apps from different markets

The result shows that malwares usually have more HTTP502s than be-
nign apps. Based on these results, we conclude that the number or frequency
of requests with 502 response could be used as a feature to verify abandoned
malwares. The same goes for evaluating the quality of Android applications
of a market. Obviously, apps from Google Play have higher quality than
AppChina, because most of them have less HTTP502s.

Abandoned malwares are frequently seen in datasets built in early stage,
especially in drebin dataset. These malwares lose the ability to cause dam-
ages to the Android system and steal privacy for the time being, and their

13



characteristics may be different from before (when they were active). The in-
activity may be temporary or permanent, depending on whether the attacker
restarts the server.

4.1.2. FileObserver and Sensitive Files

File access is an important characteristic, since it could provide use-
ful features for further analyses. After inspection of researches using file
access analysis, we find that most of them analyze file access events by
monitoring specific Java APIs or system calls. The two methods are ef-
fective indeed, but still have shortcomings. Methods based on API moni-
toring have blind spots. For a simple example, external commands such as
Runtime.getRuntime().exec("cat <filename>") could evade the detec-
tion, and more obfuscations could be developed. System calls like “open”,
“close”, “read”, “write”, etc. could reflect file events, but strace with root
privilege is needed to collect the calls. The lifecycle of strace process is dif-
ficult to handle automatically when analyzing multiple apps, because only
one strace process is allowed at a time. Stracing zygote process is not a good
idea either, because a modified Android system is needed, and the output is
too redundant

In our opinion, the best way to monitor a file is to monitor the file itself.
The Linux kernel has introduced a file change notification mechanism, Ino-
tify, since version 2.6.13, which can efficiently track changes in the Linux file
system in real time. Android is a linux-kernel-based operating system, and
almost all versions of Android support Inotify. Furthermore, Android encap-
sulates a FileObserver class to facilitate the use of the Inotify mechanism.
Using Java-implemented FileObserver is indeed more effective and conve-
nient than monitoring APIs and system calls, since it is obfuscation-resistant
and could be easily integrated into Android apps and Xposed plugins. To
our knowledge, FileObserver is few mentioned in implementation of file ac-
cess monitoring. We believe that the use of FileObserver could improve the
robustness of file analysis on Android.

File Associated privacy Access
/data/data/com.android.
providers.telephony/dat
abases/mmssms.db

Short messages and
multimedia messages

Can read/write with
root privilege

14



/data/data/com.android.
providers.contacts/data
bases/contacts2.db

Contact information Can read/write with
root privilege

/data/data/com.android.
providers.telephony/dat
abases/telephony.db

Sim card information Can read/write with
root privilege

/sys/class/net/eth0/add
ress

MAC address Can read without any
permissions

/sys/class/net/wlan0/ad
dress

WiFi MAC address Can read without any
permissions

/proc/cpuinfo CPU usage informa-
tion

Can read without any
permissions

/proc/meminfo Memory usage infor-
mation

Can read without any
permissions

Table 4: Sensitive Files

After analysis experiments of some malwares and the detection results
of VirusTotal[55] (section “file system actions” of tab “behavior”), we list
some sensitive files in Table 4. Direct access to these files is probably related
to privacy leaks. With FileObserver, these files could be watched, even in
rooted devices.

4.1.3. Datasets

To proof the effectiveness and good performance, most researchers will
evaluate their approaches with Android app samples. If the selected dataset
reflects the real situation, the proposed approach will probably achieve good
results in real scenarios too. After summing up the dataset usage, we found
that Drebin is the most frequently-used malware dataset. As for benign app
samples, most researches chose Google Play, the official Android app store
of Google, due to the strict investigation and guaranteed application quality.
Other popular markets are less considered.

As mentioned in Tam’s review, datasets should be updated regularly with
newer samples for continuous evaluation of a system. However, most mal-
ware datasets are unable to keep up with the evolution. Drebin is a typical
example. To fill this gap, we introduce some newer datasets constructed by
senior researchers, security organizations or institutions. Some of them also
contain benign samples. Update of benign samples does not need to be wor-

15



ried about, since the latest samples could be crawled from app markets at
any time.

AndroZoo: AndroZoo is a growing collection of Android Applications
founded by Allix et al. containing 10,468,689 apps. Both benign and mali-
cious samples are included.

Koodous: Koodous is a collaborative platform with analysis tools and
social interactions between the analysts. Users could vote and leave com-
ments for app samples. The number of app samples is over 55 million and
is still increasing, including more than 15 million detected samples and 250
thousand potential malwares.

Sk3ptre’s GitHub: The author collected Android malware samples from
2018 to 2020, and built 3 repositories. Malwares of each family are com-
pressed in a zip file. A Readme file is provided with SHA256 value of each
app.

Ashishb’s GitHub: There are 298 malware samples of 39 families in this
project as of the writing date. Each family forms a folder with a Readme file
recording the source.

4.2. Future Work Prediction

4.2.1. Study on Packing Techniques

Packing techniques are usually used to protect codes from decompiling.
However, packing techniques updates frequently, and most of them have not
been studied. Nowadays, many detection engines still consider packers as
threats. We randomly selected 200 non-packed and 200 packed apps from
AppChina, and uploaded them to VirusTotal. The score distribution is shown
in Fig. 2.

According to the results, we found that using packer, such as libjiagu
(packer of Qihoo 360), libBaiduProtect (packer of Baidu) and ijiami, will
greatly increase the rate of being detected as a malware in VirusTotal.
The Pearson correlation coefficient between ‘found packers’ and VirusTotal
score reaches 0.34, which is even higher than some sensitive permissions like
SEND SMS (0.193) and SYSTEM ALERT WINDOW (0.292). The reason
of this phenomenon may be entrypoint substitution, which means that the
packers use their own Activities to replace the original entries when the app
is “onCreated”. This behavior has something similar with app repackaging
or Trojan, so this technique is rarely used in popular apps such as WeChat
and Today’s Headline. However, some detection engines may remain neg-
ative if they could recognize the packer. Packed apps are also rarely dis-

16



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
VT Score (positives)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pe

rc
en

ta
ge

VirusTotal Score Distribution of Apps
non-packed
packed

Figure 2: VirusTotal score distribution of packed and non-packed apps

cussed in most researches, except those that specialize in (un)packing, such
as AppSpear[56], DexHunter[57], PackerGrind[58], and DexX[59].

4.2.2. Solutions for More Android Device

Internet of things (IoT) technology plays an important role in making
things more intelligent. Nowadays, smart devices are not limited to mobile
phones. A lot of smart home devices, watches, vending machines, vehicles
and other new types of IoT devices are invented with rapid speed. Android-
based systems (Wear OS, Android TV, Android Things, etc.) are widely
adopted in these devices, and they face various threats too. Tam’s review[2]
has pointed out this problem, but we want to add that it is not easy to find
a universal solution for IoT devices, due to the heterogeneity of platforms
and (altered) Android versions. Similarly, datasets for malware detection on
mobile phones are no longer suitable, since these apps are not designed to
run on IoT devices.

5. Conclusion

Android is facing real security problems today, so the malware detection
should not be only talked about on papers. According to our research, al-
though researches on Android security has covered many aspects, and made

17



great progress, there are still room for approaches on production environment
and evaluation of real-world apps. In this paper, we make extensive introduc-
tions and analyses towards the security issues and state-of-the-art researches.
In addition, we provide information about abandoned malwares and imple-
mentation of a file access monitoring mechanism. Compared with previous
reviews, this paper provides newer information and a different taxonomy of
latest approaches.

References

[1] 360InternetSecurityCenter, China’s mobile phone security status report
for the first half of 2019, Online: https://zt.360.cn/1101061855.php?
dtid=1101061451&did=210935462 (2019).

[2] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, L. Cavallaro, The evolu-
tion of android malware and android analysis techniques, ACM Com-
puting Surveys (CSUR) 49 (2017) 1–41.

[3] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti,
M. Rajarajan, Android security: a survey of issues, malware penetra-
tion, and defenses, IEEE communications surveys & tutorials 17 (2014)
998–1022.

[4] C. Zheng, Z. Xu, New android malware family evades an-
tivirus detection by using popular ad libraries, Online:
https://unit42.paloaltonetworks.com/new-android-malware-family-
evades-antivirus-detection-by-using-popular-ad-libraries/ (2015).

[5] B. Grill, M. Ruthven, X. Zhao, Detecting and eliminating chamois,
a fraud botnet on android, Online: https://android-developers.
googleblog.com/2017/03/detecting-and-eliminating-chamois-fraud.
html (2017).

[6] L. Kessem, A. Karlinsky, Android malware about to get worse:
Gm bot source code leaked, Online: https://securityintelligence.
com/android-malware-about-to-get-worse-gm-bot-source-code-leaked/
(2016).

[7] W. Zhou, J. Zeng, L. Song, J. Su, A growing number of android malware
families believed to have a common origin: A study based on binary

18

https://zt.360.cn/1101061855.php?dtid=1101061451&did=210935462
https://zt.360.cn/1101061855.php?dtid=1101061451&did=210935462
https://android-developers.googleblog.com/2017/03/detecting-and-eliminating-chamois-fraud.html
https://android-developers.googleblog.com/2017/03/detecting-and-eliminating-chamois-fraud.html
https://android-developers.googleblog.com/2017/03/detecting-and-eliminating-chamois-fraud.html
https://securityintelligence.com/android-malware-about-to-get-worse-gm-bot-source-code-leaked/
https://securityintelligence.com/android-malware-about-to-get-worse-gm-bot-source-code-leaked/


code, Online: https://www.fireeye.com/blog/threat-research/2016/03/
android-malware-family-origins.html (2016).

[8] Kaspersky, Kaspersky lab discovers triada: a mo-
bile trojan invading android’s brains, Online:
https://www.kaspersky.com/about/press-releases/2016
kaspersky-lab-discovers-triada-a-mobile-trojan-invading-android-s-brains
(2016).

[9] A. Apvrille, Teardown of a recent variant of android/ztorg
(part 1), Online: https://www.fortinet.com/blog/threat-research/
teardown-of-a-recent-variant-of-android-ztorg-part-1.html (2017).

[10] A. Apvrille, Teardown of a recent variant of android/ztorg
(part 2), Online: https://www.fortinet.com/blog/threat-research/
teardown-of-a-recent-variant-of-android-ztorg-part-2.html (2017).

[11] Kaspersky, Dvmap: Android malware with a new tech-
nique for controlling devices appears on google play, Online:
https://www.kaspersky.com/about/press-releases/2017 dvmap-
android-malware-with-a-new-technique-for-controlling-devices-appears-
on-google-play (2017).

[12] Kaspersky, Trojan.androidos.hiddad, Online: https://threats.
kaspersky.com/en/threat/Trojan.AndroidOS.Hiddad/ (2017).

[13] X. Ecular, Analyzing xavier: An information-
stealing ad library on android, Online: https:
//blog.trendmicro.com/trendlabs-security-intelligence/
analyzing-xavier-information-stealing-ad-library-android/ (2017).

[14] X. Ecular, New gnatspy mobile malware family discovered,
Online: https://blog.trendmicro.com/trendlabs-security-intelligence/
new-gnatspy-mobile-malware-family-discovered/ (2017).

[15] Kaspersky, Kaspersky lab discovers loapi, a mo-
bile trojan with multiple malicious features, On-
line: https://usa.kaspersky.com/about/press-releases/2017
kaspersky-lab-discovers-loapi-a-mobile-trojan-with-multiple-malicious-features
(2017).

19

https://www.fireeye.com/blog/threat-research/2016/03/android-malware-family-origins.html
https://www.fireeye.com/blog/threat-research/2016/03/android-malware-family-origins.html
https://www.kaspersky.com/about/press-releases/2016_kaspersky-lab-discovers-triada-a-mobile-trojan-invading-android-s-brains
https://www.kaspersky.com/about/press-releases/2016_kaspersky-lab-discovers-triada-a-mobile-trojan-invading-android-s-brains
https://www.fortinet.com/blog/threat-research/teardown-of-a-recent-variant-of-android-ztorg-part-1.html
https://www.fortinet.com/blog/threat-research/teardown-of-a-recent-variant-of-android-ztorg-part-1.html
https://www.fortinet.com/blog/threat-research/teardown-of-a-recent-variant-of-android-ztorg-part-2.html
https://www.fortinet.com/blog/threat-research/teardown-of-a-recent-variant-of-android-ztorg-part-2.html
https://threats.kaspersky.com/en/threat/Trojan.AndroidOS.Hiddad/
https://threats.kaspersky.com/en/threat/Trojan.AndroidOS.Hiddad/
https://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-xavier-information-stealing-ad-library-android/
https://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-xavier-information-stealing-ad-library-android/
https://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-xavier-information-stealing-ad-library-android/
https://blog.trendmicro.com/trendlabs-security-intelligence/new-gnatspy-mobile-malware-family-discovered/
https://blog.trendmicro.com/trendlabs-security-intelligence/new-gnatspy-mobile-malware-family-discovered/
https://usa.kaspersky.com/about/press-releases/2017_kaspersky-lab-discovers-loapi-a-mobile-trojan-with-multiple-malicious-features
https://usa.kaspersky.com/about/press-releases/2017_kaspersky-lab-discovers-loapi-a-mobile-trojan-with-multiple-malicious-features


[16] D. Durando, Funkybot: A new android malware family target-
ing japan, Online: https://www.fortinet.com/blog/threat-research/
funkybot-malware-targets-japan.html (2019).

[17] N. BALAJI, New malware family “venus” in google play store in-
fects 285,000 android users to subscribe premium ads, Online: https:
//gbhackers.com/venus-google-play/ (2019).

[18] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, M. Conti, Detecting an-
droid malware leveraging text semantics of network flows, IEEE Trans-
actions on Information Forensics and Security 13 (2017) 1096–1109.

[19] F. Wei, S. Roy, X. Ou, Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android
apps, in: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, 2014, pp. 1329–1341.

[20] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, P. McDaniel, Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps, in: Acm Sigplan Notices, volume 49, ACM, 2014, pp. 259–269.

[21] F. Wei, S. Roy, X. Ou, Amandroid: a precise and general inter-
component data flow analysis framework for security vetting of android
apps, ACM Transactions on Privacy and Security (TOPS) 21 (2018)
1–32.

[22] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, T. Liu, Dapasa: detecting
android piggybacked apps through sensitive subgraph analysis, IEEE
Transactions on Information Forensics and Security 12 (2017) 1772–
1785.

[23] M. Sun, X. Li, J. C. Lui, R. T. Ma, Z. Liang, Monet: a user-oriented
behavior-based malware variants detection system for android, IEEE
Transactions on Information Forensics and Security 12 (2016) 1103–
1112.

[24] H. Feng, K. Fawaz, K. G. Shin, Linkdroid: reducing unregulated aggre-
gation of app usage behaviors, in: 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 769–783.

20

https://www.fortinet.com/blog/threat-research/funkybot-malware-targets-japan.html
https://www.fortinet.com/blog/threat-research/funkybot-malware-targets-japan.html
https://gbhackers.com/venus-google-play/
https://gbhackers.com/venus-google-play/


[25] K. Sokolova, C. Perez, M. Lemercier, Android application classification
and anomaly detection with graph-based permission patterns, Decision
Support Systems 93 (2017) 62–76.

[26] D. Chen, H. Zhang, X. Zhang, Detection of android malware security on
system calls, in: 2016 IEEE Advanced Information Management, Com-
municates, Electronic and Automation Control Conference (IMCEC),
IEEE, 2016, pp. 974–978.

[27] G. Canfora, E. Medvet, F. Mercaldo, C. A. Visaggio, Detecting android
malware using sequences of system calls, in: Proceedings of the 3rd
International Workshop on Software Development Lifecycle for Mobile,
2015, pp. 13–20.

[28] M. Dimjašević, S. Atzeni, I. Ugrina, Z. Rakamaric, Evaluation of android
malware detection based on system calls, in: Proceedings of the 2016
ACM on International Workshop on Security And Privacy Analytics,
2016, pp. 1–8.

[29] J. Ren, A. Rao, M. Lindorfer, A. Legout, D. Choffnes, Recon: Revealing
and controlling pii leaks in mobile network traffic, in: Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, ACM, 2016, pp. 361–374.

[30] E. B. Karbab, M. Debbabi, A. Derhab, D. Mouheb, Maldozer: Au-
tomatic framework for android malware detection using deep learning,
Digital Investigation 24 (2018).

[31] Y. Kim, Convolutional neural networks for sentence classification (2014)
1746–1751.

[32] A. Pektas, T. Acarman, Learning to detect android malware via opcode
sequences, Neurocomputing (2019).

[33] A. Saracino, D. Sgandurra, G. Dini, F. Martinelli, Madam: Effective
and efficient behavior-based android malware detection and prevention,
IEEE Transactions on Dependable and Secure Computing 15 (2018)
83–97.

21



[34] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,
L. Cavallaro, Droidscribe: Classifying android malware based on run-
time behavior, in: 2016 IEEE Security and Privacy Workshops (SPW),
IEEE, 2016, pp. 252–261.

[35] K. Tam, S. J. Khan, A. Fattori, L. Cavallaro, Copperdroid: Automatic
reconstruction of android malware behaviors., in: Ndss, 2015.

[36] H. Papadopoulos, N. Georgiou, C. Eliades, A. Konstantinidis, Android
malware detection with unbiased confidence guarantees, Neurocomput-
ing 280 (2017) 3–12.

[37] K. Grosse, N. Papernot, P. Manoharan, M. Backes, P. McDaniel, Ad-
versarial examples for malware detection, in: European Symposium on
Research in Computer Security, Springer, 2017, pp. 62–79.

[38] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
C. Siemens, Drebin: Effective and explainable detection of android
malware in your pocket., in: Ndss, volume 14, 2014, pp. 23–26.

[39] N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami, Distillation as a
defense to adversarial perturbations against deep neural networks, in:
2016 IEEE Symposium on Security and Privacy (SP), IEEE, 2016, pp.
582–597.

[40] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing ad-
versarial examples, arXiv preprint arXiv:1412.6572 (2014).

[41] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, R. Fergus, Intriguing properties of neural networks, arXiv preprint
arXiv:1312.6199 (2013).

[42] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, K. Ren,
Android hiv: A study of repackaging malware for evading machine-
learning detection, IEEE Transactions on Information Forensics and
Security 15 (2019) 987–1001.

[43] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, B. Li, Automated
poisoning attacks and defenses in malware detection systems: An ad-
versarial machine learning approach, computers & security 73 (2018)
326–344.

22



[44] S. Alam, R. N. Horspool, I. Traore, Mail: Malware analysis intermediate
language: a step towards automating and optimizing malware detection,
in: Proceedings of the 6th International Conference on Security of In-
formation and Networks, 2013, pp. 233–240.

[45] S. Alam, Z. Qu, R. Riley, Y. Chen, V. Rastogi, Droidnative: Automat-
ing and optimizing detection of android native code malware variants,
computers & security 65 (2017) 230–246.

[46] S. Alam, R. Riley, I. Sogukpinar, N. Carkaci, Droidclone: Detecting
android malware variants by exposing code clones, in: 2016 Sixth Inter-
national Conference on Digital Information and Communication Tech-
nology and its Applications (DICTAP), IEEE, 2016, pp. 79–84.

[47] A. Kalysch, O. Milisterfer, M. Protsenko, T. Müller, Tackling androids
native library malware with robust, efficient and accurate similarity mea-
sures, in: Proceedings of the 13th International Conference on Avail-
ability, Reliability and Security, 2018, pp. 1–10.

[48] P. Junod, J. Rinaldini, J. Wehrli, J. Michielin, Obfuscator-LLVM –
software protection for the masses, in: B. Wyseur (Ed.), Proceedings
of the IEEE/ACM 1st International Workshop on Software Protection,
SPRO’15, Firenze, Italy, May 19th, 2015, IEEE, 2015, pp. 3–9. doi:10.
1109/SPRO.2015.10.

[49] M. Y. Wong, D. Lie, Tackling runtime-based obfuscation in android with
TIRO, in: 27th USENIX Security Symposium (USENIX Security 18),
USENIX Association, Baltimore, MD, 2018, pp. 1247–1262. URL: https:
//www.usenix.org/conference/usenixsecurity18/presentation/wong.

[50] K. Lim, J. Jeong, S.-j. Cho, J. Choi, M. Park, S. Han, S. Jhang, An anti-
reverse engineering technique using native code and obfuscator-llvm for
android applications, in: Proceedings of the International Conference
on Research in Adaptive and Convergent Systems, 2017, pp. 217–221.

[51] Z. Kan, H. Wang, L. Wu, Y. Guo, D. X. Luo, Automated deobfuscation
of android native binary code, arXiv preprint arXiv:1907.06828 (2019).

[52] F. Gabriel, Deobfuscation: recovering an ollvm-
protected program, Online: https://blog.quarkslab.com/
deobfuscation-recovering-an-ollvm-protected-program.html (2014).

23

http://dx.doi.org/10.1109/SPRO.2015.10
http://dx.doi.org/10.1109/SPRO.2015.10
https://www.usenix.org/conference/usenixsecurity18/presentation/wong
https://www.usenix.org/conference/usenixsecurity18/presentation/wong
https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-protected-program.html
https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-protected-program.html


[53] Hex-Rays, Ida pro in a nutshell, Online: https://www.hex-rays.com/
products/ida/ (2020).

[54] M. Spreitzenbarth, Current android malware, Online:https://forensics.
spreitzenbarth.de/android-malware/ (2016).

[55] VirusTotal, Virustotal - free online virus, malware and url scanner,
Online: https://www.virustotal.com (2012).

[56] B. Li, Y. Zhang, J. Li, W. Yang, D. Gu, Appspear: automating the
hidden-code extraction and reassembling of packed android malware,
Journal of Systems and Software 140 (2018) 3–16.

[57] Y. Zhang, X. Luo, H. Yin, Dexhunter: toward extracting hidden code
from packed android applications, in: European Symposium on Re-
search in Computer Security, Springer, 2015, pp. 293–311.

[58] L. Xue, X. Luo, L. Yu, S. Wang, D. Wu, Adaptive unpacking of android
apps, in: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), IEEE, 2017, pp. 358–369.

[59] C. Sun, H. Zhang, S. Qin, N. He, J. Qin, H. Pan, Dexx: a double layer
unpacking framework for android, IEEE Access 6 (2018) 61267–61276.

24

https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://forensics.spreitzenbarth.de/android-malware/
https://forensics.spreitzenbarth.de/android-malware/
https://www.virustotal.com

	1 Introduction
	2 Latest Situation
	2.1 Android Security Features
	2.2 New Threats

	3 Approach Analysis
	3.1 Traditional Approaches
	3.2 Advanced Approaches
	3.2.1 Graph-based Approaches
	3.2.2 Machine-learning-based Approaches
	3.2.3 Approaches for Native Code Analysis


	4 Discussion
	4.1 Finding
	4.1.1 Abandoned Android Malwares
	4.1.2 FileObserver and Sensitive Files
	4.1.3 Datasets

	4.2 Future Work Prediction
	4.2.1 Study on Packing Techniques
	4.2.2 Solutions for More Android Device


	5 Conclusion

