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Abstract  

Background. Clustering analysis discovers hidden structures in a data set by partitioning 

them into disjoint clusters. Robust accuracy measures that evaluate the goodness of 

clustering results are critical for algorithm development and model diagnosis. Common 

problems of current clustering accuracy measures include overlooking unmatched 

clusters, biases towards excessive clusters, unstable baselines, and difficult 

interpretation. In this study, we presented a novel accuracy measure, J-score, that 

addresses these issues. 

Methods. Given a data set with known class labels, J-score quantifies how well the 

hypothetical clusters produced by clustering analysis recover the true classes. It starts 

with bidirectional set matching to identify the correspondence between true classes and 

hypothetical clusters based on Jaccard index. It then computes two weighted sums of 

Jaccard indices measuring the reconciliation from classes to clusters and vice versa. The 

final J-score is the harmonic mean of the two weighted sums. 

Results. Via simulation studies, we evaluated the performance of J-score and compared 

with existing measures. Our results show that J-score is effective in distinguishing 

partition structures that differ only by unmatched clusters, rewarding correct inference of 

class numbers, addressing biases towards excessive clusters, and having a relatively 

stable baseline. The simplicity of its calculation makes the interpretation straightforward. 

It is a valuable tool complementary to other accuracy measures. We released an R/jScore 

package implementing the algorithm.  



Introduction 

Cluster analysis is an unsupervised data mining technique that partitions data into groups 

based on similarity [1]. It is a valuable approach to discover hidden structures and has 

broad application in pattern recognition.  Many clustering methods have been developed 

and data sets are subject to cluster analysis constantly [2-4]. To evaluate algorithm 

performance, select models, and interpret partition structures, a robust measure of 

clustering accuracy is imperative. 

Cluster analysis speculates that subsets of input data belong to different classes and aims 

to discover these classes by partitioning data into hypothetical clusters. When true class 

labels of input data are known, accuracy of clustering results can be assessed on how 

well hypothetical cluster assignments recover true class labels [5]. Intuitively, the 

assessment involves first establishing the correspondence between true classes and 

hypothetical clusters (i.e., set matching) [6], then quantifying the overall goodness of 

match. For example, given a true class, the hypothetical cluster sharing the largest 

number of data points with it can be regarded as the best match. The fraction of total 

unmatched data points aggregated over all classes is then reported as an H-score [7]. 

The cluster best matched to a class can also be determined to maximize the harmonic 

mean of precision and recall rates (i.e., F1-score). Weighting F1-scores over all classes 

produces an F-score to represent the overall accuracy [8]. Because set matching reports 

only best clusters matched to each class, unmatched clusters do not contribute to the 

overall accuracy score. When two hypothetical partition structures differ only by 

unmatched clusters, these accuracy measures are unable to distinguish them [9, 10].  

To address this “problem of matching”, several measures have been developed that 

circumvents set matching. Instead of linking specific classes to clusters, these measures 

quantify mutual agreement between all classes and all clusters. For example, to compare 

a true partition structure and a hypothetical partition structure of the same data set, Rand 

index RI [11] and its adjusted form ARI [12] count pairs of data points that are consistently 

clustered together or separately. Variation of information (VI) criterion and its normalized 

form NVI compute the amount of information lost and gained in changing from one 



partition structure to another partition structure. V-measure combines homogeneity and 

completeness of clusters [10], which is equivalent to normalized mutual information (NMI) 

[13]. However, most of these measures are information theoretic based and are biased 

towards excessive small-sized clusters [14-16]. Furthermore, circumventing set matching 

sacrifices the ability to discover correspondence between classes and clusters, which is 

the primary goal of clustering analysis. Thus set-matching-free measures have limited 

utility in model diagnosis. Although it is possible to perform post hoc set matching or score 

adjustment, validity and interpretability of the outputs do not align to the original scores.  

In this study, we introduce J-score, a novel clustering accuracy measure that supports 

four desirable properties. First, it performs set matching to identify correspondence 

between classes and clusters. Second, set matching is bidirectional, which finds clusters 

best aligned to classes and vice versa. Subsequently accuracy calculation incorporates 

both matched and unmatched clusters to address the “problem of matching”. Third, it is 

based on Jaccard index, a non-entropy-based metrics, which we show mitigates 

excessive number of clusters. Fourth, its value is bounded between 0 and 1. We illustrate 

behavior of J-score with extensive simulations. 

Materials & Methods 

J-Score 

Bidirectional set matching: Suppose that a data set contains 𝑁 data points belonging to 

𝑇 true classes, and cluster analysis produces 𝐾 hypothetical clusters. To establish the 

correspondence between 𝑇 and 𝐾, we first consider each class as reference and identify 

its best matched cluster (𝑇 → 𝐾). Specifically, for a class 𝑡 ∈ 𝑇, we search for a cluster 

𝑘 ∈ 𝐾 that has the highest Jaccard index, 

𝐼𝑡 = max
𝑘𝜖𝐾

|𝑉𝑡 ∩ 𝑉𝑘|

|𝑉𝑡 ∪ 𝑉𝑘|
 

where 𝑉𝑡 and 𝑉𝑘 are the set of data points belonging to class 𝑡 and cluster 𝑘, respectively, 

and |ꞏ| denote the size of a set. We then consider each cluster as reference and identify 

its best matched class (𝐾 → 𝑇) using a similar procedure. For a cluster 𝑘 ∈ 𝐾, we search 

for a class 𝑡 ∈ 𝑇 with the highest Jaccard index,  



𝐼𝑘 = max
𝑡𝜖𝑇

|𝑉𝑡 ∩ 𝑉𝑘|

|𝑉𝑡 ∪ 𝑉𝑘|
 

Calculating overall accuracy: To quantify the overall accuracy, we aggregate Jaccard 

indices of individual clusters and classes, accounting for their relative sizes (i.e., number 

of data points). We first compute a weighted sum of 𝐼𝑡 across all classes as 𝑅 =

∑ (
|𝑉𝑡|

𝑁
𝐼𝑡)𝑡∈𝑇 , and a weighted sum of 𝐼𝑘 across all clusters as  𝑃 = ∑ (

|𝑉𝑘|

𝑁
𝐼𝑘)𝑘∈𝐾 . We then 

take their harmonic mean as 𝐽 score, 

𝐽 =
2 × 𝑅 × 𝑃

𝑅 + 𝑃
 

The value of a 𝐽 score is bounded between 0 and 1. The minimum value 0 is derived 

when there is no overlap between hypothetical clusters and truth clusters. The maximum 

value 1 is derived when hypothetical clusters match true classes perfectly. 

Implementation: We implemented J-score calculation in R language and released an 

jScore package in R/CRAN repository.  

Simulations 

To simulate an input data set 𝐷 with known class labels, we generated random numbers 

based on Gaussian distributions 𝐺(𝜇, 0.05) where 𝜇 is the mean and 0.05 is the fixed 

standard deviation. Data points generated from the same Gaussian distribution belonged 

to the same class. We then mixed data points of different classes to produce the input 

data. Class labels of these data points were ground truth. 

Given an input data set 𝐷 with 𝑁 data points, we used three approaches to simulate a 

hypothetical partition structure. The first approach simulated a pre-determined partition 

structure, in which the total number of clusters 𝐾, the size of each cluster 𝑁𝑘, and the 

assignment of each data point to a cluster were specified manually. The second approach 

simulated a random partition structure. Here, only the value of 𝐾 was pre-specified. 𝑁𝑘 

was determined by randomly choosing 𝐾 integers that summed to 𝑁 = ∑ 𝑁𝑘
𝐾
1 . Assignment 

of data points to clusters was also random, which was achieved by first repeating each 𝑘 

value by 𝑁𝑘 times to create an ordered list of cluster labels, then permutating these labels. 



The third approach simulated splitting or merging classes. Given the pre-specified value 

of 𝐾, classes to be split or merged and the splitting ratio were randomly selected under 

the constraint that 𝑁 = ∑ 𝑁𝑘
𝐾
1 .  

Computation and comparison of various accuracy measures 

We compared J-score with commonly used clustering accuracy measures. To compute 

NMI and ARI scores, we used the R/aricode package. To compute V-measure and F-

score, we used the Python scikit-learn package. To compute F-score and H-score, we 

used an in-house developed R functions based on the published algorithms [7, 17]. 

Results 

J-Score addresses the “problem of matching”. 

Given a data set, the number of hypothetical clusters may be equal to, less than, or 

greater than the number of true classes. In all three scenarios, our simulations showed 

that unidirectional 𝑇 → 𝐾 matching could lead to the “problem of matching”, and J-score 

rectified the biases via bidirectional matching.  

For ground truth, we generated 100 random numbers 𝐷𝑖 (𝑖 = 1,… , 100) belonging to three 

classes. Specifically, 𝐷1,…,10 from a Gaussian distribution 𝐺(1, 0.05)  constituted class 𝑇𝑎, 

𝐷11,…,40 ∈ 𝐺(2, 0.05) constituted class 𝑇𝑏, and 𝐷41,…,100 ∈ 𝐺(3, 0.05) constituted class 𝑇𝑐 

(Fig. 1A).  

We first examined hypothetical partition structures that contained more clusters than 

classes. In one simulation, we grouped the data points into four clusters (Fig. 1B). Cluster 

𝐾1 consisted of all data points from class 𝑇𝑎; Cluster 𝐾2 consisted of all data points from 

class 𝑇𝑏; Cluster 𝐾3 consisted of 𝐷41,…,80 that are two thirds of data points from 𝑇𝑐; and 

cluster 𝐾4 consisted of the remaining data points from 𝑇𝑐. We assessed the accuracy of 

this hypothetical partition structure using H-score, F-score and J-score. Because the 

number of hypothetical clusters exceeded the number of true classes, unmatched clusters 

were inevitable. Indeed, despite different 𝑇 → 𝐾 algorithms, all three approaches 

identified 𝐾1, 𝐾2, and 𝐾3 as the cluster best matched to 𝑇𝑎, 𝑇𝑏, and 𝑇𝑐, respectively, and 



left 𝐾2 unmatched. The H-score (0.20) and the F-score (0.88) were calculated based on 

the goodness of 𝑇𝑎 → 𝐾1, 𝑇𝑏 → 𝐾2, and 𝑇𝑐 → 𝐾3 matches, with no information contributed 

by 𝐾4. The “problem of matching” occurred when we split the unmatched 𝐾4 cluster into 

two clusters 𝐾4.1 and 𝐾4.2 (Fig. 1C). This splitting obviously reduced the overall accuracy 

of the partition structure. But the H-score and the F-score remained unchanged because 

𝐾4.1 and 𝐾4.2 were unmatched and did not contribute to the final scores. J-score solved 

A 

Figure 1. Simulations to illustrate the “problem of matching”.  Scatterplots show 100 

data points with indices ranging from 1 to 100 and values randomly generated from Gaussian 

distributions. Colors denote different classes or clusters. (A) The ground truth partition 

structure contains 3 classes. Class sizes are displayed in the table. (B-E) Hypothetical 

partition structures. Various scores and set matching results are displayed in the tables next 

the scatterplots. H-score and F-score perform unidirectional 𝑇 → 𝐾 matching based on 

number of shared data points (NS) and F1 metric, respectively. Best matched clusters are 

enclosed in square brackets. J-score performs bidirectional matching. Best matched classes 

are enclosed in parentheses.  

B 

C 

D 

E 



this problem via bidirectional matching. The unmatched clusters in the 𝑇 → 𝐾 matching 

step were rescued in the 𝐾 → 𝑇 matching step. Then, all clusters and classes contributed 

information to the final J-score. As expected, the J-score dropped from 0.77 to 0.75 after 

the splitting.  

Unmatched clusters exist even when there are fewer clusters than classes. To illustrate 

the advantage of J-score in these scenarios, we simulated a hypothetical partition 

structure that grouped the data points into two clusters. Specifically, cluster 𝐾1 mixed 70% 

of the data points from each class. The remaining data points were grouped into cluster 

𝐾2 (Fig. 1D). After the 𝑇 → 𝐾 matching step, 𝐾1 was repeatedly identified as the best 

matched cluster for all three classes, and  𝐾2 was unmatched. In another hypothetical 

partition structure, we kept cluster 𝐾1 untouched and split 𝐾2 into 𝐾2.1 and 𝐾2.2 that were 

unmatched as well (Fig. 1E). Again, because these two hypothetical partition structures 

differ only by unmatched clusters, H-score and J-score failed to distinguish them. J-score 

correctly reported a higher value for the first structure than the second structure (0.39 vs. 

0.38).    

J-score reflects correct inference of class numbers and addresses biases towards 

excessive clusters. 

An important objective of cluster analysis is to infer the number of classes in input data. 

A robust accuracy measure shall reward a hypothetical partition structure if it contains the 

correct number of clusters and penalize incorrect ones proportionally. Because 

assignment of individual data points to each cluster also influences the accuracy, we used 

simulated hypothetical partitions structures that split or merge true classes to minimize 

the confounding effect. For ground truth, we generated 1000 random numbers belonging 

to 10 classes. We varied the number of clusters 𝐾 from 1 to 50. For each hypothetical 

partition structure, we computed seven accuracy measures including J-score, F-score, V-

measure, RI, ARI, NMI, and NVI. We repeated this process 200 times for each 𝐾 value 

and examined the mean and variance of each score. Since the number of true classes 

was 10, we expected these scores should peak at 𝐾 = 10. This was indeed the case for 

J-score, F-score, ARI, and NMI (Fig. 2A). These scores also decreased sharply as 𝐾 



deviated from 10, penalizing both deficient and excessive clusters. However, V-measure, 

RI, and NVI peaked incorrectly at 𝐾 = 13, overestimating the number of classes (Fig. 

2B). These two measures penalized excessive clusters only slightly. Even when 𝐾 = 50 

that was an overestimation by 400%, these scores decreased only by 5% from their peak 

values.  

To examine if J-score remains robust when the number of classes decreases and the 

A 

Figure 2. Simulations to illustrate inferences of the number of classes. (A, B) 

Simulations using a data set containing 1,000 data points from 10 true classes. For each 

accuracy measure, mean scores of 200 hypothetical partition structures containing a 

given number of clusters are displayed. Error bars represent standard deviations. 

Diamonds mark the inferred number of classes by the corresponding accuracy 

measures. Some measures including J-score made correct inferences (A) and others 

made incorrect inferences (B). (C, D) Simulations using a data set containing 1,000 data 

points from 5 true classes. Only J-score made the correct inference (C) and others made 

incorrect inferences (D).  

C 

B D 



class size increases, we simulated 1000 random numbers belonging to 5 classes. Again, 

J-score peaked at correct inferences of class counts (Fig. 2C) while all the other scores 

overestimated (Fig. 2D). These results are consistent with previous reports of biases 

towards excessive clusters using existing accuracy measures [14-16]. J-score is vigorous 

in this perspective. 

J-score has a relatively stable baseline. 

When using an accuracy measure to evaluate multiple hypothetical partition structures, 

relative accuracy values are sufficient to identify which one best fits the ground truth, and 

a universal baseline is not needed. However, a stable baseline facilitates interpretation of 

a single accuracy value [16]. To examine the baselines of J-score and other measures, 

we computed similarities between random hypothetical partition structures. Specifically, 

we simulated 1,000 random numbers, randomly assigned them to 𝐾 clusters, and varied 

𝐾 values from 2 to 50. For each 𝐾, we generated two random hypothetical partition 

structures and measured their similarities using various measures. We repeated this 

process 50 times for each 𝐾 value. Because these partition structures were random, their 

mean pairwise similarities shall be close to the lowest value of the corresponding 

accuracy measure and stay constant regardless of the 𝐾 value. This was indeed the case 

for ARI that is designed deliberately to maintain a stable baseline at 0 (Fig. 3). The second 

best was J-score, whose baseline was stabilized around 0.08 after the 𝐾 value reached 

12 and higher, i.e., the mean cluster size was less than 83. However, when K was small, 

many data points were grouped together simply by chance, leading to high similarities 

Figure 3. Simulations to illustrate the 

baselines of various measures. For each 

K, the mean score of 200 pairwise 

similarities between random hypothetical 

partition structures are displayed. Error bars 

represent standard deviations. 



between random partition structures and consequently high baseline values. F-score 

showed a similar pattern as J-score, but with significantly higher baseline values. The 

remaining measures, RI, V-measure, NVI, and NMI had exponentially increasing 

baselines across the entire range of K values we tested with no signs of stabilization.  

 

Discussions 

Clustering accuracy can be estimated with or without knowing ground truth class labels, 

which affects the application and interpretation of an accuracy measure. Ground truths 

are mostly available in simulated or curated data used for algorithm development and 

evaluation. In these applications, besides a single score to estimate the overall goodness, 

information about specific clusters or classes is also valuable for diagnosis. We 

developed J-score that supports these functionalities and addresses common issues 

including the “problem of matching” and biases towards excessive clusters.  

The advantages of J-score over H-score and F-score measures are achieved via 

bidirectional matching to recover unmatched clusters. Although we did not compare other 

set matching algorithms such as those using distances between centroids to assign 

clusters to classes, the “problem of matching” applies because they are also based on 

unidirectional matching. To promote the adoption of bidirectional set matching, we 

included a utility function in our R/jScore package that takes in a table of arbitrary pairwise 

cluster/class similarity scores, performs bidirectional set matching, and returns the 

correspondences. In fact, because Jaccard index and F1-score are monotonically related, 

one can modify F-score using this utility function and potentially solve the “problem of 

matching” as well.  

Compared to measures based on mutual agreement, J-score have three advantages. 

First, J-score identifies correspondence between classes and clusters and quantifies 

pairwise similarities, which is valuable information for model diagnosis and result 

interpretation. One can argue that post hoc set matching may be a remedy for mutual 

agreement-based measures. However, it does not fix the disconnect between matched 

sets and final accuracy scores, which can mislead model diagnosis and evaluation.  



Second, J-score does not suffer from biases toward excessive clusters. A partition 

structures with many small clusters risk overfitting. We show that J-score, without 

additional normalization or correction, performs better than or similarly as ARI, VI and 

NMI measures that involves complicated computations. Third, J-score has a relatively 

stable baseline when the average cluster size is not too big, making interpretation of a 

single accuracy value straightforward. Many existing measures lack this property except 

for ARI that specifically adjusts for chance [16]. However, J-score achieves this without 

special adjustment, keeping the algorithm simple and intuitive. 

However, ground truth is not available in real-world applications. In these cases, 

clustering accuracy can be estimated using internal validity measures such as the R2 

score, the silhouette index, and the SDbw index that quantify within-cluster similarity and 

between-cluster similarity [18]. Alternatively, one can apply two different clustering 

algorithms to the same data set and interpret reproducibility as accuracy. This motivated 

the development of several mutual agreement-based measures that are later repurposed 

for comparing hypothetical and ground true partition structures. The VI and NMI measures 

are among this category. Because J-score performs bidirectional set matching, it is 

theoretically feasible to use it to assess reproducibility or derive consensus clusters. 

However, this is beyond the scope of this manuscript and we plan to evaluate its 

performance in this aspect in a separate study. 

There are no perfect clustering accuracy measures. Like other available measures, J-

score has its weaknesses. For example, it is not a true metric because it does not satisfy 

the triangular inequality. However, J-score has many desirable and complementary 

properties to existing measures, making it a valuable addition to the toolbox. 

Conclusions 

J-score is a simply and robust measure of clustering accuracy. It addresses the problem 

of matching and reduces the risk of overfitting that challenge existing accuracy measures. 

It will facilitate the evaluation of clustering algorithms and clustering analysis results that 

are indispensable in big data analytics. 
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