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ABSTRACT
We present an AutoML system called LightAutoML developed for
a large European financial services company and its ecosystem
satisfying the set of idiosyncratic requirements that this ecosystem
has for AutoML solutions. Our framework was piloted and deployed
in numerous applications and performed at the level of experienced
data scientists while building high-quality ML models significantly
faster than these data scientists. We also compare the performance
of our system with various general-purpose open source AutoML
solutions and show that it performs better for most of the ecosystem
and OpenML problems. We also present the lessons we learned
while developing the AutoML system andmoving it into production.
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1 INTRODUCTION
AutoML has attracted much attention over the last few years, both
in the industry and academia [16]. In particular, several companies,
such as H2O.ai1, DataRobot 2, DarwinAI 3, and OneClick.ai4, and
existing AutoML libraries, such as AutoWeka [22, 39], MLBox, Au-
toKeras [18], Google’s Cloud AutoML5, Amazon’s AutoGluon [11],
IBM Watson AutoAI 6, and Microsoft Azure AutoML7 have pro-
vided industrial solutions that automatically buildML-basedmodels.
Most of these libraries propose general-purpose AutoML solutions
that automatically develop ML-based models across a broad class
of applications in financial services, healthcare, advertising, manu-
facturing, and other industries [16].

The key assumption of this horizontal approach is that the pro-
cess of automated model development remains the same across all
these applications. In this paper, however, we focus on developing
a vertical AutoML solution suitable for the needs of the ecosystem
[31] of a large European financial services company comprising a
wide range of banking and other types of financial as well as non-
financial services, including telecommunications, transportation,
and e-commerce for the B2B and B2C sectors of the economy. We
argue in the paper that such ecosystem has an idiosyncratic set of

1https://www.h2o.ai/
2https://www.datarobot.com/
3https://darwinai.ca/
4https://www.oneclick.ai/
5https://cloud.google.com/automl/
6https://www.ibm.com/cloud/watson-studio/autoai
7https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml

requirements for building ML models and would be better served
by a domain-specific AutoML solution rather than using a generic
horizontal AutoML system. In particular, our ecosystem has the
following set of requirements:

• AutoML system should be able to work with different types of
data collected from hundreds of different information systems.
Moreover, often such AutoML system changes more rapidly than
it can be fully documented and painstakingly preprocessed by
data scientists for the ML tasks using ETL tools.

• Many of our models are typically built on large datasets, having
thousands or tens of thousands of features andmillions of records.
This makes it important to develop fast AutoML methods that
efficiently handle such datasets.

• The number of production-level models across our complex
ecosystem is very large, measured in thousands, and continues
to increase rapidly, forming a Long Tail in terms of their popu-
larity and economic efficiency. This makes it necessary for the
AutoML system to accurately build and maintain all these mod-
els efficiently and cost-effectively. Furthermore, besides building
production models, it is necessary to build a large number of
models to validate numerous hypotheses tested across the entire
ecosystem and do it efficiently.

• Many of our business processes are non-stationary and are rapidly
changing over time which complicates the process of validating
and keeping up to date the ML models that are included in these
evolving processes. This results in the need to satisfy specific
model validation needs, including out-of-time validation and val-
idation of client behavioral models (models that take a sequence
of single object states as input).

In this paper, we introduce a vertical type of AutoML, called
LightAutoML, which focuses on the aforementioned needs of our
complex ecosystem and that has the following characteristics. First,
it provides nearly optimal and fast hyperparameter search, but it
does not optimize them directly, nevertheless ensuring satisfac-
tory [35] results. Furthermore, we dynamically keep the balance
between hyperparameter optimization and speed, making sure that
our solutions are optimal on small problems and fast enough on
large ones. Second, we purposely limit the range of ML models to
only two types, i.e., gradient boosted decision trees (GBMs) and
linear models, instead of having large ensembles of multiple algo-
rithms. It is done to speed up LightAutoML execution time without
sacrificing its performance for our types of problems and data. Third,
we present a unique method of choosing preprocessing schemes
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for different features used in our models based on certain types of
meta-statistics and selection rules.

We tested the proposed LightAutoML system on a wide range of
open and proprietary data sources across a wide range of applica-
tions and demonstrated its superior performance in the experiments.
Furthermore, we deployed LightAutoML in our ecosystem in nu-
merous applications across five different platforms which enabled
the company to save millions of dollars and present our experi-
ences with this deployment and business outcomes. In particular,
the initial economic effects of LightAutoML in these applications
range from 3% to 5% of the total ML economic effects from deployed
ML solutions in the company. Moreover, LightAutoML provided
certain novel capabilities that humans cannot perform, such as
generating massive amounts of ML models in record time in the
non-stop (24-7-365) working mode.

In this paper, we make the following contributions. First, we
present the LightAutoML system developed for the ecosystem of a
large financial services company comprising a wide range of bank-
ing and other types of financial and non-financial services. Second,
we compare LightAutoML with the leading general-purpose Au-
toML solutions and demonstrate that LightAutoML outperforms
them across several ecosystem applications and on the open source
AutoML benchmark OpenML [14]. Third, we compare the perfor-
mance of LightAutoML models with those manually tuned by the
data scientists and demonstrate that LightAutoML models usually
outperform data scientists. Finally, we describe our experiences
with the deployment of LightAutoML in our ecosystem.

2 RELATEDWORK
The early work on AutoML goes back to the mid-’90s when the first
papers on hyperparameter optimization were published [20, 21].
Subsequently, the concepts of AutoML were expanded and the
interest in AutoML significantly increased after the publication of
the Auto-WEKA paper [39] in 2013 and the organization of the
AutoML workshop at ICML in 2014.

One of the main areas of AutoML is the problem of hyperpa-
rameter search, where the best performing hyperparameters for
a particular ML model are determined in a large hyperparameter
space using various optimization methods [4]. Another approach
is to estimate the probability that a particular hyperparameter is
the optimal one for a given model using Bayesian methods that
typically use historical data from other datasets and the previously
estimated models on these datasets [30, 36, 37]. Other methods,
besides the hyperparameter optimization, try to select the best
models from the space of several possible modeling alternatives
[24, 29, 33, 41]. For example, TPOT [29] generates a set of best-
performing models from Sklearn and XGboost and automatically
chooses the best subset of models. Further, other papers focus on
the problem of automated deep learning model selection and opti-
mization [24, 43]. Finally, several papers propose various methods
of automatic feature generation [29].

In addition to the specific approaches to AutoML described above,
there has been a discussion in the AutoML community on what
AutoML is and how to properly define it, with different authors
expressing their points of view on the subject. In particular, while

some approaches focus only on the modeling stage of the CRISP-
DM model lifecycle, other approaches take a broader view of the
process and cover other lifecycle stages. For example, according to
Shubha Nabar from Salesforce, “most auto-ML solutions today are
either focused very narrowly on a small piece of the entire machine
learning workflow, or are built for unstructured, homogenous data
for images, voice and language” [28]. Then she argues that the
real goal of the AutoML system is the end-to-end approach across
the whole CRISP-DM cycle that “transforms customer data into
meaningful actionable predictions” [28]. A similarly broad view
of AutoML is presented in [15] where it was argued that AutoML
focuses on “removing the need for human interaction in applying
machine learning (ML) to practical problems”. A similar argument
for a broader view of AutoML as an end-to-end process taking the
input data and automatically producing an optimized predictive
model was presented in [27].

Furthermore, some successful examples of industry-specific Au-
toML solutions for medical, financial, and advertisement domains
are reviewed in [16]. One particular application of AutoML in the
financial sector is presented in [1], where a simple general-purpose
AutoML system, utilizing models of random forest, support vector
machines, k-nearest neighbors with different kernels, and other
ML methods, is created for the task of detecting bank failures. This
system is an experimental proof-of-concept prototype focusing on
a narrow task of bank failures but not an industrial-level AutoML
solution designed for a broad class of financial applications.

In this paper, we focus on a broader approach to AutoML, which
includes the stages of data processing, model selection, and hyper-
parameter tuning. This is in line with other popular approaches to
AutoML incorporated into systems such as AutoGluon [11], H2O
[23], AutoWeka [39], TPOT [29], Auto-keras [18], AutoXGBoost
[38], Auto-sklearn [12], Amazon SageMaker [9].

3 OVERVIEW OF LIGHTAUTOML
In this section, we describe implementation details of LightAutoML,
an open source modular AutoML framework that can be accessed at
our GitHub repository8. LightAutoML consists of modules that we
call Presets. They are focused on the end-to-end model development
for typical ML tasks. Currently, LightAutoML supports the follow-
ing four Preset modules. First, TabularAutoML Preset focuses on
classical ML problems defined on tabular datasets. Second,White-
Box Preset solves binary classification tasks on tabular data using
simple interpretable algorithms, such as Logistic Regression over
discretized features and Weight of Evidence (WoE) [42] encoding.
This is a commonly used approach to model the probability of a
client default in banking applications because of interpretability
constraints posed by regulators and high costs of loan approval
for bad customers. Third, NLP Preset is the same as Tabular but is
also able to combine tabular pipelines with the NLP tools, such as
specific feature extractors or pre-trained deep learning models. The
last CV Preset implements some basic tools to work with image data.
In addition, it is also possible to build custom modules and Presets
using LightAutoML API. Some examples are also available at our
GitHub repository and on Kaggle Kernels9. Although LightAutoML

8https://github.com/sberbank-ai-lab/LightAutoML
9https://www.kaggle.com/simakov/lama-custom-automl-pipeline-example
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supports all four Presets, only TabularAutoML is currently used in
our production-level system. Therefore, we will focus on it in the
rest of this paper.

A typical LightAutoML pipeline scheme is presented in Figure 1.
Each pipeline contains:
• Reader : an object that receives raw data and task type as input,
calculates some useful metadata, performs initial data cleaning,
and decides what data manipulations should be done before
fitting different models.

• LightAutoML inner datasets which contain metadata and CV iter-
ators that implement validation schemes for the datasets.

• Multiple ML Pipelines that are stacked [40] and/or blended (aver-
aged) via Blender to get a single prediction.

Figure 1: Main components of LightAutoML Pipeline

An ML pipeline in LightAutoML is one or multiple ML models
that share a single data preprocessing and validation scheme. The
preprocessing step may have up to two feature selection steps,
a feature engineering step or may be empty if no preprocessing
is needed. The ML pipelines can be computed independently on
the same datasets and then blended together using averaging (or
weighted averaging). Alternatively, a stacking ensemble scheme
can be used to build multilevel ensemble architectures.

In the next section we describe TabularAutoML Preset and com-
pare it with other popular open source AutoML frameworks.

3.1 LightAutoML’s Tabular Preset
TabularAutoML is the default LightAutoML pipeline that solves
three types of tasks on tabular data: binary classification, multiclass
classification, and regression for various types of loss functions
and performance metrics. The input data for TabularAutoML is a
table having columns of the following four types: numeric features,
categorical features, timestamps, and a single target column with
continuous values or class labels.

The key features of our LightAutoML pipeline are:
• Strong baseline: works good on most datasets
• Fast: no metamodels or pipeline optimization
• Advanced data preprocessing compared to the other popular open
source solutions
One of our main goals in designing LightAutoML was to make a

tool for fast hypothesis testing. Therefore, we avoid using brute-
force methods for optimal pipeline search and focus only on the
models and efficient techniques that work across a wide range of
datasets. In particular, we train only two classes of models repre-
sented by three types of algorithms in the following order: Lin-
ear Model with L2 penalty, the LightGBM version of the GBM
method [19] and the CatBoost version of GBM [10].

The selected order matters here because it helps to manage time
if the user sets the time limit. The algorithm’s training order is
ranked by the time they usually spend training. Therefore, if the
time limit is small but reasonable, at least the fastest model will be
computed. On the other hand, if the time limit is large enough, fast
evaluation of the previous models allows us to allocate more time
for training and hyperparameter tuning for the slower ones.

Traditional ML algorithms were selected for the LightAutoML
system because, despite the trend in the development of neural net-
works for different domains, GBM-based methods show strong per-
formance results on tabular data and outperform other approaches
in many benchmarks and competitions at the moment. Further-
more, various GBM frameworks are commonly used in industry to
develop production models [8, 10, 19]. In addition, linear models are
fast, easy to tune, and they can boost the performance of tree-based
models in ensembles by adding a variety of predictions [5]. In com-
parison, other popular open source AutoML frameworks usually
use significantly more classes of models and therefore require more
time to train. As we show in Section 4.1, the proposed approach
with a few additional features is able to outperform existing solu-
tions on internal datasets used in our company and on the OpenML
benchmark [14].

3.2 Data Preprocessing and Auto-typing
As we initially started developing LightAutoML, we paid special
attention to the data preprocessing part. As already mentioned
in Section 1, we need to be ready to work with datasets in differ-
ent formats, scales, containing artifacts, NaNs, or unspecified user
processing.

To handle different types of features in different ways, we need
to know each feature type. In the case of a single task with a small
dataset, the user can specify each feature type manually. However,
it becomes more problematic in the case of hundreds of tasks with
datasets containing thousands of features. This is very typical for
bank applications, and it takes hours of work of data scientists
to perform this data analysis and labeling. So it is crucial for the
AutoML framework to solve the problem of automatic data type
inference (auto-typing).

In case of TabularAutoML Preset we need to map features into
three classes: numeric, category, and datetime. One simple and ob-
vious solution is to use column array data types as actual feature
types, that is, to map float/int columns to numeric features, times-
tamp or string, that could be parsed as a timestamp — to datetime,
and others to category. However, this mapping is not the best be-
cause of the frequent occurrence of numeric data types in category
columns. An ML-based decision for this problem is described in
[34], where different models over meta statistics are used to pre-
dict human feature type labeling. Deep learning is also used to
solve a similar but slightly different problem of semantic data type
detection in [17].

We solve this problem in a slightly different way. Let us say,
column has category type if category encoding techniques, such as
target encoder (OOFEnc) [10, 26] or frequency encoder (FreqEnc),
that encodes category by the number of occurrence in train sample,
perform better than numeric ones, such as raw or discretized by

3
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quantiles (QDiscr) values. Building a lot of models to verify the per-
formance of all encoding combinations becomes impractical, so we
need some proxy metric that is simple to calculate and agnostic for
the type of LightAutoML task, including given loss and metric func-
tions. We choose Normalized Gini Index [7] between target variable
and encoded feature as a measure of encoding quality because it
estimates the quality of sorting and could be computed for both
classification and regression tasks. The details of the auto-typing
algorithm are presented in Appendix B (as Algorithm 1). The final
decision is made by ten expert rules over estimated encoding quali-
ties and some other meta statistics such as the number of unique
values. Exact list of rules is given at the LightAutoML repository10.

Note that we do not use ML models for auto-typing because, as
it was mentioned before, our goal is not to predict human labeling
but to guess what is actually better for the final model performance.
Sometimes LightAutoML auto-typing prediction may differ from
human’s point of view, however it may lead to a significant boost
in the performance, see Section 4.2 and datasets guilermo, ama-
zon_employee, and robert in Table 7 that contain a lot of categories
from auto-typing point of view.

After we infer the type of a feature, we can additionally guess
the optimal way to preprocess it, for example, to select the best cat-
egory encoding or decide if we should discretize numbers. A similar
algorithm can be used for this purpose with a small adaptation by
using different rules and encoding methods.

3.3 Validation Schemes
As was mentioned earlier, data in the industry may rapidly change
over time in some ecosystem processes, which made independent
identically distributed (IID) assumption irrelevant in model de-
velopment. There are cases when time series-based, grouped, or
even custom validation splits are required. This becomes important
because validation in AutoML is used not only for performance
estimation but also for hyperparameters search and out-of-fold pre-
diction generation. Out-of-fold prediction is used for blending and
stacking models on upper LightAutoML levels and also returned as
the prediction on train set for user analysis.

To the best of our knowledge, other popular AutoML frameworks
use only classical KFold or random holdout approaches, while ad-
vanced validation schemes help to handle non IID cases and make
models more robust and stable in time. This problem is out of the
scope of OpenML benchmark tasks but becomes important in pro-
duction applications. Currently available validation schemes in
TabularAutoML are:
• KFold cross-validation, which is used by default (including
stratified KFold for classification tasks or GroupKFold for behav-
ioral models if group parameter for folds splitting is specified)

• Holdout validation if holdout set specified
• Custom validation schemes (including time series split [6]
cross-validation)
All models that are trained during the cross-validation loop on

different folds are then saved for the inference phase. Inference on
new data is made by averaging models from all train folds.

10https://github.com/sberbank-ai-lab/LightAutoML/blob/master/lightautoml/reader
/guess_roles.py

3.4 Feature Selection
Feature selection is a crucial part of industrial model development
because it allows one to reducemodel implementation and inference
costs. However, existing open source AutoML solutions are not
focused much on this problem. In turn, TabularAutoML implements
three strategies of feature selection: No selection, Importance cut off
selection (by default), Importance based forward selection.

Feature importance could be estimated in two ways: split-based
tree importance [25] or permutation importance [3] of GBM model.
Importance cutoff selection aims to reject only features that are
useless for themodel (importancemeasure <= 0). This strategy helps
to reduce the number of features with no performance decrease,
which may speed up model training and inference.

However, in order to reduce inference costs, one may want to
limit the number of features in the model or to find a minimal
possible model with a small performance drop. For that purpose,
we implement a variant of the classical forward selection algorithm
described in [15] with the key difference of ranking the candidate
features by the importance measure mentioned above that helps to
speed up the procedure significantly. The specifics of the algorithm
are provided in Appendix C (as Algorithm 2).

We show in Table 1 on internal datasets that it is possible to
build much faster and simpler models with slightly lower scores.

Table 1: Comparison of different selection strategies on bi-
nary bank datasets.

Strategy Avg ROC-AUC Avg Inference Time (10k rows)

Cut off 0.804 9.1078
Forward 0.7978 5.6088

3.5 Hyperparameter Tuning
In TabularAutoML, we use different ways to tune hyperparameters
depending on what is tuned:
• Early stopping to choose the number of iterations (trees in GBM
or gradient descent steps) for all models during the training phase

• Expert system
• Tree structured Parzen estimation (TPE) for GBM models
• Grid search

All hyperparameters are tuned by maximizing the metric func-
tion, which is the default for the solved task or which is defined by
the user.

3.5.1 Expert system. A simple way to quickly set hyperparameters
for models in a satisfactory [35] fashion is expert rules. Tabula-
rAutoML can initialize a “reasonably good” set of GBM hyperpa-
rameters (learning rate, subsample, columns sample, depth) depend-
ing on a task and a dataset size. Suboptimal parameter choice is
partially compensated by an adaptive selection of the number of
steps using early stopping. It prevents the final model from a high
decrease in score compared to hard-tuned models.

3.5.2 TPE and combined strategy. We introduce a mixed tuning
strategy that works by default in TabularAutoML (but the user
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might change it): for each GBM framework (LightGBM and Cat-
Boost) we train two types of models. The first one gets expert
hyperparameters, and the second one is fine-tuned while it fits into
the time budget. TPE algorithm, described in [4] is used for the
model fine-tuning. This algorithm is chosen because it shows state-
of-the-art results in tuning this class of models. We use realization
of TPE by Optuna framework [2]. In the final model, both models
will be blended or stacked. Also, one of the models (or even both)
could be dropped from the AutoML pipeline if it does not help to
increase the final model performance. We compare this combined
strategy with the AutoML based on the expert system only; results
are given in Section 4.2.

3.5.3 Grid search. Grid search parameter tuning is used in Tabula-
rAutoML pipeline to fine-tune regularization parameter of a linear
model in combination with:
• Early stopping. We assume the regularization parameter in the
linear model has a single optimal point, and after reaching it, we
can finish the search.

• Warm start. We use warm start strategy to initialize model
weights between regularization trials [13]. It helps to speed up
model training.
Both heuristics make the grid search efficient in fine-tuninig

linear estimators.

3.6 Model Ensembling in TabularAutoML
3.6.1 Multilevel stacking ensembles. As was mentioned before,
LightAutoML allows users to build stacked ensembles of unlimited
depth. Similar strategy is common for AutoML systems and also
used in [11, 23]. However, building ensembles deeper than 3 levels
shows no effect in practice.

TabularAutoML builds two-level stacking ensembles by default
for multiclass classification tasks only because it was the only case
where we observed a significant and stable boost in model perfor-
mance; see Section 4.2. This behavior is just the default setting and
can be changed by the user to perform stacking on any dataset.

3.6.2 Blending. The last level of LightAutoML ensemble, regard-
less of its depth, may contain more than one model. To combine
predictions of different models into a single AutoML output, they
are passed to the blending phase. Blending in terms of LightAutoML
differs from the full stacked model in the following ways. First, it is
a considerably simpler model. As a consequence, second, it does not
require any validation scheme to tune and control overfitting. Fi-
nally, it is able to perform model selection to simplify the ensemble
to speed up the inference phase.

TabularAutoML uses weighted averaging as a blender model.
Ensemble weights are estimated using the coordinate descent algo-
rithm to maximize the metric function, which is the default for the
solved task or which is defined by the user. Models with weights
close to 0 are dropped from AutoML.

3.6.3 Ensemble of AutoMLs and time utilization. As we mentioned
before, one of our goals was to limit the search space of ML algo-
rithms to speed up model training and inference, which is related
to production use cases of AutoML frameworks for medium and
high dataset sizes. However, this strategy will not perform well
in cases such as ML competitions when the user has a very high

time budget and needs to utilize it all to get the best performance
regardless of its cost. Increasing the search space and brute forcing
will often take advantage here.

Typical examples here are small datasets from the OpenML
benchmark that are solved by TabularAutoML much faster than the
given time limit of 1 hour (Table 2). In order to solve this problem
and be competitive on benchmarks and ML competitions in the case
of small datasets, we implement the time utilization strategy that
blends multiple TabularAutoMLs with slightly different settings
and validation random seeds. A user may define multiple config
settings and the priority order or use defaults. AutoMLs with the
same settings and different seeds will be simply averaged together,
and after that, different settings ensembles will be weighted aver-
aged. This strategy shows a performance boost on OpenML tasks;
see Section 4.2.

Table 2: Average training time in seconds for the smallest
OpenML datasets for Utilized Tabular Preset version and De-
fault (single run).

Task type Utilized Single run

Binary (9 smallest) 3268 360
Multi class (7 smallest) 2984 1201

4 PERFORMANCE OF LIGHTAUTOML
4.1 Comparison with Open Source AutoML
In this section, we compare the performance of LightAutoML Tab-
ularAutoML Preset with the already existing open source solutions
across various tasks and show the superior performance of our
method. First, to make this comparison, we use datasets from the
OpenML benchmark that is typically used to evaluate the quality
of AutoML systems. The benchmark is evaluated on 35 datasets of
binary and multiclass classification tasks. The complete experimen-
tal description, including the framework versions, limitations, and
extended results, is presented in Appendix A. The summary of the
results of LightAutoML vis-a-vis five popular AutoML systems is
presented in Table 3, where all the AutoML systems are ranked by
the total amount of wins in each dataset.

Table 3: Aggregated framework comparison on OpenML.

framework Wins Avg Rank Avg Reciprocal Rank

autoweka 0 5.7879 0.1747
autogluon 0 4.2647 0.252
autosklearn 3 2.6 0.4505

tpot 6 3.8235 0.374
h2oautoml 6 2.4857 0.4833
lightautoml 20 1.9429 0.7233

However, the detailed comparison of frameworks in the context
of dataset groups provided in Table 4 shows that LightAutoML
does not work equally well on all the classes of tasks. For binary
classification problems with a small amount of data, LightAutoML
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shows average performance results and losses to TPOT; moreover,
it performs on par with H2O and Auto-Sklearn. The reason for this
is that the tasks with a small amount of data are not common in our
ecosystem and were not the main impetus behind the development
of LightAutoML.

Table 4: Average reciprocal rank for frameworks compari-
son by OpenML datasets groups.

Small Small Medium Medium
Framework binary multiclass binary multiclass

autoweka 0.1741 0.1667 0.1783 0.1786
tpot 0.6056 0.481 0.2061 0.2333

autogluon 0.2796 0.2071 0.2606 0.2476
autosklearn 0.4519 0.3571 0.4424 0.5417
h2oautoml 0.4907 0.5595 0.4697 0.4271
lightautoml 0.4481 0.6786 0.8939 0.8375

Another type of datasets for comparing different solutions is
internal datasets collected in the bank. In this study, we use 15 bank
datasets for various binary classification tasks performed in our
company, such as credit scoring (probability of defaults estimation),
collection, and marketing (response probability). As the primary
goal of developing the LightAutoML framework was to work with
our internal applications, we expected better performance of our
system on the internal data. In Table 5 we show that the perfor-
mance gap between LightAutoML and other AutoML systems is
significantly higher on the bank datasets than on the OpenML
data11.

Table 5: Aggregated framework comparison on bank’s pro-
prietary datasets.

framework Wins Avg Rank Avg Reciprocal Rank

autoweka 0 5.7333 0.18
autogluon 0 3.9333 0.2778

tpot 1 3.9333 0.3056
autosklearn 1 3.2667 0.3956
h2oautoml 1 2.6667 0.4244
lightautoml 12 1.4667 0.8667

4.2 Ablation Study
We perform the ablation study estimating average reciprocal rank
change to evaluate each TabularAutoML feature impact on the
OpenML benchmark results. We take the best existing AutoML
configuration, including the time utilization strategy, combined
hyperparameter tuning, auto-typing, stacking for multiclass tasks
only (Utilized best) as baselines. First, we turn off time utilization
to estimate contribution of multi-start bagging (Default) described
in Section 3.6.3. Second, we take Default and compare the two-
level stacking for all the tasks (Stacked all) and blending first level
11We cannot present information about these internal datasets in this paper because
they contain proprietary and confidential information.

models only (Single level all) to estimate the quality of alternative
ensembling methods discussed in Section 3.6.1. Third, we exclude
the advanced auto-typing module presented in Section 3.2 from
Default (No auto-typing). Finally, we replace the combined tuning
strategy described in Section 3.5.2 from Default with the expert
system initialization only (No finetune). The ablation study results
are presented in Table 6. As Table 6 demonstrates, each feature
removal decreases the LightAutoML rank, which shows that all
those features make our framework more accurate than the others
on OpenML datasets.

Table 6: Ablation study on OpenML.

Configuration Avg Reciprocal Rank Avg Rank

No finetune 0.6054 2.4118
Typing off 0.6431 2.1765

Single level all 0.65 2.2353
Stacked all 0.6672 2.2059

Default (stacked multiclass) 0.6907 2.0882
Utilized best 0.7233 1.9429

4.3 LightAutoML vs. Building Models by Hand
We have also used our LightAutoML system as one of the “partici-
pants” in the internal hackathon in our ecosystem, together with
433 leading data scientists in the company. The training dataset
used in the competition had 300 features and 400 000 records, and
the goal was to predict the churn rates. The performance metric
selected for this hackathon was ROC-AUC, and the performance of
the baseline used in this competition was ROC-AUC = 75.5%.

LightAutoML was presented in the hackathon by 4 participants
that used it in different configurations. As Figure 2 demonstrates,
LightAutoML outperformed the baseline model. Although the aver-
age performance of LightAutoML (ROC-AUC = 76.54) was better
than the average performance of the top-10% of hackathon partic-
ipants, i.e., belonging to the 90% quantile (average ROC-AUC =
76.08), the performance improvements were not statistically signifi-
cant. This means that although LightAutoML significantly outper-
formed the average data scientist in this hackathon (including the
“bottom 90%”), its performance was comparable to the top-10% of
the best data scientists. Detailed results are given in repository12.

5 DEPLOYING LIGHTAUTOML
In this section, we present our experiences with deploying, piloting,
and moving LightAutoML into production.

Deployment. Currently, the LightAutoML system is deployed
in production by five large ML platforms inside our financial ser-
vices company and its ecosystem, including cloud, B2B, and B2C
platforms. Furthermore, seven more divisions are currently piloting
the latest version of the system. Moreover, it is also used in several
automated systems and various IT services across the ecosystem.
Altogether, more than 70 teams involving several hundred data
scientists use LightAutoML to build ML models across the entire
ecosystem. As an example, just the B2C platform alone has more
12https://github.com/sberbank-ai-lab/Paper-Appendix
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Figure 2: Performance Results of LightAutoML in the Nex-
tHack Competition vs. 433 Human Competitors.

than 300 business problems solved using LightAutoML this year,
resulting in the total P&L increase by 3%. In what follows, we
present some examples of successful deployments of LightAutoML
in the ecosystem and our experiences with these deployments.

Operational audit. LightAutoML has been applied to the problem
of operational audit of the bank branches with the goal to detect
mistakes made by bank’s employees across the organization and do
it in the most effective and efficient manner. These mistakes are of
numerous types, depending on the type of branch, its location, the
type of employee who made a mistake, etc. The goal of the opera-
tional audit is to detect and correct all these mistakes, prevent their
future occurrences, and minimize their consequences according to
the established practices of the bank.

In this project, we focused on 60 major types of mistakes and
developed one predictive model per mistake and each of the 11
divisions of the bank, resulting in 660 LightAutoML models in total.
For comparison, prior mistake detection methods were rule-based.

One of the reasons for the bank not developing prior ML-based
mistake detection models was the large number of such models
(660 in our case) requiring extensive resources of data scientists
and a long time to produce all of them (measured in person-years),
making such project infeasible. The second reason why such mod-
els have not been previously developed is that the economic effect
from each model is limited. For example, Figure 3 shows the 660
operational risk models sorted on the 𝑦-axis by the difference in the
economic impact between the LightAutoML models and the previ-
ously existing rule-based methods, ranging from $60 000 highest
positive impact on the left to the $8 000 highest negative impact
on the right of Figure 3. This example demonstrates that detecting
even the most important operational mistakes resulted in limited
savings, and the savings from the medium and minor mistakes
were considerably lower, making the development of such machine
learning models economically infeasible. Nevertheless, the cumula-
tive economic effect of building all the 660 models is significant,
bringing the bank millions of dollars in savings.

All the 660 operational audit models were developed by our
LightAutoML system in 3 days over the weekend, and the whole
project took 10 person-days, taking into account data preparation

costs. This contrasts sharply with the cost of creating so many
models manually, resulting in saving the bank millions of dollars.

Other Examples of LightAutoML Applications. LightAutoML sys-
tem has also automatically built fraud detection models that were
subsequently compared against the manually developed classical
ML-based fraud detection models previously developed and de-
ployed in the company. These models saved development time by
40 person-days and improving model performance by 6% for the
F1 performance metric, identifying several thousands of fraudulent
activities, and thus saving the bank millions of dollars.

Another example of successful LightAutoML deployment was a
charitable donations system involving 110 different types of contri-
butions focusing on children’s welfare. Our LightAutoML system
developed a model identifying the donors over a period of two
person-days. When it was moved into production, only for the
email channel it increased the number of donations by 18% and
the total sum of donations by 40%.

Lessons Learned. We will start with the lessons learned when
developing and piloting LightAutoML for our ecosystem. First, ap-
plications that are the most amenable to the deployment of AutoML
are those where the prediction problem is formulated precisely and
correctly and does not require human insights based on deep prior
knowledge of the application domain. Second, AutoML iswell suited
for typical supervised learning tasks, where testing works well on
retrospective data. It is harder to effectively apply the current gener-
ation of AutoML systems to non-standard problems. Third, AutoML
solutions are especially useful when an ML model should be built
quickly with limited resources. In those cases when there is plenty
of time to build a model using top data science talent working on
complex problems requiring significant insights and ingenuity, non-
standard solutions, and careful fine-tuning of the model parameters,
humans can outperform AutoML solutions. As an example, when
Google conducted the IEEE competition [32], its AutoML solution
outperformed 90% of the competing teams in the first two weeks.
However, humans eventually managed to catch up and outperform
Google’s AutoML after the first two weeks by putting extensive
effort into the hackathon and constantly improving their models.
Finally, strong performance results of LightAutoML were achieved
not due to certain unique breakthrough features of our system
but because of numerous incremental improvements described in
Section 3 that were cohesively combined into a unified solution.

Furthermore, while moving LightAutoML into production, we
have learned a different group of lessons. First, independent tests
of our system by data scientists in the company show that Ligh-
tAutoML significantly outperformed humans on only one-third of
the ML tasks actually deployed in production, which differs from
the 90% figure reported in Section 4.3 for the pilot studies. This
reduction of LightAutoML performance vs. humans in production
environments is due to the following reasons:

• Presence of data leaks, i.e., the situation when information about
an object target becomes obvious from features for the training
and not for the test data, and also of data artifacts, such as special
decimal separators or character symbols (e.g., K standing for
thousands) in numeric columns, missing values for a specific
feature block, etc., across hundreds of automated data storage
systems.
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Figure 3: Difference in revenues of the LightAutoML and the manually developed impact estimation methods.

• Existence of extremely small number of minority class events,
compared with the number of features.

• In the same conditions, top data scientists build many more mod-
els than less experienced ones at the same time.
The last point demonstrates that, instead of replacing data scien-

tists with AutoML systems, it is better to complement them with
such systems. Now, in our company, we focus on empowering our
DSes with LightAutoML. In particular, we are primarily using Ligh-
tAutoML as a baseline generator and as a fast hypothesis testing
tool in the company now. This helps our data scientists to focus
on certain crucial parts of the model development process, such
as appropriate time period data selection, target variable formula-
tion, selection of suitable quality metrics, identification of business
constraints, and so on.

The second lesson is associated with the importance of integrat-
ing LightAutoML with different production environments of our
diverse ecosystem to implement end-to-end solutions. Although we
observed 4x to 10x model training time reduction in comparison to
the usual model creation process, overall time-to-market managed
to decrease by only 30% on average for the whole model life-cycle
process. Furthermore, we observed that this number can be im-
proved to almost 70% for the cases when continuous integration
with data sources and inference environments was done, notably
on our cloud platform.

In summary, we had encountered several issues when piloting
our LightAutoML system and moving it into production, most of
these issues have to deal with idiosyncratic requirements of the
financial services industry and the diverse ecosystem of our orga-
nization. We managed to resolve them successfully by developing
the LightAutoML system to suit the needs of our ecosystem. We
have also described the lessons learned while moving LightAutoML
into production across a diverse class of ML applications. All this
makes a strong case for developing vertical AutoML solutions for
the financial services industry.

6 CONCLUSION
In the paper, we present the LightAutoML system designed to satisfy
the specific needs of large financial services companies and their
ecosystems. We argue for the need to develop a special-purpose
AutoML, as opposed to the general-purpose system, such as H2O
or AutoGluon, that would satisfy the idiosyncratic needs of such
organizations, including the ability to handle large datasets having

a broad range of data types, non-stationary data, specific types of
validations, including behavioral models and out-of-time valida-
tions, and rapid development of a large number of models. The
proposed LightAutoML system has several incremental improve-
ments: the “light-and-fast” approach to AutoML development when
only GBMs and linear models are used, novel and fast combined
hyperparameter tuning method that produces strong tuning results,
advanced data preprocessing including auto-typing that collectively
enhances functionality of LightAutoML and helps it to achieve su-
perior performance results.

Further, we show that our LightAutoML system outperforms
some of the leading general-purpose AutoML solutions in terms
of the AUC-ROC and LogLoss metrics on our proprietary applica-
tions and also on the OpenML benchmarks, as well as the models
manually developed by data scientists for the typical problems of
importance to large financial organizations.

Finally, the proposed LightAutoML system has been deployed
in production in numerous applications across the company and
its ecosystem, which helped to save the organization millions of
dollars in development costs, while also achieving certain capa-
bilities that are impossible for the humans to realize, such as the
generation of massive amounts of ML models in record time. We
have also described several important lessons that we have learned
while developing and deploying the LightAutoML system at the
company, including that (a) the “light” approach to AutoML design
in the LightAutoML system worked well in practice, achieving su-
perior performance results — mainly due to the careful integration
of various incremental improvements of different AutoML features
properly combined into the unified LightAutoML system; (b) re-
alization that LightAutoML outperformed data scientists on only
one third of the deployed models, as opposed to the expected 90%
of the cases — due to the complexities and the “messiness” of the
actually deployed vis-a-vis the pilot cases; (c) realization that it is
not always true that data scientists outperform the machines when
preparing the data to be used for building ML models — LightAu-
toML outperformed data scientists in this data preparation task in
several use cases; (d) although LightAutoML significantly improved
model building productivity in our organization, the number of
data scientists actually increased significantly over the last year —
mainly due to the fact that we need many more ML models to better
run our business. There is plenty of work for both AutoML and
data scientists to achieve our business goals.
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As a part of the future work, we plan to develop functionality
related to model distillation and strengthen the work with NLP
tasks. In particular, some applications in our organization, includ-
ing e-commerce, impose additional constraints on the real-time
performance of ML models, and we need the make sure that the
distillation component of LightAutoML satisfies these real-time
requirements. Furthermore, we plan further to enhance NLP func-
tionality of LightAutoML in its future releases.
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A EXPERIMENT DESIGN AND ADDITIONAL
RESULTS

Datasets and experiment designwere taken from the official OpenML
benchmark page. All the datasets were evaluated across 10 cross-
validation folds made by organizers, and the final score for each
dataset was calculated by averaging scores from all 10 folds. Models
were scored by ROC-AUC metric for binary classification tasks and
LogLoss for multiclass classification tasks. In this paper, we drop
from evaluation 4 out of 39 datasets because most of the frameworks
failed on these datasets due to timeout with given limitations.

Models were evaluated with the following limitations: 1 hour
runtime limit (this limit was passed to the framework as the input
parameter if the framework supports time limitations, but actually
process was killed after 2 hours), 8 CPU, 32 GB RAM per single
cross-validation split. Each fold was evaluated in a separated docker
container on a cloud server under OS Ubuntu 18.04 with HDD and
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz.

Frameworks and versions that were compared in the benchmark
are the following: lightautoml==0.2.8, h2o_automl==3.32.0.1, auto-
gluon==0.0.12, autosklearn==0.11.1, autoweka==2.6, tpot==0.11.5.
The code for benchmark evaluation was taken from the OpenML
repository13, were it was published by frameworks developers. Fi-
nally, we have only 4 failure cases due to timeout. Results across
all 35 datasets are shown in Table 7.

The code to reproduce our experiment is available at the reposi-
tory14. The code to reproduce LightAutoML results is also published
at the OpenML repository.

Note that, as it is mentioned in [11], AutoGluon shows state-of-
the-art results on the OpenML benchmark, but we were not able
to reproduce the results using the code published at the OpenML
repository. A possible reason for this is non-default run settings
or differences in computational environments. Also, during the
benchmarks process, we encountered various errors in the tested
frameworks; most of them are listed in Appendix in [11].

The comparison for the internal datasets was made on the same
environment except the time limit — we set the limit to two hours
for inner data. Datasets contain clients’ information that can not be
published, so only aggregated framework comparison is presented.
Datasets were split independently into train/test samples by data
owners, depending on their business tasks. The split may be ran-
dom, out-of-time, or separated by group values (for example, by
client IDs for behavioral models). Split methods and test samples
were unknown to AutoMLs during the training phase. Models were
trained on train parts and scored by ROC-AUC metric values on
test parts.

13https://github.com/openml/automlbenchmark
14https://github.com/sberbank-ai-lab/automlbenchmark/tree/lightautoml

B AUTO-TYPING ALGORITHM
Algorithm 1: Splitting integer and float features into cate-
gorical and numeric features.

Input : Integer and float type train features 𝑋 𝑖 𝑓

𝑡𝑟𝑎𝑖𝑛
, train

target 𝑌𝑡𝑟𝑎𝑖𝑛 , set of expert rules 𝑅𝑢𝑙𝑒𝑠
Output :Boolean values for each feature in 𝑋

𝑖 𝑓

𝑡𝑟𝑎𝑖𝑛
to be

numeric 𝐼𝑠𝑁𝑢𝑚𝑏𝑒𝑟

1 for each feature 𝐹 in 𝑋 𝑖 𝑓

𝑡𝑟𝑎𝑖𝑛
do

2 𝐼𝑠𝑁𝑢𝑚𝑏𝑒𝑟 [𝐹 ] = 𝐹𝑎𝑙𝑠𝑒

3 𝑛𝑜𝑡𝑁𝑎𝑁𝑆𝑙𝑖𝑐𝑒 = 𝑖𝑠𝑁𝑜𝑡𝑁𝑎𝑁 (𝐹 )
4 𝐹𝑛𝑛 = 𝐹 [𝑛𝑜𝑡𝑁𝑎𝑁𝑆𝑙𝑖𝑐𝑒]
5 𝑌𝑛𝑛

𝑡𝑟𝑎𝑖𝑛
= 𝑌𝑡𝑟𝑎𝑖𝑛 [𝑛𝑜𝑡𝑁𝑎𝑁𝑆𝑙𝑖𝑐𝑒]

6 𝑁𝐺𝑛𝑜𝐸𝑛𝑐 = 𝑁𝑜𝑟𝑚𝐺𝑖𝑛𝑖 (𝑌𝑛𝑛
𝑡𝑟𝑎𝑖𝑛

, 𝐹𝑛𝑛);
7 𝑁𝐺𝑂𝑂𝐹𝑞 = 𝑁𝑜𝑟𝑚𝐺𝑖𝑛𝑖 (𝑌𝑛𝑛

𝑡𝑟𝑎𝑖𝑛
,𝑂𝑂𝐹𝐸𝑛𝑐 (𝑄𝐷𝑖𝑠𝑐𝑟 (𝐹𝑛𝑛)));

8 𝑁𝐺𝐹𝐸 = 𝑁𝑜𝑟𝑚𝐺𝑖𝑛𝑖 (𝑌𝑛𝑛
𝑡𝑟𝑎𝑖𝑛

, 𝐹𝑟𝑒𝑞𝐸𝑛𝑐 (𝐹𝑛𝑛));
9 𝑁𝐺𝑂𝑂𝐹 = 𝑁𝑜𝑟𝑚𝐺𝑖𝑛𝑖 (𝑌𝑛𝑛

𝑡𝑟𝑎𝑖𝑛
,𝑂𝑂𝐹𝐸𝑛𝑐 (𝐹𝑛𝑛));

10 for 𝑅 in 𝑅𝑢𝑙𝑒𝑠 do
11 if 𝑅(𝐹𝑛𝑛, 𝑁𝐺𝑛𝑜𝐸𝑛𝑐 , 𝑁𝐺𝑂𝑂𝐹𝑞, 𝑁𝐺𝐹𝐸 , 𝑁𝐺𝑂𝑂𝐹 ) then
12 𝐼𝑠𝑁𝑢𝑚𝑏𝑒𝑟 [𝐹 ] = 𝑇𝑟𝑢𝑒

13 Break;
14 end
15 end
16 end

C PERMUTATION BASED FORWARD
SELECTION ALGORITHM

Algorithm 2: Importance based forward selection.
Input :Train features 𝑋𝑡𝑟𝑎𝑖𝑛 , train target 𝑌𝑡𝑟𝑎𝑖𝑛 , valid

features 𝑋𝑣𝑎𝑙𝑖𝑑 , valid target 𝑌𝑣𝑎𝑙𝑖𝑑 , MLAlgo 𝐴,
features block size 𝑁 , metric𝑀

Output :Selected features 𝑂𝑢𝑡𝐹𝑒𝑎𝑡𝑠
1 𝑇𝑝𝑒𝑟𝑚 = 𝐴(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛);
2 𝑃𝐹𝑖𝑚𝑝 = 𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐼𝑚𝑝 (𝑋𝑣𝑎𝑙𝑖𝑑 ,𝑇𝑝𝑒𝑟𝑚, 𝑌𝑣𝑎𝑙𝑖𝑑 , 𝑀);
3 Sort 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑁𝑎𝑚𝑒𝑠 by descending 𝑃𝐹𝑖𝑚𝑝;
4 𝑂𝑢𝑡𝐹𝑒𝑎𝑡𝑠 = [];
5 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝑐𝑜𝑟𝑒 = −𝑖𝑛𝑓 ;
6 for 𝑖 from 0 to 𝑙𝑒𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) with step 𝑁 do
7 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐹𝑒𝑎𝑡𝑠 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑁𝑎𝑚𝑒𝑠 [𝑖 : 𝑖 + 𝑁 ];
8 𝑇𝑖 = 𝐴(𝑋𝑡𝑟𝑎𝑖𝑛 [𝑂𝑢𝑡𝐹𝑒𝑎𝑡𝑠 +𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐹𝑒𝑎𝑡𝑠]);
9 𝑁𝑒𝑤𝑆𝑐𝑜𝑟𝑒 = 𝑀 (𝑌𝑣𝑎𝑙𝑖𝑑 ,𝑇𝑖 (𝑋𝑣𝑎𝑙𝑖𝑑 ));

10 if 𝑁𝑒𝑤𝑆𝑐𝑜𝑟𝑒 > 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝑐𝑜𝑟𝑒 then
11 Append 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐹𝑒𝑎𝑡𝑠 to 𝑂𝑢𝑡𝐹𝑒𝑎𝑡𝑠;
12 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝑐𝑜𝑟𝑒 = 𝑁𝑒𝑤𝑆𝑐𝑜𝑟𝑒;
13 end
14 end
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Table 7: Detailed results for OpenML datasets.

dataset metric lightautoml autogluon h2oautoml autosklearn autoweka tpot

australian roc-auc 0.9462 0.9393 0.934 0.9353 0.9337 0.9336
blood-transfusi. . . roc-auc 0.7497 0.719 0.758 0.75 0.7282 0.7479

credit-g roc-auc 0.7921 0.7766 0.7968 0.7756 0.7526 0.7824
kc1 roc-auc 0.8283 0.8168 0.8374 0.8404 0.8166 0.844

jasmine roc-auc 0.8806 0.8822 0.887 0.8826 0.8638 0.8897
kr-vs-kp roc-auc 0.9997 0.9994 0.9997 0.9999 0.981 0.9998
sylvine roc-auc 0.9882 0.9852 0.9882 0.9896 0.9729 0.9923
phoneme roc-auc 0.9655 0.9682 0.9668 0.9634 0.9552 0.9693
christine roc-auc 0.8307 0.8133 0.8247 0.8285 0.7905 0.8065
guillermo roc-auc 0.9322 0.9027 0.9078 0.9064 0.8901 0.8943
riccardo roc-auc 0.9997 0.9997 0.9997 0.9998 0.9981 0.9906

amazon_employee. . . roc-auc 0.9003 0.8758 0.8756 0.8524 0.8363 0.8674
nomao roc-auc 0.9976 0.9954 0.9959 0.9958 0.9826 0.9948

bank-marketing roc-auc 0.9401 0.9371 0.9373 0.938 0.8103 0.9314
adult roc-auc 0.9306 0.9286 0.9295 0.93 0.914 0.925

kddcup09_appete. . . roc-auc 0.8509 0.7932 0.8305 0.8383 - 0.8111
apsfailure roc-auc 0.9936 0.9915 0.9924 0.9921 0.9678 0.9904

numerai28.6 roc-auc 0.5306 0.5212 0.5311 0.5294 0.5249 0.5235
higgs roc-auc 0.8157 0.8055 0.815 0.8137 0.676 0.8024

miniboone roc-auc 0.9876 0.9842 0.9862 0.9865 0.9651 0.982
car -logloss -0.0038 -0.1337 -0.0033 -0.0023 -0.2216 -0.0001

cnae-9 -logloss -0.1555 -0.2917 -0.2002 -0.1784 -0.8589 -0.1448
connect-4 -logloss -0.3358 -0.4956 -0.3387 -0.3481 -3.1088 -0.4411
dilbert -logloss -0.0327 -0.1473 -0.0411 -0.0431 -0.2455 -0.0772
fabert -logloss -0.765 -0.7715 -0.764 -0.7705 -7.4649 -0.8263

fashion-mnist -logloss -0.2519 -0.3321 -0.3025 -0.2852 -0.6423 -0.3726
helena -logloss -2.5548 - -2.8187 -2.6359 -15.3287 -
jannis -logloss -0.6653 -0.7275 -0.7232 -0.6696 -4.1177 -0.7319

jungle_chess_2p. . . -logloss -0.1428 -0.381 -0.2366 -0.1599 -2.0565 -0.2829
mfeat-factors -logloss -0.0823 -0.1563 -0.0941 -0.093 -0.542 -0.1022

robert -logloss -1.3166 -1.6828 -1.6829 -1.6571 - -1.9923
segment -logloss -0.0464 -0.0854 -0.0497 -0.0615 -0.4275 -0.0522
shuttle -logloss -0.0008 -0.0008 -0.0005 -0.0005 -0.0059 -0.0006
vehicle -logloss -0.3723 -0.4812 -0.3584 -0.3816 -2.5381 -0.3745
volkert -logloss -0.8283 -0.9197 -0.8669 -0.8054 -1.7296 -0.9945

11


	Abstract
	1 Introduction
	2 Related work
	3 Overview of LightAutoML
	3.1 LightAutoML’s Tabular Preset
	3.2 Data Preprocessing and Auto-typing
	3.3 Validation Schemes
	3.4 Feature Selection
	3.5 Hyperparameter Tuning
	3.6 Model Ensembling in TabularAutoML

	4 Performance of LightAutoML
	4.1 Comparison with Open Source AutoML
	4.2 Ablation Study
	4.3 LightAutoML vs. Building Models by Hand

	5 Deploying LightAutoML
	6 Conclusion
	References
	A Experiment design and additional results
	B Auto-typing algorithm
	C Permutation based forward selection algorithm

