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Acceleration Method for Learning
Fine-Layered Optical Neural Networks

Kazuo Aoyama and Hiroshi Sawada

Abstract—An optical neural network (ONN) is a promising system due to its high-speed and low-power operation. Its linear unit

performs a multiplication of an input vector and a weight matrix in optical analog circuits. Among them, a circuit with a multiple-layered

structure of programmable Mach-Zehnder interferometers (MZIs) can realize a specific class of unitary matrices with a limited number

of MZIs as its weight matrix. The circuit is effective for balancing the number of programmable MZIs and ONN performance. However, it

takes a lot of time to learn MZI parameters of the circuit with a conventional automatic differentiation (AD), which machine learning

platforms are equipped with. To solve the time-consuming problem, we propose an acceleration method for learning MZI parameters.

We create customized complex-valued derivatives for an MZI, exploiting Wirtinger derivatives and a chain rule. They are incorporated

into our newly developed function module implemented in C++ to collectively calculate their values in a multi-layered structure. Our

method is simple, fast, and versatile as well as compatible with the conventional AD. We demonstrate that our method works 20 times

faster than the conventional AD when a pixel-by-pixel MNIST task is performed in a complex-valued recurrent neural network with an

MZI-based hidden unit.

Index Terms—Machine learning, Optical neural networks, Complex-valued neural networks, Unitary matrix, Wirtinger derivatives,

Backpropagation, Mach-Zehnder interferometer

✦

1 INTRODUCTION

Optical neural networks (ONNs) have attracted much at-

tention because of their high speed and extremely low power

consumption [1], [2], [3], [4], [5], [6], compared with conventional

digital computer systems. ONNs process information encoded by

amplitude and phase of light waves in passive analog circuits

exploiting optical phenomena such as transmission, resonance,

interference, and diffraction. Such optical analog circuits operate

in principle without energy. Linear units in ONNs perform analog

multiplication of a weight matrix and an input vector that is a

signal of encoded information. In the multiplication exploiting the

interference [2], [7], [8], [9], signals and weights are regarded as

complex numbers. Since the energy is preserved in the vector-

matrix multiplication, the weight matrix is a unitary matrix.

Among such linear units, there are ones with a unitary ma-

trix implemented in programmable Mach-Zehnder interferometers

(MZIs) [7], [10], [11]. The linear unit using MZIs has two main

advantages for designing ONNs: One is that the ONNs with the

linear units can learn not a unitary matrix itself but parameters of

the MZIs directly [12]. The other is that the ONNs can balance

their performance and the limited number of their MZIs by using

the characteristic that not only full-capacity unitary matrix but also

its specific class is realized by MZI-based matrices [10]. For these

advantages, we focus on the linear units using MZIs and discuss

methods for learning their parameters.

The learning method [12] can generate specific classes of

unitary matrices using fewer parameters in an MZI-based matrix

than those required for realizing any unitary matrix. However, this

method requires a lot of computational cost of elapsed time to

learn the parameters. Two main factors make this method costly.

One is to represent a weight matrix by a product of several MZI-
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representation matrices. This is equivalent to adopting a sequence

of several linear units, resulting in a deeper neural network. The

other is to use the conventional automatic differentiation (AD)

[13] without any change, which machine learning frameworks

such as TensorFlow [14] and PyTorch [15] are equipped with.

The machine learning framework requires more computational

time for the deeper neural networks. Besides, we need flexible

representations for an MZI to systematically deal with various

MZI-representation matrices [4], [10], [11], [12].

To solve the problems, we propose an acceleration learning

method to remove the foregoing factors and adapt to the various

MZI-representation matrices, retaining the compatibility with the

conventional AD. Our proposed learning method is simple, fast,

versatile, and easy-to-use. Our method is based on three newly

developed techniques. The first is to prepare two constituent

unitary matrices corresponding to two basic components of an

MZI, a phase shifter (PS) and a directional coupler (DC) (or

beam splitter) [7], [10], [11], and represent an MZI matrix by

the combination of representation matrices of the PS and the DC.

This leads to the versatility of our method and makes a matrix

formulation simple. The second is to create customized complex-

valued derivatives for matrices of pairs of the PS and the DC, i.e.,

PSDC and DCPS, by exploiting Wirtinger derivatives and a chain

rule [16]. The last is to develop a function module implemented

in C++ to collectively calculate values required in learning of a

linear unit with the several combination matrices. By incorporating

the customized derivatives to the function module, our method

achieves fast learning.

Our contributions are threefold:

1) We present a fine-layered linear unit where a weight

matrix is represented by a product of structured unitary

matrices implemented in phase shifters (PS) and direc-

tional couplers (DC). Owing to this representation, we
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TABLE 1
Learning Methods for Unitary Matrices

Constraint Optimization Structure

Matrix
representation

capacity
Full unitary

Specified class

Fixed
Variable
(to full)

Method
[21], [22] [23] [24] [25], [12]

[26], [27] [28] Ours

can simply formulate a weight matrix and easily modify

it according to various MZI implementations.

2) We propose an acceleration learning method for a fine-

layered linear unit. We create customized complex-valued

derivatives for products of the structured matrices, ex-

ploiting a chain rule and Wirtinger derivatives. The cus-

tomized derivatives are incorporated to our newly devel-

oped function module implemented in C++ to collectively

calculate their values. Since our proposed method is com-

patible with automatic differentiation (AD), we can easily

use it in the conventional machine learning platforms.

3) We demonstrate that our proposed method works 20

times faster than the conventional AD when a pixel-by-

pixel MNIST task [12] is performed in a complex-valued

recurrent neural network where a hidden unit is a fine-

layered linear unit based on the PSDC.

The remainder of this paper consists of the following six

sections. Section 2 briefly reviews related work. Section 3 de-

scribes unitary matrices represented by MZIs. Section 4 provides

background knowledge on learning a complex-valued linear unit.

Section 5 explains our learning method in detail. Section 6 shows

our experimental settings and demonstrates the results. The final

section provides our conclusion and future work.

2 RELATED WORK

This section reviews two topics regarding how to determine

parameters of programmable MZIs in a unitary matrix.

2.1 Constructing Linear Units By Using MZIs

A method in [7] constructs a linear unit with a weight ma-

trix implemented in programmable MZIs. What is learned with

the method is neither a unitary matrix nor parameters of pro-

grammable MZIs but a weight matrix itself. It first obtains

optimized weight matrix W by learning a weight matrix with

a conventional algorithm (e.g., [17]). W is decomposed with

singular value decomposition (SVD) as W = UΣV †, where U
denotes a unitary matrix, V † denotes the conjugate transpose of

unitary matrix V , and Σ denotes a rectangular diagonal matrix.

The unitary matrices U and V † are implemented in programmable

MZIs by a triangular-structure implementation method [18], [19].

The diagonal matrix Σ can be implemented in optical attenuators

and phase shifters. Instead of the triangular-structure implementa-

tion method, we can employ a rectangular-structure method [11],

[20]. Although this scheme can implement any unitary matrix

in MZIs, it can not generate a specific class of unitary matrices

by fewer MZIs. This is a problem when designing a higher-

performance ONN using limited physical resources.

2.2 Learning Methods For Unitary Matrices

Neural networks with unitary matrices as their weight matrices

have been studied to alleviate a problem of vanishing or exploding

gradients in weight optimization [22], [25], [28]. Table 1 summa-

rizes learning methods for unitary matrices. There are two types

of constraints for generating a unitary matrix, optimization and

structural constraints. A generated unitary matrix has a distinct

representation capacity from a fixed specified class to a full-

capacity unitary representation.

In the methods based on optimization constraints, a convenient

one is to add the constraint to a loss function as a regularizer [21].

A more strict method is to optimize a weight matrix along Stiefel

manifold whose tangent spaces are endowed with a Riemannian

metric, using geodesic gradient descent [22], [26], [27]. These

methods can generate a full-capacity unitary matrix. By contrast,

the methods based on structural constraints generate a unitary

matrix expressed by a product of structured unitary matrices such

as Givens rotation [12], [24], Householder reflection [25], [28],

and skew-Hermitian matrices [23]. Depending on the constituent

structured unitary matrices and their parameterization, the gener-

ated matrix has unique representation capacity. Unitary matrices

by the methods [25], [12] vary their capacity from a specified-

class to full unitary while those [24], [28] have fixed and restricted

capacity.

From the viewpoint of optical-circuit implementations, the

optimization-constraint approach has a serious problem that it is

difficult to obtain an exact unitary matrix. The structure-constraint

approach has an advantage of being able to construct an exact

unitary matrix. In particular, the method [12], which is suitable to

the MZI implementation of a unitary matrix, can generate specific

classes of unitary matrices using fewer parameters in structured

matrices. However, this method needs a lot of computational time

for learning the MZI parameters.

Thus the previous methods have some problems to realize lin-

ear units in ONNs with unitary matrices implemented in the MZIs.

Our proposed learning method in Table 1 solves the problem that

the method in [12] has and furthermore improves versatility of

representation matrices of the MZIs.

3 UNITARY MATRICES REPRESENTED BY MZIS

We show that an MZI is represented by various unitary matrices

depending on its structure and describe that any n×n unitary

matrix is realized by a product of MZI-representation matrices

and a diagonal unitary matrix.

3.1 Representation Matrix of MZI

We first define a unitary matrix. Let a(n) denote an element of the

n-dimensional unitary group U(n) and A(n) denote the represen-

tation matrix of a(n). Then n×n unitary matrix A(n) satisfies

the unitary constraints of A(n)A
†
(n) = I and

∣

∣detA(n)

∣

∣ = 1,

where I denote the n×n identity matrix. When n=2, any 2×2
unitary matrix A(2) has four independent real-number parameters

corresponding to the degree of freedom of the unitary group U(2).

An MZI is a two-port optical circuit in Fig. 1(a) and lin-

early transforms complex-valued input vector (x1, x2)
T to output

vector (y1, y2)
T by a variable transformation matrix with two

parameters of φ and θ, where (x1, x2)
T denotes the transpose

of (x1, x2), i.e., the input vector is represented as the column
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Fig. 1. Symbol of (a) MZI and structure of (b) (PSDC)2 . x1, x2 ∈C and
y1, y2 ∈ C denote input and output complex values and φ and θ are
real-valued parameters.

vector. The MZI consists of two programmable phase shifters

(PS) and two directional couplers (DC) with a fixed 0.5:0.5 power

split ratio. We adopt a symbol for an MZI shown in Fig. 1(a)

and illustrate a typical structure for the MZI, which is the serial

connection of the PS and the DC, i.e., (PSDC)(PSDC) or (PSDC)2

in Fig. 1(b). Representation matrices of the programmable PS and

the fixed DC, M[PS(φ)] and M[DC], are expressed as

M[PS(φ)] =

(

eiφ 0

0 1

)

, M[DC] =
1√
2

(

1 i

i 1

)

, (1)

where 0 ≤ φ ≤ 2π and i2 = −1. Since M[PS(φ)] and M[DC]

satisfy the unitary constraints, a product of the PS- and the DC-

representation matrices becomes a unitary matrix.

An actual transformation matrix depends on the connection of

PS’s and DC’s. For instance, Fang’s matrix (RF ) [10] correspond-

ing to the structure in Fig. 1(b) is expressed by

RF = M[DC] M[PS(θ)]M[DC] M[PS(φ)]

= iei
θ
2

(

eiφ sin θ
2 cos θ

2

eiφ cos θ
2 − sin θ

2

)

=
1

2

(

eiφβ iα

ieiφα −β

)

,

α = eiθ + 1, β = eiθ − 1 . (2)

Pai’s matrix (RP ) [11] representing (DCPS)(DCPS) is the trans-

pose matrix of RF as

RP = M[PS(θ)]M[DC] M[PS(φ)] M[DC] = RT
F . (3)

Besides, a matrix (RM ) for (DCPS)(PSDC) is expressed by

RM = M[DC] M[PS(θ)]M[PS(φ)]M[DC]

=
1

2

(

eiφ−eiθ i(eiφ+eiθ)

i(eiφ+eiθ) −(eiφ−eiθ)

)

(4)

An MZI with two parameters is represented with three distinct

matrices of RF , RP , and RM if each of the two phases φ and

θ is regarded as relative phase and its initial phase difference is

ignored. Thus there are various MZI-representation matrices.

When selecting one of the three MZI-representation matrices,

e.g., RF , we can realize any 2×2 unitary matrix by Clements’

method [20] as

A(2) = D ·RF , D =

(

eiδ0 0

0 eiδ1

)

, (5)

where 0≤δ0, δ1≤2π. A(2) with four parameters is expressed by

a product of a diagonal unitary matrix with two parameters and an

MZI-representation matrix with two parameters.

3.2 Product of MZI-Representation Matrices

Using the 2×2 MZI-representaion matrix, we consider an n×n
unitary matrix corresponding to an n-port optical circuit based on

PSfrag replacements

x1
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y3
y4
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Fig. 2. Rectangular structure consisting of a product of block-diagonal
matrices (SA1, SB1, SA2, SB2) and one diagonal unitary matrix (D) that
realizes any 4×4 unitary matrix.

MZIs. Let us define n×n unitary matrix T(p,q:n) represented by a

single MZI as

T(p,q:n) :=





























1 0 · · · · · · 0 0

0 1 0

... wpp wpq

...

... wqp wqq

...

... 1 0

0 0 · · · · · · 0 1





























, (6)

where p < q ≤ n ∈ Z and wpq ∈ C denotes the pth-row and

qth-column element. The others, wpp, wqp, and wqq , denote the

elements according to the same rule. The elements of wpp, wpq ,

wqp, and wqq correspond to w11, w12, w21, and w22, of a 2×2
MZI-representation matrix, respectively. Then n×n matrix T(p,q:n)

has two independent real-valued parameters such as φ and θ. For

instance, when RF in Eq. (2) is used, wpp=eiφβ/2, wpq= iα/2,

wqp= ieiφα/2, wqq=−β/2.

Any n× n unitary matrix is decomposed to n(n − 1)/2
T(p,q:n)’s and a single n×n diagonal unitary matrix D with n
parameters by Clements’ method [20]. The method sequentially

determines two parameters of each T(p,q:n) and n parameters of

the D by the procedure similar to Gaussian elimination. By chang-

ing the order of commutative matrices in the obtained T(p,q:n)’s,

the method generates a product of unitary matrices S with a

regular rectangular structure. An example of the commutative

matrices T(p,q:n)’s is shown as follows. 4× 4 unitary matrix

S((1,2),(3,4):4)=T(1,2:4)T(3,4:4)=T(3,4:4)T(1,2:4).

Figure 2 shows a diagram of a linear unit with the rectangular

structure generated by Clements’ method, which realizes any 4×4
unitary matrix. The foregoing product S((1,2),(3,4):4) is SA1 and

S(2,3):4 = T(2,3:4) is SB1. Given RF in Eq. (2) as the MZI-

representation matrix, SA1 =S((1,2),(3,4):4) and SB1 =S((2,3):4)

are expressed by

SA1 =
1

2













eiφ1β1 iα1 0 0

ieiφ1α1 −β1 0 0

0 0 eiφ2β2 iα2

0 0 ieiφ2α2 −β2













, (7)

SB1 =
1

2











2 0 0 0

0 eiφ3β3 iα3 0

0 ieiφ3α3 −β3 0

0 0 0 2











. (8)

In the rectangular structure for realizing an n×n unitary matrix,

SA(L) and SB(L), which we term A-type and B-type fine layers,

alternately align. SA(L) and SB(L) have ⌊n/2⌋ and ⌊(n− 1)/2⌋
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Fig. 3. Diagram representing the relationship between inputs and out-
puts for (a) forward and (b) backward process in a generic linear unit.

MZIs. Regarding L, L = ⌈n/2⌉ for SA(L) and L = ⌊n/2⌋ for

SB(L), n≥ 3, i.e., the total number of fine layers is n for n≥ 3
and 1 for n=2.

In addition to the structural regularity, the rectangular structure

has an advantage that we can vary matrix representation capacity

with the number of fine layers from a specific class to a full-

capacity unitary matrix. This characteristic allows us to control

linear-unit performance by the number of optimized parameters,

which corresponds to the number of MZIs in physical resources.

For this reason, we select a unitary matrix with the rectangular

structure for our proposed learning method.

4 LEARNING COMPLEX-VALUED LINEAR UNITS

We begin by a generic real-valued linear unit to review learning

of linear units based on the backpropagation algorithm with

gradient descent and automatic differentiation (AD). Then we

extend the real-valued AD to complex-valued one using Wirtinger

derivatives.

4.1 Learning Linear Units and Auto-Differentiation

Automatic differentiation (AD) is equipped with most of machine

learning platforms and utilized for training neural networks. It

is based on the principle that all numerical computations are

ultimately compositions of a finite set of elementary operations

for which the derivatives are known [13]. A chain rule combines

the derivatives of the constituent operations and provides the

derivatives of the overall composition.

As an example for understanding the backpropagation and the

AD, we consider a simple real-valued linear unit consisting of

two nodes in Fig. 3. Assume that a neural network containing this

linear unit performs a classification task and its result is evaluated

by loss function L. Let W be a 2×2 real-valued matrix whose

element wjh ∈R, j, h=1, 2, and column vector x= (x1, x2)
T ,

x1, x2 ∈ R, where (x1, x2)
T denote the transpose of (x1, x2).

The forward process in Fig. 3(a) is expressed by
(

y1

y2

)

=

(

w11 w12

w21 w22

)(

x1

x2

)

. (9)

In training of the linear unit, weight wjh is updated by

wjh ← wjh − η∇L , (10)

where η denotes the learning rate and ∇L = ∂L/∂wjh in this

case. The backward process in Fig. 3(b) is expressed by
(

∂L/∂x1

∂L/∂x2

)

= WT

(

∂L/∂y1
∂L/∂y2

)

, (11)

∂L
∂wjh

= xh

∂L
∂yj

. (12)

Note that transformation matrices of the forward and the backward

process are the transpose of each other. Eqs. (11) and (12) are

derived using a chain rule as follows.

∂L
∂xh

=
2
∑

j=1

∂L
∂yj

∂yj
∂xh

=
2
∑

j=1

wjh

∂L
∂yj

, (13)

∂L
∂wjh

=
∂L
∂yj

∂yj
∂wjh

= xh

∂L
∂yj

. (14)

4.2 Complex-Valued Derivative

In the case of a classification task, loss function L is a real-valued

function even in a complex-valued neural network. We can extend

the real-valued AD to complex-valued one using the following

Wirtinger derivatives.

Definition 1 (Wirtinger derivatives [16]). Let f be a real-valued

non-analytic function of z∈C, e.g., f : C→R. Let z=Re(z)+
i Im(z) and z∗=Re(z)−i Im(z), where i2=−1 and Re(z) and

Im(z) are functions that return the real and the imaginary part

of z, then Wirtinger derivatives of f with respect to z and z∗ are

defined as

∂f

∂z
=

1

2

(

∂f

∂Re(z)
− i

∂f

∂ Im(z)

)

(15)

∂f

∂z∗
=

1

2

(

∂f

∂Re(z)
+ i

∂f

∂ Im(z)

)

, (16)

where z and z∗ are regarded as independent variables [29].

Note that Eq. (17) holds from Eqs. (15) and (16).
(

∂f

∂z

)∗

=
∂f

∂z∗
. (17)

Suppose that wjh, xh ∈ C in Eq. (9). Using the gradient

descent, weight wjh is updated as

wjh ← wjh − η′∇L , (18)

where η′ denotes a tentative learning rate. The gradient of real-

valued loss function L defined on complex plane z = Re(z)+
i Im(z) is expressed by

∇L =
∂L

∂ Re(wjh)
+ i

∂L
∂ Im(wjh)

= 2 ·
(

∂L
∂w∗

jh

)

. (19)

Then the weight wjh is updated as

wjh ← wjh − η
∂L
∂w∗

jh

. (20)

The backward process is expressed by
(

∂L/∂x∗

1

∂L/∂x∗

2

)

= W †

(

∂L/∂y∗

1

∂L/∂y∗

2

)

, (21)

∂L
∂w∗

jh

= x∗
h

∂L
∂y∗j

, (22)

where W † denotes the conjugate transpose of W . Thus the

complex-valued derivatives are derived by using the chain rule

and Wirtinger derivatives defined by Definition 1.

5 PROPOSED LEARNING METHOD

We propose an acceleration method for learning an fine-layered

linear unit where a weight matrix is represented by using unitary
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Fig. 4. Diagram representing the relationship between inputs and out-
puts for (a) forward and (b) backward process in PSDC module.

matrices based on two basic units of the PSDC and the DCPS. We

first derive customized derivatives utilized in the backward process

with automatic differentiation (AD) by using the chain rule and

Wirtinger derivatives [29], [30], [31]. Next, we show a function

module implemented in C++ which our customized derivatives

are incorporated in.

5.1 Customized Derivatives

An MZI consists of a programmable PS and a DC with 0.5:0.5

power split ratio, two of each in our settings. Then there are three

distinct structures of (PSDC)2, (DCPS)2, and (DCPS)(PSDC) by

preventing the DC-DC sequence described in Section 3.1. These

matrices are represented by products of two basic matrices of

the PSDC and the DCPS. To deal with linear units containing

the MZIs with various representations, we prepare customized

functions using the two basic matrices for the forward and the

backward process in the training, instead of directly using the

MZI-representation matrices.

Figures 4(a) and (b) show diagrams representing the relation-

ship between the inputs and the outputs in the forward and the

backward process in the PSDC whose structure is the same as

the part of PS1 and DC1 in Fig. 1(b). In the forward process,

phase φ is given as an optimized parameter of the programmable

PS besides input vector (x1, x2)
T . In the backward process,

(∂L/∂y∗1 , ∂L/∂y∗2)T is given and (∂L/∂x∗
1, ∂L/∂x∗

2)
T is

passed to the next layer. For updating φ as φ← φ−ηφ(∂L/∂φ),
derivative (∂L/∂φ) is calculated, where ηφ denotes the learning

rate of φ.

Proposition 1. In the forward process in the PSDC, the linear

function of the input (x1, x2)
T ∈C2 is expressed by

(

y1

y2

)

=
1√
2

(

eiφ i

ieiφ 1

)(

x1

x2

)

. (23)

When Eq. (23) holds, in the backward process, the input-output

relationship and the derivative (∂L/∂φ) are expressed by
(

∂L/∂x∗

1

∂L/∂x∗

2

)

=
1√
2

(

e−iφ −ie−iφ

−i 1

)(

∂L/∂y∗

1

∂L/∂y∗

2

)

, (24)

∂L
∂φ

= 2 · Im
(

x∗
1

∂L
∂x∗

1

)

. (25)

Note that the transformation matrix in the backward process

is the conjugate transpose of that in the forward process and the

derivative (∂L/∂φ) is expressed by only the information passing

through the interface between the phase shifter and the other layer.

Proof. Equation (24) holds based on Eq. (21). By using the chain

rule and Wirtinger derivatives, (∂L/∂φ) is expressed as

∂L
∂φ

=
2
∑

j=1

(

∂L
∂yj

∂yj
∂φ

+
∂L
∂y∗j

∂y∗j
∂φ

)

=
i√
2

{

x1e
iφ

(

∂L
∂y1

+i
∂L
∂y2

)

−x∗
1e

−iφ

(

∂L
∂y∗1
−i ∂L

∂y∗2

)}

= i

(

x1
∂L
∂x1
−x∗

1

∂L
∂x∗

1

)

= i

{(

x∗
1

∂L
∂x∗

1

)∗

−x∗
1

∂L
∂x∗

1

}

= 2 · Im
(

x∗
1

∂L
∂x∗

1

)

. (26)

The penultimate equality is derived by using (∂L/∂x1)
∗ =

(∂L/∂x∗
1) in Eq. (17) of Wirtinger derivatives.

Proposition 2. In the forward process in the DCPS, the linear

function of the input (x1, x2)
T ∈C2 is expressed by

(

y1

y2

)

=
1√
2

(

eiφ ieiφ

i 1

)(

x1

x2

)

. (27)

When Eq. (27) holds, in the backward process, the input-output

relationship and the derivative (∂L/∂φ) are expressed by
(

∂L/∂x∗

1

∂L/∂x∗

2

)

=
1√
2

(

e−iφ −i
−ie−iφ 1

)(

∂L/∂y∗

1

∂L/∂y∗

2

)

, (28)

∂L
∂φ

= 2 · Im
(

y∗1
∂L
∂y∗1

)

. (29)

The transformation matrices in Eqs. (27) and (28) are the

transpose of those in Eqs. (23) and (24). Like the PSDC, (∂L/∂φ)
is expressed by only the foregoing information.

Proof. Equation (28) holds based on Eq. (21). By using the chain

rule and Wirtinger derivatives, (∂L/∂φ) is expressed as

∂L
∂φ

=
∂L
∂y1

∂y1
∂φ

+
∂L
∂y∗1

∂y∗1
∂φ

=
i√
2

{

(

eiφx1+ieiφx2

) ∂L
∂y1
−
(

e−iφx∗
1−ie−iφx2

) ∂L
∂y∗1

}

= i

(

y1
∂L
∂y1
− y∗1

∂L
∂y∗1

)

= 2 · Im
(

y∗1
∂L
∂y∗1

)

. (30)

By using the customized derivatives (CD) of Eqs. (25) and

(29), the automatic differentiation does not need to decompose

the functions to registered elementary functions such as an ex-

ponential function used in Eqs. (24) and (28). This leads to the

acceleration of learning of the linear units with the PSDC and the

DCPS in Section 5.2.

5.2 Function Module

We design a function module that accelerates learning of a linear

unit with basic units of the PSDC and the DCPS. Such a linear unit

with the PSDC-based fine-layered structure that realizes any 4×4
unitary matrix is shown in Fig. 5, which corresponds to the MZI-

based structure in Fig. 2. Input vector x is linearly transformed

to output vector y by the sequence of fine layers with unitary

matrices, SA11, SA12, SB11, SB12, · · · , and D. The fine layers

are regularly connected with each other, that is, the outputs in

the jth fine layer are directly connected to the corresponding
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Fig. 5. PSDC-based fine-layered structure with the rectangular structure
that realizes any 4×4 unitary matrix.

Algorithm 1: Basic-unit process in linear unit

Input: hin ∈ C
n, (L: Length of S(f)–list)

S(f)–list of [S
(f)
A11, S

(f)
A12, S

(f)
B11, S

(f)
B12, · · · ]

// S
(f)
⋆ : Cn

→ C
n
, S

(f)
⋆ (h)=S⋆ h, given h.

// ⋆=(A11, A12, B11, B12, · · · )

Output: hout ∈ C
n×L // hout: Collection of hout(j)

1 for S
(f)
⋆ in S(f)–list do in order: j=1, · · · , L

2 hout(j) ← S
(f)
⋆ (hin)

3 hin ← hout(j)

4 return hout

the inputs in the (j +1)th fine layer, where 1 ≤ j ≤ 8. For

the acceleration, we exploit the regularity in addition to the

customized derivatives in Section 5.1.

Algorithm 1 shows an overview of the basic-unit process in the

linear unit with the fine-layered structure. The linear unit receives

n-dimensional complex-valued vector hin ∈ C
n and returns the

collection of hout ∈ C
n×L, where L denotes the number of

fine layers consisting of the basic units. In each fine layer, hin

is transformed to hout(j) by unitary matrix S⋆ ∈ C
n×n, where

⋆=A11, A12, B11, B12, · · · and j=1, 2, 3, 4, · · · at line 2 and

hout(j) is copied to hin at line 3.

In the conventional AD implemented in the Python-based

machine learning frameworks, S
(f)
⋆ is defined only for the forward

process at line 2 in Algorithm 1. Then the AD automatically

calculates values required in the backward process. Note that

lines 2 and 3 are replaced with hin ← S
(f)
⋆ (hin) in Python

implementation. Instead of the AD in the backward process, we

prepared functions using the customized derivatives (CD), which

were implemented as two distinct functions in Python and C++.

We call a module with the Python-implementation functions for

the forward and the backward process CDpy and a module with

the C++-implementation functions for both the processes CDcpp.

In a function module which our proposed method is incor-

porated in, we utilize the C++-implementation functions for the

forward and the backward process like CDcpp. Furthermore,

leveraging the regular connections in the fine-layered structure, we

rewire the pointer of output hout(j) to that of input hin at line 3

in Algorithm 1 to avoid copying the output to the input. Since this

pointer rewiring (PR) technique is exploited in the forward and the

backward process, the function module allows us to collectively

calculate the values required in both the processes through all

the fine layers at high speed. The effect on speed performance is

revealed in Section 6.2.

Thus our function module has the versatility on the MZI rep-

resentation and accelerates the forward and the backward process

for learning a linear unit with the fine-layered architecture based

on the basic units of the PSDC and the DCPS.

Activation
function

Softmax
function

Cross entropy
loss function

Real-number
generator

modReLU Power
Loss

Target

hidden
size

Hidden 
unit

Output
unit

Input 
unit

hidden size

1

Complex Real

Input
PSfrag replacementsx(t) h(t)y(t)

z(t)

Fig. 6. Elman-type recurrent neural network for pixel-by-pixel MNIST
task where the transformation matrix in the hidden unit is a product of
unitary matrices and diagonal unitary matrix.

6 EXPERIMENTS

We experimentally demonstrate that our proposed method worked

much faster than the conventional AD corresponding to the

previous method in [12] without sacrificing accuracy. We show

our settings including a neural network (NN), an executed task

for evaluating performance of a PSDC-based NN, and parameter

values for learning and a computer system where learning of the

NN was executed, followed by the experimental results.

6.1 Settings

We employed an Elman-type recurrent neural network (RNN)

model shown in Fig. 6. The model was implemented in PyTorch

1.7.0 with C++ extension and Python 3.8.5. With the RNN model,

we executed a classification task using the MNIST handwritten

digit database [32]. The task was pixel-by-pixel MNIST task

widely used for evaluating performance of RNNs that contain

a hidden unit with a unitary matrix [12], [22], [23], [28], [33].

The MNIST database consists of 60, 000 training and 10, 000
test images. Each image is 256-level gray-scale 28× 28 pixels

representing a digit from 0 to 9. The pixels are flattened into

a sequence of 784 pixels. Given the pixel sequence of a single

image, the RNN sequentially receives one pixel and predicts a

digit of the image just after the last pixel is processed.

The RNN in Fig. 6 was composed of two blocks: One was

a complex-number processing block and the other was a real-

number processing block. The complex-number processing block

contained the input, the hidden, and the output unit and the

activation function. The hidden unit consisted of a product of

unitary matrices with the rectangular structure and a diagonal

unitary matrix as shown in Fig. 5. The complex-number processing

block processed an input-pixel value x(t) ∈ C at time t, which

was generated by adding a zero imaginary part to a normalized

real pixel value, as follows.

y(t) = (Win · x(t) + bin) +Wh · h(t−1) , (31)

h(t) = σ(y(t)) , (32)

z(t) = Wout · h(t) + bout , (33)

where Win∈CH×1, Wh∈CH×H , and Wout∈CO×H denote the

weight matrices of the input, the hidden, and the output unit. H
and O denote the hidden size and the output size (the number of

classes). bin ∈CH and bout ∈C
O denote the biases of the input

and the output unit. σ(y(t)) means that the following activation

function called a modReLU function was applied to each element

of y(t)∈CH , i.e., yj∈C, j=1, 2, · · · , H , where t is omitted for

simplicity.

σ(yj) =

{

yj

|yj|
(|yj |+ bj) if |yj |+ bj ≥ 0

0 otherwise
, (34)
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Fig. 7. (a) Training accuracy along epoch when our proposed method
was applied to the RNN where the hidden unit had four fine layers and
varied its size from 32 to 1024 (H32 to H1024). (b) Test accuracy of
our proposed method and the conventional AD along hidden size in log-
linear scale just after 20 epochs. The hidden size varied from 32 to 1024

under the condition of the number of fine layers was fixed at four. Circles
C1 and C2 show the two test accuracies at the hidden size of 128 related
to Fig. 8 and at the same setting as the result in [12], respectively.

where bj∈R is an optimized bias parameter [28], [23]. We varied

a hidden size and matrix representation capacity (the number of

fine layers). The hidden size (H) and capacity (L) were varied

from 32 to 1024 and from 4 to 20. The complex-valued signal

z(t) passing the output unit was transformed to a real number

in the real-number generator whose function was power function

P : CO→R
O expressed by P (z(t))=z(t)⊙z(t)∗ , which is the

Hadamard product of z(t) and z(t)∗. The real-number processing

block comprised the conventional units used for a classification

task. As the loss function, a cross-entropy loss function was used.

We trained the RNN model with a mini-batch whose size was

100. Then we adopted data tensors with a feature-first structure,

e.g., [hidden size, batch size] for the data tensor used in the hidden

unit. The feature-first tensor structure was more efficient than a

batch-first tensor structure when a small batch size was used for

training the RNN model in a CPU-based computer system. For

parameter optimization, we used the RMSProp optimizer with

distinct learning rates (η) for the units: η = 10−4 for the input

unit, η=10−2 for the output unit, η=10−4 for the hidden unit,

and η=10−5 for the activation function. The initial hidden state

was fixed at zero and all the initial phase-shifter angles in the

weight unitary matrix in the hidden unit were randomly sampled

from [−π,+π].
The pixel-by-pixel MNIST task on the foregoing model was

executed on a computer system with Ubuntu 20.04 LTS, which

was equipped with a single core-i7-10700K 3.8-GHz CPU with

three-level caches and a 64-GB main memory, by multithreading

with eight threads within the memory capacity.

6.2 Results

We confirmed that the RNN model was stably and successfully

trained by our proposed method. Figure 7(a) shows the training

accuracy along epoch when the RNN models, which had different

hidden sizes from 32 to 1024 and the fixed number of fine layers

of four, were trained for the pixel-by-pixel MNIST task by our

method. Note that the four fine-layer structure corresponds to

(SA11, SA12, SB11, SB12) in Fig. 5 equivalent to (SA1, SB1) in

Fig. 2 and the four fine layers are fewer than those necessary for

realizing any unitary matrix. Figure 7(b) shows the test accuracy

just after 20 epochs along hidden size, which is displayed in

log-linear scale. The test accuracies by our method and the

conventional AD were almost the same values and increased with

the hidden size in this range. Circle C2 denotes the test accuracies

PSfrag replacements
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Fig. 8. Training accuracies by our proposed method (Proposed), CDcpp,
CDpy, and the conventional AD (AD) along time. The hidden size and
the number of fine layers were fixed at 128 (H128) and four (L4).
The marks and the circle in each curve were put every 0.1 epoch
and 1 epoch, respectively and work as indicators for measuring time.
The curves reached at almost the identical test accuracy. In particular,
Proposed and AD correspond to circle C1 in Fig. 7(b) after 20 epochs.

at the same setting as that used in [12]. Then the test-accuracy

curve by the AD (PyTorch) can be regarded as that by the AD

(TensorFlow 1.x) in [12].

We demonstrate that our proposed method achieved much

faster learning than the conventional AD that can be regarded

as the previous method in [12], keeping the same accuracy.

Furthermore, we present the analysis results of our method in

terms of contributions of the constituent techniques to the speed

performance.

Our two main acceleration techniques are the customized

derivatives (CD) in Section 5.1 and the collective calculation with

the output-input pointer rewiring (PR) in the function module in

Section 5.2. To analyze the effects of the CD and the PR on the

speed performance, we used four methods of the conventional

AD (AD), CDpy with the PyTorch-implementation CD for the

backward process, CDcpp with the CD implemented in C++, and

our proposed method (Proposed) using both the CD and the PR

implemented in C++ in Section 5.2. Both the two method of CDpy

and CDcpp did not leverage the pointer rewiring (PR) technique.

Figure 8 shows the training accuracies of the RNN model by

the four methods of AD, CDpy, CDcpp, and Proposed, along time

until 3, 300 sec. The RNN model had the hidden unit whose size

and number of fine layers were fixed at 128 (H128) and four

(L4). This setting corresponds to circle C1 in Fig. 7(b). The four

curves were critically different in time scale although they reached

at almost the identical test accuracy after 20 epochs. At around

3, 000 sec, the accuracy by our method was over 0.92 while

that by the AD was still 0.83. The marks in each curve are put

every 0.1 epoch and the circles at one epoch work as indicators

measuring the time per epoch. Thus our method significantly saved

the time required for training the RNN models. This is useful to

learn fine-layered neural networks using distinct models and many

parameters under limited computing resources.

For the speed-performance analysis, we prepared the RNN

models where each of their hidden units had the different number

of fine layers from 4 to 20 and the fixed hidden size of 128.

Figure 9 shows the average elapsed time per epoch (sec) of the

four methods, AD, CDpy, CDcpp, and Proposed, along the number

of fine layers in linear-log scale when the RNN models were

trained for the pixel-by-pixel MNIST task in 20 epochs. When

the number of fine layers was four, the test accuracies of AD

and Proposed correspond to those at circle C1 in Fig. 7(b) and
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and 20, respectively.

the learning curves of the four methods are illustrated in Fig. 8.

In terms of speed performance, our proposed method worked 19
and 53 times faster than AD at the number of fine layers of 4
and 20. CDpy and CDcpp performed about twice and 4 times

the acceleration from AD. The remaining acceleration effect came

from the pointer-rewiring (PR) technique implemented in C++,

which collectively calculates the values used in the forward and

the backward process. The function module is a simple yet very

effective technique. Thus our proposed method accelerated the

learning of the RNN model whose hidden unit was constructed

with the fine-layered liner unit.

7 CONCLUSION

We proposed an acceleration method for learning parameters of

Mach-Zehnder interferometers (MZIs) in a fine-layered linear unit

in an optical neural network (ONN). Our proposed method em-

ployed a function module in C++ to collectively calculate values

of customized complex-valued derivatives for a product of unitary

matrices representing an MZI in the linear unit. Consequently, our

method reduces the time required for learning the parameters.

We confirmed that it worked almost 20 times faster than the

conventional automatic differentiation (AD) when a pixel-by-pixel

MNIST task was performed in a complex-valued recurrent neural

network with an MZI-based hidden unit. Since our method is

compatible with the current AD, we can easily use the method

in machine learning platforms.

The two directions remain as future work. One is to implement

our proposed method in codes available in the state-of-the-art

computer systems such as those equipped with multiple GPUs.

The other is to compare ours with the other methods using linear

units with unitary matrices as their weights like those in [23],

[25] beyond the usage for ONNs and explore how to apply our

individual techniques to them.
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