
The SpeakIn System for VoxCeleb Speaker Recognition Challange 2021

Miao Zhao*, Yufeng Ma*, Min Liu, Minqiang Xu†

SpeakIn Technologies Co. Ltd.
{zhaomiao, mayufeng, liumin, xuminqiang}@speakin.ai

Abstract
This report describes our submission to the track 1 and track 2
of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC
2021). Both track 1 and track 2 share the same speaker verifica-
tion system, which only uses VoxCeleb2-dev as our training set.
This report explores several parts, including data augmentation,
network structures, domain-based large margin fine-tuning, and
back-end refinement. Our system is a fusion of 9 models and
achieves first place in these two tracks of VoxSRC 2021. The
minDCF of our submission is 0.1034, and the corresponding
EER is 1.8460%.
Index Terms: speaker verification, speaker recognition

1. System Description
For both Track 1 and Track 2, we adopt the same system settings
without any extra data other than Voxceleb2-dev [1]. This part
will focus on the method we implemented in this challenge.

1.1. Datasets and Data Augmentation

1.1.1. Training Data

The VoxCeleb2-dev dataset contains 1,092,009 utterances and
5,994 speakers in total. Data augmentation is also quite impor-
tant in training speaker verification models. We here adopted a
3-fold speed augmentation [2, 3] at first to generate extra twice
speakers. Each speech segment in this dataset was perturbed
by 0.9 or 1.1 factor based on the SoX speed function. Then
we obtained 3,276,027 utterances and 17,982 speakers. The
traditional Kaldi-based [4, 5] method (offline augmentation) is
widely adopted in this field. Recent researches [6, 7] mentioned
a new method that augments data on the fly (online augmenta-
tion). Our system contains both offline and online trained mod-
els. These two different data augmentation methods are applied
separately for different training modes:

• Offline training mode: In this training method, we used
RIRs [8] and MUSAN [9] to create extra four copies of
the training utterances and the data augmentation process
was based on the Kaldi VoxCeleb recipe1. After this aug-
mentation, 16,380,135 utterances from 17,982 speakers
were generated to extract acoustic features.

• Online training mode: Instead of concatenating differ-
ent types of augmentation [7], we adopted a chain-like
augment. It means that we predefine an effect chain com-
posed of several augments, and every augment should
have its probability to be activated. The effect chain is
as:

– gain augment with a probability of 0.2

* These authors share equal contribution to this work.
† Corresponding author.
1 https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2

– white noise augment with a probability of 0.2
– RIR reverberation and noise addition augment

with a probability of 0.6
– time stretch augment with a probability of 0.2

It is worth mentioning that the offline 3-fold speed aug-
mentation is also adopted in online augmentation, which
means the number of classes is 17,982. The speed aug-
mentation will change the pitch of a speaker, while time-
stretching will not change the pitch. Both foreground
and background noises are added, and they are randomly
selected from MUSAN and RIRs noises.

1.1.2. Developing Set

To evaluate the performance of our models, we used 5 test sets
[1, 10] as our developing sets:

• VoxCeleb1-O: 37,720 trails are sampled from the Vox-
Celeb1 test dataset with only 40 speakers.

• VoxCeleb1-E: This is an extended version of
VoxCeleb1-O. This set contains 581,480 trials from
1251 speakers.

• VoxCeleb1-H: This set has 552,536 trials. It is harder
since each pair in this set shares the same nationality and
gender.

• VoxSRC20-dev: This is the validation set of
VoxSRC2020 and the trials contains out-of-domain data
provided by VoxCeleb cd. This set has 263,486 trials.

• VoxSRC21-val: This is the validation set of
VoxSRC2021 and has 60,000 trials. Trials in this
set contain more multi-lingual data.

1.1.3. Features

We extracted both 81-dimensional and 96-dimensional log Mel
filter bank energies based on Kaldi in offline training mode.
The window size is 25 ms, and the frameshift is 10 ms. 200
frames of features were extracted without extra voice activation
detection (VAD). The speech segments were sliced to 2 sec-
onds and augmented on the fly in the online training mode. 96-
dimensional log Mel filter bank energies were extracted based
on torchaudio. All features were cepstral mean normalized in
both our training modes.

1.2. Network Structures

1.2.1. Backbone

Convolutional Neural Networks [6, 11, 12] have become the
main-stream solution in speaker verification tasks. Our back-
bones include two types of state-of-the-art models:

• RepVGG [13] Recent researches proposed a new way
to construct ConvNets. The method is called the re-
parameterization technique. This method decouples the

ar
X

iv
:2

10
9.

01
98

9v
1

 [
cs

.S
D

]
 5

 S
ep

 2
02

1

Figure 1: Architecture of RepVGG block. Here (a) is the train-
ing time state. (b) demonstrates the process of conv-bn fusion.
(c) is the inference time state. ⊕ denotes element-wise addition.

training time and inference time architecture. RepVGG,
as one of the re-parameterized models, shows compet-
itive performance in the computer vision field. We, at
the first time, introduced this RepVGG architecture in
speaker verification. As Figure 1 shows, the RepVGG
block has a separate 3x3 and 1x1 convolutional layer
with batch normalization and an identity branch with
only a batch normalization layer during the training time.
Since convolution and batch normalization can fuse into
a convolution layer and both the 1x1 convolution layer
and the batch normalization layer can transform to a 3x3
convolution layer, all branches in this block are equal to
three 3x3 convolutions. All these 3x3 convolutions share
the same setting (kernel size, stride, groups, dilation, and
so on) so that they can fuse into only one 3x3 convolu-
tion by simply adding parameters filter-wisely. When
merged into one 3x3 convolution and a ReLU layer, this
block is as same as a VGG block during the inference
time. We select RepVGG-A2, RepVGG-B1, RepVGG-
B2g4, and RepVGG-B2 as our backbones. All models
adopt 64 base channels except RepVGG-A2 which uses
96 base channels.

• ResNet [14] As one of the most classical ConvNets,
ResNet has proved its power in speaker verifica-
tion. In our systems, both basic-block-based ResNet-34
and bottleneck-block-based ResNet (deeper structures:
ResNet-101 and ResNet-152) are adopted. All base
channels of these ResNets are 64.

1.2.2. Pooling Method

The pooling layer aims to aggregate the variable sequence to an
utterance level embedding. The vanilla idea to achieve this pur-
pose is by calculating the mean and standard derivation along
the time axis [15]. However, it could be limited by the fact that
the contributions from different frames could be unequal. An
attention mechanism [16] is introduced to calculate weighted
statistics of the outputs of the backbone. Furthermore, a multi-
head mechanism was introduced to increase the diversity of at-
tention, such as multi-head self-attentive (MHSA) pooling [17]
and self multi-head attention (MHA) pooling [18]. The main
difference between these two methods is the definition of the
heads in attention mechanism. Instead of attending to the whole
feature through different heads as we called queries, the lat-
ter split the features into several parts, and each head focuses
on its corresponding part. We proposed a multi-query multi-
head attention pooling mechanism (MQMHA) for the first time
by combining both the multi-head methods above. Since this
method can help us attend to different parts and gain more di-

Figure 2: Comparison between RepVGG and Basic Block.

versified information. The method can be described as below:
Suppose we have a backbone output O = [o1, o2, ..., oT],

ot ∈ Rd and each ot is spit into H parts with ot =
[o1t , o

2
t , ..., o

H
t], whereH is the number of head of attention. For

each head, it has Q trainable query vectors where µqh ∈ Rd/H .
Attention weight of wt,h,q is defined as:

wt,h,q =
exp((oht)

Tµqh)∑T
j=1 exp ((o

h
j)
Tµqh)

(1)

And the representation is expressed as:

mh,q =

T∑
i=1

(ohi)
Twt,h,q (2)

as the MQMHA combines both MHSA and MHA, in which
H = 1, Q > 1 and H > 1, Q = 1 are the cases of MHSA and
MHA respectively.

Finally, we concatenate all of the sub-representations to get
the utterance level embedding with Em = [m̂1, m̂2, ..., m̂H],
where m̂h = [m1

h,m
2
h, ...m

Q
h]. And an extra attentive standard

deviation Estd computed through the attention weights. This
standard deviation is concatenated with Em to enhance the per-
formance.

1.2.3. Loss Function

Recently, margin based softmax methods have been widely used
in speaker recognition works. To make a much better perfor-
mance, we strengthen the AM-Softmax [19, 20] and AAM-
Softmax [21] loss functions by two methods.

First, the subcenter method [22] was introduced to reduce
the influence of possible noisy samples. The formulation is
given by:

cos(θi,j) = max
1≤k≤K

(||xi|| · ||Wj,k||) (3)

where the max function means that the nearest center is selected
and it inhibits possible noisy samples interfering the dominant
class center.

Secondly, we proposed the Inter-TopK penalty to pay fur-
ther attention to the centers which obtain high similarities com-
paring samples that do not belong to them. Therefore, it adds
an extra penalty on these easily misclassified centers. Given
a batch with N examples and a number of classes of C, the
formulation with adding extra Inter-TopK penalty based on the
AM-Softmax is:

LAM′ =− 1

N

N∑
i=1

log
es·(cosθi,yi−m)

es·(cosθi,yi−m) +
C∑

j=1,j 6=yi
es·φ(θi,j)

(4)

Table 1: Ablation Study on Our Baseline System. + here denotes stacking our methods.

Methods
VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H VoxSRC20-dev VoxSRC21-val

EER(%) DCF0.01 EER(%) DCF0.01 EER(%) DCF0.01 EER(%) DCF0.05 EER(%) DCF0.05

ResNet-34-64 1.0660 0.0876 1.0440 0.0971 1.7660 0.1561 2.7580 0.1357 3.1300 0.1686
+ K-Subcenter 0.9756 0.0840 1.0270 0.0930 1.7020 0.1467 2.6450 0.1321 2.7850 0.1503
++ Inter-TopK 0.9730 0.0912 1.0170 0.0892 1.6860 0.1415 2.5760 0.1297 2.5800 0.1433
+++ MQMHA 0.9305 0.0738 0.9809 0.0879 1.6020 0.1373 2.5070 0.1246 2.5100 0.1403
++++ Fine-tuning 0.6654 0.0573 0.8243 0.0725 1.3532 0.1154 2.1584 0.1054 1.9933 0.1158
+++++ AS-Norm 0.5594 0.0480 0.7632 0.0624 1.2122 0.0971 1.9120 0.0935 1.8367 0.0996
++++++ QMF 0.5249 0.0498 0.7130 0.0627 1.1240 0.0923 1.8330 0.0867 1.6020 0.0906

where m is the original margin of AM-Softmax and s is the
scalar of magnitude. We use the φ(θi,j) to replace the cosθi,j
in the denominator:

φ(θi,j) =

cosθi,j +m′ j ∈ arg topK
1≤n≤C

(cosθi,n)

cosθi,j Others.
(5)

where m′ is an extra penalty which focuses on the closest K
centers to the example xi. And it is just the original AM-
Softmax case when m′ = 0. Similarity, the Inter-TopK penalty
could be also added for AAM-Softmax loss function by replac-
ing cosθi,j +m′ by cos(θi,j −m′).

1.3. Training Protocol

We used Pytorch [23] to conduct our experiments. All of our
models were trained through two stages.

In the first stage, the SGD optimizer with a momentum of
0.9 and weight decay of 1e-3 (4e-4 for online training) was
used. We used 8 GPUs with 1,024 mini-batch and an initial
learning rate of 0.08 to train all of our models. As described
in section 1.1.1, 200 frames of each sample in one batch were
adopted to avoid over-fitting and speed up training. We adopted
ReduceLROnPlateau scheduler with a frequency of validating
every 2,000 iterations, and the patience is 2. The minimum
learning rate is 1.0e-6, and the decay factor is 0.1. Furthermore,
the margin gradually increases from 0 to 0.2 [24].

In the large-margin-based fine-tuning stage [25], settings
are slightly different from the first stage. Firstly, we removed
the speed augmented part from the training set to avoid domain
mismatch. Only 5,994 classes were left. Secondly, we changed
the frame size from 200 to 600 and increased the margin expo-
nentially from 0.2 to 0.5. The AM-Softmax loss was replaced
by AAM-Softmax loss. The Inter-TopK penalty was removed
to make training stable. Finally, We adopted a smaller finetun-
ing learning rate of 8e-5 and a 256 batch size. The learning rate
scheduler is almost the same while the decay factor became 0.5.

1.4. Back-end

After completing the fine-tuning stage, 512-dimensional
speaker embeddings were extracted from the fully connected
(FC) layer, and then the length normalization was applied
before computing cosine similarity. Moreover, we utilized
speaker-wise adaptive score normalization (AS-Norm) [3] and
Quality Measure Functions (QMF) [11, 25] to calibrate the
scores, and these methods greatly enhanced the performance.

For AS-Norm, we selected the original VoxCeleb2 dev dataset
without any augmentation. After extracting embeddings, all
these embeddings were averaged speaker-wise, which resulted
in 5994 cohorts. Then scores would be calibrated by this
speaker-wise AS-Norm using top 400 imposter scores. For
QMF, we combined three qualities, speech duration computed
by Kaldi, imposter mean based on AS-Norm, and magnitude of
non-normalized embeddings. Like IDLAB’s way [11], we also
selected 30k trials from the original VoxCeleb2-dev as the train-
ing set of QMF. Then a Logistic Regression(LR) was trained to
serve as our QMF model.

Table 2: Sub-System Structures.

Index Backbone

Offine fbank 81

S1 ResNet-34-64
S2 ResNet-101-64
S3 ResNet-152-64
S4 RepVGG-a2-96
S5 RepVGG-b1-64
S6 RepVGG-b2g4-64
S7 RepVGG-b2-64

Offine fbank 96

S8 RepVGG-b2g4-64

Online fbank 96

S9 RepVGG-b2g4-64

1.5. Results

1.5.1. Baseline System Ablation Study

In this subsection, we show our ablation study on our baseline
system. The baseline system is a ResNet-34 backbone followed
by MHA pooling and AM-Softmax. The performance was
evaluated using the Equal Error Rate (EER) and the minimum
Decision Cost Function (DCF) calculated where CFA = 1,
CM = 1, and Ptarget = 0.01 or Ptarget = 0.05 for dif-
ferent trials. As Table 1 shows, our baseline system’s perfor-
mance improved significantly on various trials by stacking our
proposed methods gradually. For convenience, we took the per-
formance of VoxSRC21-val as our benchmark. First, we con-
ducted our ablation studies by changing normal AM-Softmax
(m = 0.2, s = 35) to 3-subcenter AM-Softmax. The EER

Table 3: Results on Developing Sets.

System Index
VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H VoxSRC20-dev VoxSRC21-val

EER(%) DCF0.01 EER(%) DCF0.01 EER(%) DCF0.01 EER(%) DCF0.05 EER(%) DCF0.05

S1 0.5249 0.0498 0.7130 0.0627 1.1240 0.0923 1.8330 0.0867 1.6020 0.0906
S2 0.5037 0.0356 0.6435 0.0514 0.9737 0.0783 1.5760 0.0753 1.3350 0.0685
S3 0.4613 0.0232 0.6342 0.0477 0.9932 0.0763 1.4770 0.0726 1.4550 0.0813
S4 0.5673 0.0309 0.6759 0.0550 1.0360 0.0830 1.5860 0.0797 1.4620 0.0776
S5 0.4401 0.0253 0.6518 0.0494 0.9914 0.0738 1.4960 0.0691 1.3610 0.0628
S6 0.4825 0.0374 0.6707 0.0508 1.0270 0.0783 1.5160 0.0725 1.4050 0.0730
S7 0.4825 0.0283 0.6511 0.0484 0.9965 0.0738 1.4910 0.0699 1.4180 0.0660
S8 0.5090 0.0340 0.6587 0.0489 0.9954 0.0707 1.4940 0.0699 1.4180 0.0698
S9 0.5673 0.0461 0.6961 0.0584 1.0910 0.0856 1.7040 0.0845 1.6420 0.0942

Fusion

S1∼S9 0.4189 0.0217 0.5826 0.0414 0.8868 0.0630 1.3400 0.0624 1.2710 0.0590

was improved from 3.13% to 2.785%, and the minDCF was
improved from 0.1686 to 0.1503. By adding the Inter-TopK
(m′top5 = 0.06) extra penalty, the EER was 2.58%, and the
minDCF was 0.1433. Using MQMHA (q = 4, h = 16) instead
of MHA, the EER further achieved 2.51%, and the minDCF
was 0.1403. The procedures above already boosted our baseline
system’s EER by relatively 19.8% and minDCF by relatively
16.78%. The domain-based large margin finetuning improved
our system performance from 2.51% EER to 1.9933% EER
drastically. The minDCF also improved from 0.1403 to 0.1158.
Applying the speaker-wise AS-Norm further achieved 1.8367%
EER and 0.0996 minDCF. The final QMF process got 1.60%
EER and 0.0906 minDCF. After doing AS-Norm and QMF,
our system’s EER improved 19.6% relatively, and minDCF im-
proved 21.76% relatively compared to the finetuned system. Af-
ter completing the ablation study, our baseline system improved
EER relatively 48.9% and minDCF relatively 46.26% in total.

For all our models, we followed the same procedure, and
the only variable is our backbone.

1.5.2. Sub-Systems and Fusion Performance

All our sub-systems were described in Table 2. A total of 9
different backbones were used to generate different represen-
tations. The offline trained systems used both 81-dimensional
and 96-dimensional acoustic features and online trained sys-
tems adopted 96-dimensional features only. Table 3 demon-
strates the result achieved by our sub-systems of various trials.
We found that a large model, such as RepVGG-B1, and ResNet-
101 seemed to yield a better result compared to smaller mod-
els like our baseline system. However, an even bigger model
like ResNet-152 and RepVGG-B2 could not bring a comparable
performance boost regarding the drastically increased parame-
ters. Also, it is worth mentioning that these even bigger models
showed a sign of over-fitting on the VoxCeleb2-dev dataset. As
the learning rate was smaller than 1e-4, the EER and minDCF
of these large systems degraded. However, the performance of
these systems remained SOTA even when we terminated the
training at an earlier stage. 96-dimensional Fbank features were
good complements of 81-dimensional Fbank features. The on-
line system set we used is not the optimal choice, as we are
still researching this new training paradigm. Though it shows a
competitive result, it cannot achieve the best result of our large

offline models.
Table 4 shows some of our submissions to the VoxSRC2021

and the final result of our fusion system. It is worth mentioning
that our RepVGG-B1 achieved a 0.1212 minDCF and 2.2410%
EER with only a single model while ResNet-152 achieved a
0.1195 minDCF and 2.16% EER. We tuned our fusion weights
of all these models based on the results of VoxCeleb1-H and
VoxSRC21-val. The final fusion resulted in a 0.1034 minDCF
and a 1.846% EER in the VoxSRC2021 challenge. The fusion
result improved 12.47% relatively in minDCF and 14.54% rel-
atively in EER compared to our ResNet-152 model.

Table 4: Our Submissions to VoxSRC21-test.

System Index EER(%) DCF0.05

S1 2.8890 0.1700
S2 - -
S3 2.1690 0.1195
S4 - -
S5 2.2410 0.1212
S6 - -
S7 - -
S8 - -
S9 - -

Fusion

S1∼S9 1.8460 0.1034

2. Conclusions
In this challenge, we first introduced a new backbone structure
(RepVGG) in speaker verification. We also proposed MQMHA,
Inter-TopK loss, and domain-based large margin fine-tuning
methods. All these methods above and the large backbones en-
sured our first place in track 1 and track 2 of VoxSRC 2021.
The final result of our system was 0.1034 minDCF and 1.846%
EER.

3. Acknowledgements
This work is supported by the SpeakIn Technologies Co. Ltd.

4. References
[1] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep

speaker recognition,” arXiv preprint arXiv:1806.05622, 2018.

[2] H. Yamamoto, K. A. Lee, K. Okabe, and T. Koshinaka, “Speaker
augmentation and bandwidth extension for deep speaker embed-
ding.” in INTERSPEECH, 2019, pp. 406–410.

[3] W. Wang, D. Cai, X. Qin, and M. Li, “The dku-dukeece systems
for voxceleb speaker recognition challenge 2020,” arXiv preprint
arXiv:2010.12731, 2020.

[4] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. CONF.
IEEE Signal Processing Society, 2011.

[5] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[6] W. Cai, J. Chen, J. Zhang, and M. Li, “On-the-fly data loader
and utterance-level aggregation for speaker and language recogni-
tion,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 28, pp. 1038–1051, 2020.

[7] M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell,
L. Lugosch, C. Subakan, N. Dawalatabad, A. Heba, J. Zhong,
J.-C. Chou, S.-L. Yeh, S.-W. Fu, C.-F. Liao, E. Rastorgueva,
F. Grondin, W. Aris, H. Na, Y. Gao, R. D. Mori, and Y. Bengio,
“Speechbrain: A general-purpose speech toolkit,” 2021.

[8] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur,
“A study on data augmentation of reverberant speech for robust
speech recognition,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017,
pp. 5220–5224.

[9] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

[10] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb:
a large-scale speaker identification dataset,” arXiv preprint
arXiv:1706.08612, 2017.

[11] J. Thienpondt, B. Desplanques, and K. Demuynck, “The idlab
voxsrc-20 submission: Large margin fine-tuning and quality-
aware score calibration in dnn based speaker verification,” in
ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 5814–
5818.

[12] H. Zeinali, S. Wang, A. Silnova, P. Matějka, and O. Plchot,
“But system description to voxceleb speaker recognition chal-
lenge 2019,” arXiv preprint arXiv:1910.12592, 2019.

[13] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “Repvgg:
Making vgg-style convnets great again,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2021, pp. 13 733–13 742.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[15] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur,
“Deep neural network embeddings for text-independent speaker
verification.” in Interspeech, 2017, pp. 999–1003.

[16] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statis-
tics pooling for deep speaker embedding,” arXiv preprint
arXiv:1803.10963, 2018.

[17] Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, “Self-attentive
speaker embeddings for text-independent speaker verification.” in
Interspeech, vol. 2018, 2018, pp. 3573–3577.

[18] M. India, P. Safari, and J. Hernando, “Self multi-head attention
for speaker recognition,” arXiv preprint arXiv:1906.09890, 2019.

[19] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax
for face verification,” IEEE Signal Processing Letters, vol. 25,
no. 7, pp. 926–930, 2018.

[20] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, “Cosface: Large margin cosine loss for deep face recogni-
tion,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 5265–5274.

[21] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive an-
gular margin loss for deep face recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 4690–4699.

[22] J. Deng, J. Guo, T. Liu, M. Gong, and S. Zafeiriou, “Sub-center ar-
cface: Boosting face recognition by large-scale noisy web faces,”
in European Conference on Computer Vision. Springer, 2020,
pp. 741–757.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” Ad-
vances in neural information processing systems, vol. 32, pp.
8026–8037, 2019.

[24] Y. Liu, L. He, and J. Liu, “Large margin softmax loss for speaker
verification,” arXiv preprint arXiv:1904.03479, 2019.

[25] J. Thienpondt, B. Desplanques, and K. Demuynck, “The idlab
voxceleb speaker recognition challenge 2020 system description,”
arXiv preprint arXiv:2010.12468, 2020.

	1 System Description
	1.1 Datasets and Data Augmentation
	1.1.1 Training Data
	1.1.2 Developing Set
	1.1.3 Features

	1.2 Network Structures
	1.2.1 Backbone
	1.2.2 Pooling Method
	1.2.3 Loss Function

	1.3 Training Protocol
	1.4 Back-end
	1.5 Results
	1.5.1 Baseline System Ablation Study
	1.5.2 Sub-Systems and Fusion Performance

	2 Conclusions
	3 Acknowledgements
	4 References

