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Abstract

Imbalance in covariate distributions leads to biased estimates of causal effects. Weighting methods attempt tocorrect this imbalance but rely on specifying models for the treatment assignment mechanism, which is unknownin observational studies. This leaves researchers to choose the proper weighting method and the appropriatecovariate functions for these models without knowing the correct combination to achieve distributional balance.In response to these difficulties, we propose a nonparametric generalization of several other weighting schemesfound in the literature: Causal Optimal Transport. This new method directly targets distributional balance byminimizing optimal transport distances between treatment and control groups or, more generally, between anysource and target population. Our approach is semiparametrically efficient andmodel-free but can also incorporatemoments or any other important functions of covariates that a researcher desires to balance. Moreover, ourmethod can provide nonparametric estimate the conditional mean outcome function and we give rates for theconvergence of this estimator. Moreover, we show how this method can provide nonparametric imputationsof the missing potential outcomes and give rates of convergence for this estimator. We find that Causal OptimalTransport outperforms competitormethodswhen both the propensity score and outcomemodels aremisspecified,indicating it is a robust alternative to common weighting methods. Finally, we demonstrate the utility of ourmethod in an external control trial examining the effect of misoprostol versus oxytocin for the treatment of post-partum hemorrhage.
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1 Introduction

Inverse propensity score weighting (IPW) uses the predicted probabilities of treatment to estimate causal effects.
Under the correct model, these weights will lead to distributional balance between treatment groups and thereby
to unbiased effect estimates. Unfortunately, adequate distributional balance is a challenge to determine, so re-
searchers often assess performance by measuring the balance of observed covariate functions (Li et al., 2018).

Rather than using weights that indirectly balance selected covariate functions, other authors construct weights
that achieve such balance by design (Hainmueller, 2012; Imai and Ratkovic, 2014; Zubizarreta, 2015); however,
the particular aspect of the covariates that will achieve distributional balance, especially in finite samples, is usually
unknown. Weights built using reproducing kernel Hilbert spaces (RKHS) may get around this difficulty because they
theoretically balance all covariate functions (Li and Li, 2021). Nonetheless, RKHS weights necessitate the tuning
of unknown hyperparameters without an obvious metric to assess performance. Some authors tune the RKHS
weights such that they balance predictions from an outcome model (Kallus, 2020; Kallus et al., 2018), meaning the
performance of the weights in turn depends on the performance of these outcome models. However, all of these
balancing methods fail to capture something fundamental about the covariates: the joint distribution.

Ultimately, if the distributions are the same between treatment groups, then all functions of the covariates will
be balanced, leading to unbiased treatment effect estimates. But researchers may have certain covariate functions
that they believe are important a priori. As such, researchers may not want to trade off balance on these quantities
for better overall distributional balance. Fortunately, we do not have to choose between balancing distributions or
covariate functions—we can do both.

Causal Optimal Transport (COT) is our proposed method that balances the joint distribution and any other
selected covariate functions of interest in one framework. As we document, our method is semiparametrically
efficient and performs well in simulation studies compared to competing methods—especially when the propen-
sity score and outcome models are misspecified. We also demonstrate that several methods in the literature are
actually special cases of COT, meaning our framework can be seen as an interpolation between several seemingly
unconnected methods. Finally, we show how optimal transport methods can nonparametrically impute the missing
potential outcomes by estimating the conditional mean outcome function at a n−2=(2d ′+9) rate, where d ′ = d5d=4e

and d is the dimension of the covariate space. Code to implement the methods discussed in this work is available
in the new R package causalOT, found at http://www.github.com/ericdunipace/causalOT.

The paper proceeds as follows: in Section 2, we describe the setting and assumptions necessary for identifica-
tion. Then we introduce optimal transport and COT in Section 3. In Section 4, we demonstrate how COT unifies
several existing methods, and in Section 5, we provide simulation results demonstrating the utility of COT. Section
6 presents a case study utilizing our method in a study of post-partum hemorrhage. Finally, we offer our concluding
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remarks in Section 7.

2 Setup

2.1 The potential outcomes framework

We adopt the potential outcomes framework of Neyman and Rubin (Splawa-Neyman, 1923; Rubin, 1974). Assume
that we have an independent, identically distributed (iid) sample of n ∈ N units from some population. Let Z be a
binary variable that denotes receiving either a treatment (Z = 1) or control (Z = 0) condition. Y (0) and Y (1) are
the potential outcomes, and Y = Z · Y (1) + (1 − Z) · Y (0) is the observed outcome defined on a space Y ⊆ R.
The confounders are X ∈ X ⊆ Rd . We will assume we have n0 ∈ N control units and n1 ∈ N treated units
giving n = n0 + n1 total observations from this sample. Denote az =

Pn
i :Zi=z

‹xi ai as the empirical distribution
for treatment Z = z and a =

Pn
i ‹xi ai as the empirical distribution for the full sample. Let ¸z and ¸ be the

corresponding population distributions.
Finally, we assume the space X has a distance metric between observations, dX (xi ; xj) ∈ R+. We will define

a generic cost function as c(xi ; xj) = dX (xi ; xj)
p with p ≥ 1. As an example, if dX is the Euclidean distance and

p = 2, then c is the squared-Euclidean distance. From this function, we then construct a pairwise cost matrix
C ∈ Rn×m+ between each unit i and j : Ci j = c(xi ; xj):

2.2 Causal estimands

There are several potential causal contrasts of interest over these populations but we focus on the sample average
treatment effect (ATE):

fi = E {Y (1)− Y (0)} ; (1)
Unfortunately, we cannot estimate Eq. (1) since one of the potential outcomes is missing for each individual.

Instead, we need to use the information in the source population to get valid treatment effect estimates. That
is, we desire E {Y (z)I(Z = z) · w} = E {Y (z)} ; for some function w . A common way to do this is to use an
importance sampling weight w = d¸

d¸z
, which is also known as the Radon-Nikodym derivative of ¸ with respect to

¸z .
With a known w , we estimate Eq. (1) as

fî =
X
i

wiYiZi −
X
i

wiYi (1− Zi ); (2)

and such that the weights sum to one in the treatment and control groups:Pi wiZi =
P

i wi (1− Zi ) = 1.
3



2.3 Identifying assumptions

To identify these estimators, we need several assumptions, which we formalize below.
Assumption 1

Stable unit treatment value assumption, (Rubin, 1986):

Yi (Z1; Z2; :::; Zi ; :::; Zn) = Yi (Zi ) and Yi (Zi ) = Yi (z) if Zi = z .

Assumption 2

Strong ignorability of treatment assignment, (Rosenbaum and Rubin, 1983):

Y (0); Y (1) ⊥⊥ Z |X; S = 1 and 0 < P (Z = 1 |X; S = 1) < 1.

These standard assumptions allow us to use the observed data to estimate the desired treatment effects in the
target sample. Assumption 1 allows us to use the observed outcomes and not consider interference between units,
while Assumption 2 gives common support between treatment populations. With these conditions, we now turn
to optimal transport and COT.

3 Causal Optimal Transport

3.1 General properties of optimal transport

The popularity of optimal transport methods have exploded in recent years thanks to several recent theoretical
and methodological advances (Cuturi, 2013; Peyré and Cuturi, 2019), but the field dates back centuries. We frame
our discussion in terms of empirical samples az and a to align with the rest of the paper but these quantities can
be arbitrary samples for general optimal transport problems.

The original optimal transport problem formulated by Monge (1781) involves finding optimal maps between
distributions. Define such a map as a function T : X 7→ X and such that RX g(x)d¸z =

R
X g(T (x))d¸ for all

measurable functions g . We denote the corresponding push-forward operator from ¸ to ¸z as T#¸ = ¸z . The
Monge formulation of the optimal transport problem is then

inf
T

X
i

c{T (xi ); xi}aj ; (3)

where T#¸ = ¸z . Unfortunately, this problem can be intractable to solve in practice since the mapping must be
injective.

To alleviate this issue, the Kantorovich (1942) formulation instead considers probabilistic assignments between
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distributions az and a using a transport matrix P:

OT (az ; a) = min
P∈U(az ;a)

X
i :Zi=z; j

Ci jPi j (4)

whereU(az ; a) is the set of joint distributions with margins az and a. This metric is a proper distance that obeys the
triangle inequality and metrizes the convergence in distribution, i.e. OT (az ; a) = 0 ⇐⇒ az = a (Proposition 2.3,
Peyré and Cuturi, 2019). When c(x; x ′) = dX (x; x ′)p , as is the case for our setting, then Eq. (4) is also known as
the p -Wasserstein distance. Unfortunately, this problem is known to have a decaying convergence with increasing
dimension (Weed and Bach, 2019) and also to suffer from a large computational complexity (Cuturi, 2013).

Conveniently, regularized optimal transport offers improved rates of asymptotic convergence (Genevay et al.,
2019; Mena andWeed, 2019) and computational speed (Altschuler et al., 2017) by adding a convex penalty to the
objective function:

OT– (az ; a) = min
P∈U(az ;a)

X
i :Zi=z; j

Ci jPi j +H–(Pi j): (5)

Common penalties for H– include an entropy penalty, –Pi j logPi j (Cuturi, 2013), or an L2 penalty, –2P2
i j (Blondel

et al., 2018). The solutions to this problem converge to the solutions from Eq. (4) as – → 0, while as – → ∞, the
solutions put equal weight on every entry in P.

To adjust for the fact that OT– (az ; a) 6= 0, Genevay et al. (2018) introduced the Sinkhorn divergence for
entropy penalized optimal transport:

S–(az ; a) = OT– (az ; a) − 1

2
OT– (az ; az) − 1

2
OT– (a; a) (6)

This has the advantage that S–(az ; a) = 0 ⇐⇒ az = a (Feydy et al., 2019), while retaining the computational
and theoretical advantages of regularized optimal transport.

Finally, we can still use Eqs. (4) or (5) to construct a map as in Eq. (3). In finite samples, this function can be
estimated from the Kantorovich formulation as

Ta7→az (j) = argmin
fl

X
i :Zi=z

c(Xi ; fl)Pi j : (7)

This mapping is alternatively known as the barycentric projection (Peyré and Cuturi, 2019). For the squared-
Euclidean cost, this map equals 1

aj

P
i :Zi=z

Pi jXi , or the weighted mean of the observations in the sample who
received treatment Z = z . For an L1 cost, Ta7→az is the weighted median of the corresponding Xi . Under an L2

cost, this map will also converge to the optimal Monge map provided one of underlying measures is continuous
(Ambrosio et al., 2005). With these general properties established, we now turn to our proposed method.
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3.2 Problem formulation

We define the COT problem as

COT– (a) = min
w∈∆n

S–(w1; a) + S–(w0; a); (8)

where wz is the empirical measurePi :Zi=z
‹xiwi , ∆n is the simplex with n vertices, and S– is defined in (6). The

COT weights will then be the weights that minimize COT– (a) . In a slight abuse of notation, we have the following
marginal distribution:

wCOT = argmin
w∈∆n

COT– (a) : (9)
In addition to seeking distributional balance, a researcher may also know a set of functions that he or she

thinks are important to balance a priori for valid causal estimates. These functions may include a hypothesized
outcome model or the moments of the covariates. Define Bk(·) : X 7→ R for k ∈ {1; :::; K} as these K functions
of interest. We can then add an additional constraint to the problem in Eq. (8) to approximately balance these
important functions between samples:

˛̨̨̨
˛̨ X
i :Zi=z

Bk(Xi )wi −
1

m

X
j

Bk(Xj)

˛̨̨̨
˛̨ ≤ ‹k ; ∀k ∈ {1; :::; K}: (10)

Of course, other formulations of the problem are possible and we detail some of them in Appendix D of the
Supplementary Materials. However, we find that in practice the formulation in Eq. (8) has the best performance in
terms of bias and variance.

3.3 Convergence

Wenowdiscuss the convergence of ourweights to the distribution of interest. First, we define the importance sam-
plingweights as w̆?i = d¸(Xi )

d¸z (Xi )
and define the self-normalized importance samplingweights asw?i = 1

n
w̆?i =

P
i

1
n
w̆?i :

In our setting, w̆?i = 1= P(Zi = z |Xi ). Further, let ‹n be the smallest value of the balancing function constraints
at which the importance sampling weights satisfy the condition in Eq. (10) for sample size n. We also rely on some
additional assumptions to prove the convergence of the COT weights.
Assumption 3

∃x0 ∈ X :
R
X c(x0; x)d¸ <∞ and E¸ |B(X)| <∞ with ‖‹n‖2 = op(‖‹‖2).

Assumption 4

c(·; ·) is in C∞ and is L-Lipschitz and either 1) 1
–d5d=4e+2

1√
n

= op(1) and ¸z and ¸ are ff2-subgaussian with c = ‖ · ‖2
2 or
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2) exp(‖C‖∞=–)
–dd=2e

1√
n

= op(1) and X ⊂ Rd .

These assumptions enforce some regularity on the constituent parts of COT. First, the cost function must exist
and be continuously differentiable. Second, the measures are either subgaussian or defined on subsets of the
real numbers. Third, the penalty term – cannot go to zero too quickly if at all. And fourth, if using balancing
constraints, there needs to be a value at which the importance sampling weights satisfy the constraints. With
these assumptions, we have our first theorem.
Theorem 1

If Assumptions 2–4 hold, then as n→∞,

wCOT * ¸;

wherewCOT is defined in Eq. (9). Further,

E {OT– (wCOT; a) − OT– (¸;¸) } = O
„

1√
n

«
:

This theorem says that the COT weights converge to the distribution of the target sample at a√n-rate, which
also has implications for the efficiency of estimators based on COT, as we will see in the next section. A proof of
this theorem is provided in Appendix A.1 of the Supplementary Materials.

Finally, Theorem 1 also gives the following corollary.
Corollary 1

As n→∞,

lim
n→∞

wCOT
a.s.
= lim

n→∞
w?:

The corollary follows as a consequence of the Radon-Nikodym Theorem and the fact that the Radon-Nikodym
derivatives are almost surely unique.

3.4 Statistical Inference

For statistical inference, we turn our attention to the asymptotic distribution of Eq. (2) and its variance. We assume
the following conditions also hold.
Assumption 5

E |Y − —z(X)| < ∞ for —z(X)
def:
= E{Y (z) |X}, E(Y 2) < ∞, and either S–(wCOT; a) = op(n−1=2) or, for basis

function balancing, ‖‹‖2
2 = op(n−1=2) with —z(X) ⊆ B(X)>‚ for ‚ ∈ RK .

This assumption has several important parts. We assume that the second moment of the outcome is finite and
that the residual is L1-integrable, which are not strong assumptions for real data. Then we require one of two
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additional conditions to hold. The first potential condition is that the convergence of wCOT to a occurs at a faster
than√n-rate. We note that this is not actually that strong of an assumption in practice since the convergence to ¸
happens at a √n-rate and COT is directly targeting the empirical distribution a. Thus, we expect the convergence
to the empirical distribution to be faster than 1=

√
n, which is what we observe in practice. The second potential

condition requires that the basis functions B encompass the true conditional mean and that the empirical means
of B converge faster than 1=

√
n. We observe in practice that the convergence of the basis functions is actually

possible with relatively small sample sizes, making this assumption very plausible; however, outcome models are
typically not known—though this can be ameliorated by using nonparametric models. With these conditions, we
have our next theorem.
Theorem 2

If Assumptions 1–5 hold, then as n→∞,

√
n (fî − fi)

L−→ N (0; Vopt) ;

where Vopt is the semiparametrically efficient variance as in Theorem 1 of Hahn (1998).

This result follows from the fact that the expansion of the bias fî−fi has the form of the semiparametrically efficient
score function. We defer a proof to Appendix A.2 of the Supplementary Materials.

Theorem 2 also gives us the following corollary.
Corollary 2

Under Assumptions 1–5, then COT is doubly robust for a large enough n:

fîdr = n−1
nX
i=1

nwiZi{Yi − —1(Xi )} − nwi (1− Zi ){Yi − —0(Xi )}+ {—1(Xi )− —0(Xi )}

≈ n−1
nX
i=1

nwiZiYi − nwi (1− Zi )Yi = fî

In practice, one can check if Corollary 2 holds by examining both the optimal transport distance between distribu-
tions wCOT and a as well as the balance of the hypothesized outcome models between samples of the covariate
functions that determine the assumed outcome models . If the hypothesized outcome models are well-balanced,
then there is little benefit to model augmentation. A manifestation of this phenomenon can be seen in the simu-
lations in Section 5 where adding in model augmentation does not change the estimates from using COT even for
sample sizes as low as 500.
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3.5 Imputing the missing potential outcomes

One of the advantages of COT is that it provides a method to impute the missing potential outcomes, if so desired.
Moreover, methods based on this estimator will also converge to the correct treatment effect, even when using
weights from other methods.

We can construct a transportation matrix,P, a posteriori for Eq. (8) by solving OT–′ (wz ; a) ; for any –′ > 0 using
the appropriate weights from treatment group Z = z . Then the missing potential outcomes can be estimated by
the barycentric projection in Eq. (7): Ŷj(z) = argmin�

P
i I(Zi = z)c(Yi ; �)Pi j . In practice, we do not have to use

the same cost function used to estimate P but using a squared-L2 cost gives us the following theorem
Theorem 3

Assume that ¸ is compactly supported and admits a density with finite Fisher information I0 and finite second moments,

and c = ‖ · ‖2
2. Further, assume —z is L-Lipschitz, Var(Y −—z |X) < ‰2 <∞ for allX ∈ X , and that Assumptions 1–2

hold. Then ifw* ¸, P is estimated via Eq. (5) with an entropy penalty, and – � n− 1
2d′+9 for d ′ = d5d=4e,

E¸ ‖Ŷ (z)− —z(X)‖2 . (1 + I0)n−
2

2d′+9 :

There are several things to observe about this theorem and its assumptions. First, the assumptions on the cost
and distribution allow us to connect the optimal transport solutions to the Monge maps of Eq. (3), but also allow us
to give a rate for our theorem. Second, using penalized optimal transport ensures that we average out the errors
Y − —z . Third, in a related manner, the Lipschitz continuity of the outcome means that this averaging out of the
errors will still achieve good estimates of —z . Fourth and finally, this theorem also suggests that —z is like a Monge
map, T , between potential outcomes.

Unfortunately, these imputations are not necessarily useful by themselves.
Proposition 1

Under a squared-L2 metric, an ATE estimator based solely on the barycentric projection, n−1
P

i Ŷi (1)− Ŷi (0), is equiv-

alent to Eq. (2).
Clearly, care must be taken when using these estimators. Proofs are located in Appendix A.3 and 1 of the Supple-
mentary Materials.

3.6 Practical considerations

In this section, we turn to the practical considerations of optimizing the COT weights. Namely, we discuss the
tuning of the hyperparameters and estimation of the weights.
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Algorithm 1: Choosing hyperparameters for COT
Data: Grid of parameter values ∆ = {{–1; ‹1}; {–2; ‹2}; :::}, number of bootstrap samples K, empiricalmeasure a, empirical measure az , treatment group of interest z , –′ ≥ 0
Result: Value of hyperparameters, –̂; ‹̂
foreach {–; ‹} ∈ ∆ doEstimate weights wCOT given parameters {–; ‹};

for k in 1; :::; K doBootstrap new target data a?k ∼ a;Bootstrap new source data a?z;k ∼ az ;Set the unnormalized weights for empirical measure in treatment group z as
w̃?k = I(Z = z)�w � a?z;k , where � is the element-wise product;
Renormalize the weights, w?k = w̃?k=(w̃?>k 1n);

Set T{–;‹} = K−1
PK

k OT–′ (w?k ; a
?
k) ;

return –̂; ‹̂ = argmin{–;‹} T{–;‹};

Hyperparameter tuning. Our goal is to select the hyperparameters – and ‹ so that we achieve the best distri-
butional balance without over-fitting the current data. To do so, we propose a bootstrap based tuning procedure
detailed in Algorithm 1.

We justify this procedure in two ways. First, practitioners probably do not have an ideal weight penalty in mind
based on subject matter knowledge. Second, because the COT weights target the Radon-Nikodym derivative,
this tuning procedure will select the hyperparameters that lead to weights robust to sampling variation and better
approximation of these population level quantities. We present an empirical examination of this tuning algorithm
in Appendix B.3 of the Supplementary Materials that demonstrates its effectiveness at selecting the optimal –.

Weight estimation. Given the known complexity of estimating optimal transport distances, Huling andMak (2020)
raise the concern that methodology like COT will not be feasible. Fortunately, these concerns are addressed by
using regularized optimal transport.

In our simulations, we find that estimating the COT weights only takes a few seconds for a 1000 observations.
Eq. (8) can be solved by alternating Sinkhorn divergence calculations in GeomLoss (Feydy et al., 2019) and op-
timization steps on the weights. With balancing constraints, we use the Frank-Wolfe algorithm to optimize the
weights (Frank and Wolfe, 1956); without balancing constraints, we can use an LBFGS algorithm.

3.7 Target average treatment effects and multi-valued treatments

COT is also well-suited to the case where the target estimand is for a separate sample entirely. This is because the
weights can be calibrated to target any arbitrary set of samples. The only additional assumption for convergence
is that there is common support between distributions.
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Finally, COT is easily extended to more than two treatments as long as the treatment values are discrete. This
is because COT estimates weights separately for each treatment group.

4 Connections to Existing Methods

The COT framework is actually related to several other methods in the literature and can be seen as an interpolation
between all of them, as we detail below.

Synthetic control method Abadie and Gardeazabal (2003) first proposed the synthetic control method (SCM) as
a way of performing counterfactual inference for a single treated unit, j . The objective function is

min
w :w>1n=1;wi≥0

‚‚‚‚‚X
i

Xiwi − Xj

‚‚‚‚‚
2

2

;

which is the same objective as the Monge map in Eq. (3) when c is the squared-Euclidean distance and T has the
corresponding form of the barycentric projection in Eq. (7). This means that SCM is actually estimating a version
of the COT problem with – = 0.
Proposition 2

If ¸ admits a density, c = ‖ · ‖2
2, and ∃xo s.t. E{c(x0; X)} < ∞, then SCM is asymptotically the same as COT with

– = 0.

For a proof, see Appendix A.5 in the supplementary materials. One potential drawback of using SCM versus the
formulation used for COT can be seen in the following simple example in Figure 1. COT favors the nearest point
while the SCM method utilizes the points further away, which could be a problem if the response surface looks
like Figure 1b. To avoid this, SCM could incorporate a modified objective that directly models both the barycentric
projection and distance between units as in Perrot et al. (2016).

Nearest neighbor matching When done with replacement, nearest neighbor matching (NNM) is also a reformu-
lation of the COT problem with – = 0: minP≥0

P
i :Zi=z;j

Ci jPi j subject toPi ;j Pi jI(Zi = z) = 1 and P>1n = a:

This will seek to find the unit i that is closest in terms of C for each unit j since this minimizes the total cost, which
is the definition of NNM with replacement. Each observation will simply be weighted by the number of times it is
matched, divided by the total sample size n.

NNM has some advantages and drawbacks relative to more general COT. Positive aspects of the method are
that quick to estimate and also corresponds to an easily understood quantity of physical matching familiar to many
researchers. However, the method can have poor convergence properties if c 6= dX (·; ·)p where p > d=2 (Fournier
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(b) A response surface where synthetic controls would lead to poor estimates.

Figure 1: A simple example where synthetic controls (SCM) would perform worse than COT.

and Guillin, 2015). This means that additional assumptions are necessary to ensure adequate convergence. Further,
theweightswill be given as rational numbers and as such, wewould expect estimators based on them to have higher
variance than weights without such constraints.

Optimal matching and MIP matching Optimal Matching (Rosenbaum, 1989) corresponds to COT weights with
integer solutions and – = 0: minP∈{0;1}

P
i :Zi=z; j

Ci jPi j subject to L ≤ Pi Pi jI(Zi = z) ≤ U; ∀j and 1 ≤ L ≤

U ≤ n:We can turn this into Mixed Integer Program (MIP) matching by adding constraints:
˛̨̨̨
˛̨X
i j

Bk(Xi )Pi jI(Zi = z)

nMj
− 1

n

X
j

Bk(Xj)

˛̨̨̨
˛̨ ≤ ‹k ; ∀k ∈ {1; :::; K};

where Mj =
P

i Pi j is the number of matches for unit j (Zubizarreta, 2012). These methods also imply a re-
weighting of treatment group Z = z since the weights on element i will be n−1

P
j Pi j=Mj .

These methods have a similar flavor to NNM but with additional linear constraints. As such, they would likely
share some of its benefits and drawbacks. As an advantage, these methods again yields matches which have
an easy interpretation; however, as a disadvantage, the additional linear constraints will slow down the problem
estimation. Moreover, the problem has additional tuning parameters L, U , and ‹k not present in NNM. Similar to
NNM, we would again expect weights based on rational numbers to have higher variance.

Energy distance. The Energy Distance (ED) is defined as E(az ; a) = 2
n2

P
i :Zi=z; j

dX (xi ; xj)
p − 1

n2 dX (xi ; xi )
p −

1
m2 dX (xj ; xj)

p; where p ≥ 1. Then S–(az ; a) → 1
2E(az ; a) as – → ∞ (Feydy et al., 2019). Thus, Energy Balancing
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Weights (Huling and Mak, 2020) are a special case of COT.
One advantage of this method is that there is no tuning parameter necessary to estimate the weights. However,

we might assume that there would be an advantage to interpolating between all of these various methods. Indeed,
in our experiments we find that the larger values of – do not approximate the true inverse propensity score as well
as intermediate values. See Appendix B.3 in the Supplementary Materials for an empirical evaluation.

MeanMaximumDiscrepancy. Optimal transport is also related to themeanmaximumdiscrepancy (MMD) through
the ED. The MMD is equal toM = 0:5

R
X×X k(x; x ′)dffi(x); for ffi = ¸ − ˛. For some reproducing kernel Hilbert

space k and for a distance dX defined as dX (x; x ′) = 1
2k(x; x ′) + 1

2k(x; x ′)−k(x; x ′), MMD is equivalent to the ED
(Feydy et al., 2019) and, therefore, to COT. To our knowledge, there has not been a proposed weighting method
based on theMMDbut wewould expect it to have performance similar to that of the ED and COTwith large values
of –.

5 Simulation Study

To evaluate the finite sample performance of the proposed weighting methodology, we use the simulation study
originally presented in Hainmueller (2012). For each setting, we run 1000 experiments with a sample size of n =

512. The estimand of interest is the ATE.
For additional experiments examining the convergence of COT, its confidence interval coverage, and the efficacy

of Algorithm 1, see Appendix B of the Supplementary Materials.

5.1 Setup

Study design. We generate six covariates X1; :::; X6 from the following distributions
266664
X1

X2

X3

377775 ∼ N
0BBBB@
266664

0

0

0

377775 ;
266664

2 1 −1

1 1 −0:5

−1 −0:5 1

377775
1CCCCA

X4 ∼ Unif(−3; 3)

X5 ∼ ffl2
1

X6 ∼ Bern (0:5) :

In this study, the last three covariates are mutually independent of each other and also of the first three covariates.
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The treatment indicator is generated as Z = I(X1 + 2X2 − 2X3 − X4 − 0:5X5 + X6 + � > 0); where � is
drawn from one of three distributions leading to different degrees of overlap: � ∼ N (0; 100) for high overlap,
� ∼ g(ffl2

5) for medium overlap, and N (0; 30) for low overlap. The function g in the medium-overlap setting gives
the ffl2

5 draws expectation 0.5 and variance 67.6. We expect the scenarios that will lead to the highest bias to be in
the low-overlap setting where there is a strong separation between treatment groups and in the medium-overlap
setting where the errors are leptokurtic.

Given the treatment indicator Z and the covariates X1; :::; X6, we draw the outcome Y from Y (0) = Y (1) =

(X1 + X2 + X5)2 + ”; with ” ∼ N (0; 1). There are two things to note about this outcome model. The first is that
there is no effect of the treatment at the unit level and hence the ATE is 0. The second is that a linear outcome
model should be biased.

Methods under examination. We compare our methodology to several other weighting methods commonly used
in the literature. The first method we consider is a logistic regression (GLM) using only first order terms. We also
consider balancing methods such as the covariate balancing propensity score (CBPS) of Imai and Ratkovic (2014)
and the stable balancing weights (SBW) of Zubizarreta (2015) both targeting mean balance. Finally, we also utilize
SCM and NNM.

For the COT weights, we include two variations both using an L2 metric with standardized covariates. The first
only balances the joint distribution (no constraints or “none”) and the second demonstrates basis function balancing
by targeting the joint distribution as well as mean balance (“means”).

5.2 Estimators

In our simulations, we consider three estimators to target the ATE. The first is known as the Hájek estimator (Hajek,
1971) and is simply a weighted mean with sum to one weights as in Eq. (2). The second is an augmented or doubly
robust estimator of Robins et al. (1994), and the third is a weighted least squares estimator—both only including
linear terms of the covariates. We do not include a barycentric projection estimator like in Eq. (7) since under an
L2 metric it gives the same result as the Hájek estimator (see Proposition 1).

5.3 Results

We now turn our attention to the results. Due to its nonparametric to semiparametric formulation, we expect COT
to do better than other methods when the true propensity score model diverges from a logistic regression—e.g., in
the medium-overlap scenario.

Indeed, the COT methods have the lowest RMSE across all overlap scenarios, as we can see in Table 1. Further,
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across the medium and low overlap settings, COT has the lowest bias as well; in the high overlap scenario, there is
a negligible difference between COT, SBW, and GLM.

We should also note that COT gives estimates that do not vary between estimators. This is because the COT
already balances the basis functions used in the augmented estimator and weighted least squares. Therefore,
there is no difference between running an outcome regression utilizing linear terms of the covariates and the Hájek
estimator. This is a function of the fact that by balancing distributions of the covariates, COT will also balance
functions of the covariates. Similar phenomenon can also be observed with SBW.

Bias RMSEoverlap method constraint Hajek DR WOLS Hajek DR WOLShigh GLM none -0.01 -0.01 -0.02 1.18 1.14 1.14CBPS means 0.24 -0.01 -0.02 1.12 1.11 1.09SBW means -0.01 -0.01 -0.01 1.00 1.00 1.00SCM none 0.36 0.27 0.28 1.63 1.57 1.55NNM none 0.43 0.32 0.28 0.69 0.65 0.56COT none 0.01 0.01 0.01 0.61 0.61 0.61means 0.01 0.01 0.01 0.42 0.42 0.42medium GLM none 1.12 1.10 1.04 1.72 1.69 1.70CBPS means 1.20 1.06 0.95 1.72 1.64 1.56SBW means 0.63 0.63 0.63 1.20 1.20 1.20SCM none 1.19 1.12 1.10 2.05 1.97 1.95NNM none 0.73 0.65 0.58 0.94 0.91 0.79COT none 0.23 0.23 0.23 0.74 0.74 0.74means -0.03 -0.03 -0.03 0.43 0.43 0.43low GLM none 0.19 0.06 0.02 1.72 1.49 1.51CBPS means 0.45 0.06 0.01 1.42 1.46 1.42SBW means 0.03 0.03 0.03 1.03 1.03 1.03SCM none 0.64 0.42 0.43 1.75 1.69 1.65NNM none 0.81 0.56 0.49 1.02 0.89 0.77COT none 0.05 0.05 0.05 0.85 0.85 0.85means 0.00 0.00 0.00 0.41 0.41 0.41

Table 1: Performance of various weighting methods under the simulation settings of Hainmueller, 2012. Bold values are the values
with the lowest bias or root mean-squared error (RMSE) of the methods under the same conditions. GLM refers to weighting by
the inverse of the propensity score as calculated from a logistic regression model, CBPS is the covariate balancing propensity score,
SBW is the stable balancing weights, SCM is the synthetic control method, and COT is the optimal transport formulation proposed
in this paper. The estimators are Hajek weights (Hajek), doubly-robust augmented IPW (DR), and weighted least squares (WOLS).
All weights are normalized to sum to 1. Constraints refer to balancing constraints and are one of “none” for no constraints or “mean”
for mean constraints.

6 Case Study

In this section, we apply our methodology to a real data set. There is growing interest in the literature to utilize
libraries of randomized control trials (RCTs) to evaluate new interventions, the idea being that running new RCTs
to evaluate every new intervention is expensive and time consuming (Schmidli et al., 2020). These studies, alterna-
tively called externally controlled trials or synthetic control group trials, compare a set of study subjects receiving
a treatment to a group of individuals external to the trial at hand who did not receive the intervention of interest.
The participants used for the control group can be taken from a variety of sources such as an observational study,
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electronic medical records, or from historical clinical trial data (Davi et al., 2020). To demonstrate this in practice,
we present an analysis utilizing data originally from a multi-site RCT discussed by Blum et al. (2010).

6.1 Misoprostol for the Treatment of Postpartum Hemorrhage

The original study was a double-blind, non-inferiority trial that exposed 31,055 women to prophylactic oxytocin
during labor at five hospitals across Burkina Faso, Egypt, Turkey, and Vietnam. The 807 women in this group with
uncontrolled blood-loss after delivery—a condition known as post-partumhemorrhage or PPH—were then random-
ized to receive either 800 milligrams misoprostol (treatment condition) or 40 international units oxytocin (control
condition). There were 407 and 402 women in each treatment group, respectively. The primary outcome for the
study was whether blood loss was controlled within 20 minutes after PPH diagnosis. The authors measure several
important confounders like maternal age, blood loss at treatment, whether cord traction was maintained, maternal
hemoglobin, whether the mother is currently married, whether the cord was clamped early, fetal gestational age,
whether labor was augmented, whether labor was induced, maternal education, number of previous live births,
whether the placenta was delivered prior to hemorrhage, and whether a uterine massage was given.

6.2 Modifications and methods

We modify the study in a couple of ways to make it more similar to an externally controlled trial. For each site, we
separate the paired treatment groups and attempt to estimate effects using the units from other sites—e.g., for the
misoprostol group in Egypt we remove the oxytocin group from Egypt and attempt to estimate a causal effect using
the oxytocin groups from the other sites. In this manner, we generate effect estimates and confidence intervals for
each treatment group at each site.

To estimate the treatment effects, we use COT with hyperparameter tuning as in Algorithm 1 and the squared-
Euclidean distance as the cost function. We also compare COT to GLM, CBPS, SBW, SCM, and NNM. For GLM,
CBPS, and SBW we utilize all first and second covariate moments. Finally, our estimator is that of Eq. (2).

For our estimates to be valid, we require that there be no unmeasured confounding but also that the estimates
are “transportable,” i.e. we are able to take estimates from the other hospitals in the external group and “transport”
them to site of interest. This requires that conditional on the observed covariates there are no other variables that
can effect the outcome and treatment indicator (d-separation holds, Pearl and Bareinboim, 2013).

6.3 Case study results

Amazingly, the three optimal transport flavored methods are able to achieve estimates close to the original treat-
ment effects on average. In Figure 2, we can see that COT, NNM, and SCM do the best job in terms of average
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Figure 2: Results for treatment effect estimation averaged across treatment groups and study sites. The gray vertical line is the
original treatment effect estimate for the entire study while the dotted vertical lines are the original confidence interval. The weighting
methods under examination are logistic regression (GLM), Covariate Balancing Propensity Score (CBPS), Stable Balancing Weights
(SBW), Synthetic Control Method (SCM), Nearest Neighbor Matching (NNM), and Causal Optimal Transport (COT).

bias; moreover, these are the only methods that have estimates inside the original confidence interval. Of these,
we note that COT has the least overall bias across all treatment groups and sites.

In terms of inference, COT also performs best across all sites and treatment groups. Table 2 displays how well
the calculated confidence intervals cover the original treatment effects and also if the calculated estimates are inside
the original confidence interval. In both cases, COT has the highest percentage of confidence intervals covering
the original treatment effect and estimates inside the original confidence interval at 60% each, respectively. And
while NNM had a good overall bias, only 20% of its confidence intervals covered the true treatment effect and its
estimates were inside of only 20% of the original confidence intervals.

Method % C.I. covering original effect % of estimates in original C.I.GLM 20 20CBPS 30 30SBW 30 40SCM 50 50NNM 20 20COT 60 60
Table 2: For each method, the table displays the percentage of times that the calculated 95% confidence interval (C.I.) covered the
true treatment effect and whether the estimated treatment effect was inside the original C.I. from the study. The weighting methods
under examination are logistic regression (GLM), Covariate Balancing Propensity Score (CBPS), Stable Balancing Weights (SBW),
Synthetic Control Method (SCM), Nearest Neighbor Matching (NNM), and Causal Optimal Transport (COT).

7 Summary and Remarks

We have described a new tool for the estimation of causal effects in observational studies: Causal Optimal Trans-
port. This method allows for checks of distributional overlap and model-free weight estimation that is semipara-
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metrically efficient. We also showed how several other methods for causal inference are closely related to COT
and that COT can be seen as an interpolation between these methods. In our simulation study, we demonstrated
that this methodology performs well even when both the outcome and propensity score models are misspecified.
Compared to other common weighting methods, COT generally has lower bias and lower root mean-squared error
under model misspecification.

There are several areas for future research. First, the sensitivity of COT to the choice of cost function remains
to be elucidated. Second, selecting covariates through typical model selection frameworks such as an L1 penalized
regression is not obvious given that COT does not generate clear predictive models, though this may not matter
given the nonparametric nature of the weights. Third, more work needs to be done to extend this framework to
time series data, but further connections to SCM may offer a way forward.
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A Proofs

In this section we offer our proofs of the theorems and propositions stated in the paper.

A.1 Proof of Theorem 1

In this section, we prove Theorem 1 which establishes the convergence of the COT weights. First, we need the
following lemma.
Lemma 1 (The importance sampling weights converge to ¸)
Let Assumption 2 holds. Define the importance sampling weights as w̆?i = d¸z (Xi )

d¸(Xi )
and define the self-normalized impor-

tance sampling weights as w?i = 1
n
w̆?i =

P
i

1
n
w̆?i : Then,

w? * ¸:

Proof. By Assumption 2, w̆?i exists for all i . Then define Pn(X ∈ E) =
P

i I(Xi ∈ E)w?i , for some E ⊂ X . Take
f (X) = I(X ∈ E). By Theorem 9.2 in Owen (2013), Pn(X ∈ E) =

P
i f (Xi )w

?
i

a.s.−→ E¸(f (X)) =
R
X f d¸ =

P¸(X ∈ E); where P¸(·) denotes the probability of X ∈ E when X ∼ ¸. Thus we have limn→∞ Pn(X ∈ E) =

P¸(X ∈ E) and the result follows.
Now we are ready to proceed.

Proof. Under Assumption 2,w? exists and by Lemma 1,w? * ¸. By Assumptions 3 and 4, S– is convex in its entries
andmetrizes the convergence in measure (Feydy et al., 2019; Janati et al., 2020). Thus, 0 ≤ S–(wCOT; a) ≤ S–(c; a)

for all c ∈ ∆n that meet the chosen balancing constraints, ‹, which includesw? for a large enough n andm. Hence,
0 ≤ S–(wCOT; a) ≤ S–(w?; a) and since w? * ¸, S–(w?; a)→ 0⇒ S–(wCOT; a)→ 0⇒ wCOT * ¸.

We then take the same inequality and modify it slightly: 0 = S–(a; a) ≤ S–(wCOT; a) ≤ S–(w?; a): If we add
OT– (¸;¸) − OT– (¸;¸) to each term and rearrange, we get

1

2
{OT– (a; a) − OT– (¸;¸) } ≤ OT– (wCOT; a) − 1

2
OT– (wCOT;wCOT) − 1

2
OT– (¸;¸)

≤ OT– (w?; a) − 1

2
OT– (w?;w?) − 1

2
OT– (¸;¸) :

For n large enough, the terms in the last two inequalities will be approximately equal to 1
2{OT– (wCOT; a) −
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OT– (¸;¸) } and 1
2{OT– (w?; a) − OT– (¸;¸) }; respectively. Therefore,

1

2
{OT– (a; a) − OT– (¸;¸) } ≤ 1

2
{OT– (wCOT; a) − OT– (¸;¸) }

≤ 1

2
{OT– (w?; a) − OT– (¸;¸) }

Under Assumptions 3–4, Theorem 1 of Genevay et al. (2019) or Corollary 1 of Mena andWeed (2019) hold and
E{OT– (a; a)−OT– (¸;¸) } = O

“
1√
n

” and E{OT– (w?; a)−OT– (¸;¸) } = O
“

1√
n

”
:Thus, E{OT– (wCOT; a)−

OT– (¸;¸) } = O
“

1√
n

”.

A.2 Proof of Theorem 2

Proof. Define ez;i = P(Zi = z |Xi ; Si = 1)P(Si = 1 |Xi )=P(Si = 0 |Xi ), or the inverse weight targeting the
TATE. This is also the inverse of the Radon-Nikodym derivative. As a reminder, —z(X) = E{Y (z) |X}. We first
decompose fî − fi into several residual terms:

fî − fi =
X
i

wiZiYi −
X
i

wi (1− Zi )Yi − fi

=
X
i

wiZi{Yi − —1(Xi )} −
X
i

wi (1− Zi ){Yi − —0(Xi )}

+
X
i

wiZi—1(Xi )−
X
i

wi (1− Zi )—0(Xi )− fi

=
X
i

wiZi{Yi − —1(Xi )} −
X
i

wi (1− Zi ){Yi − —0(Xi )}

+
X
i

wiZi—1(Xi )−
X
i

wi (1− Zi )—0(Xi )− fi

=
1

n

X
i

Zi
e1;i
{Yi − —1(Xi )} −

1

n

X
i

1− Zi
e0;i

{Yi − —0(Xi )}

+
X
i

„
wi −

1

n · e1;i

«
Zi{Yi − —1(Xi )}

−
X
i

„
wi −

1

n · e0;i

«
(1− Zi ){Yi − —0(Xi )}

+
X
i

wiZi—1(Xi )−
X
i

wi (1− Zi )—0(Xi )

− 1

m

8<:X
j

—1(Xj)−
X
j

—0(Xj)

9=;
+

1

m

8<:X
j

—1(Xj)−
X
j

—0(Xj)

9=;− fi
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= A+ B + C;

where

A =
1

n

X
i

Zi
e1;i
{Yi − —1(Xi )} −

1

n

X
i

1− Zi
e0;i

{Yi − —0(Xi )}

+
1

m

8<:X
j

—1(Xj)−
X
j

—0(Xj)

9=;− fi
B =

1

n

X
i

„
n · wi −

1

e1;i

«
Zi{Yi − —1(Xi )}

− 1

n

X
i

„
n · wi −

1

e0;i

«
(1− Zi ){Yi − —0(Xi )}

C =
X
i

wiZi—1(Xi )−
X
i

wi (1− Zi )—0(Xi )

− 1

m

8<:X
j

—1(Xj)−
X
j

—0(Xj)

9=; :

The goal is to show that both n1=2B and n1=2C are op(1). Then, since A has the form of the semiparametrically
efficient score function, the result follows.

First, for B, we have that limn→∞w = limn→∞w? by Corollary 1. This also implies that limn→∞ n · wi = 1=ei

since by the Radon-Nikodym theorem, the Radon-Nikodymderivative is unique almost surely. To prove that n−1=2B

goes to 0, it will be sufficient to prove that √n
n

P
i

˛̨̨“
n · wi − 1

ez;i

”
I(Zi = z) {Yi − —z(Xi )}

˛̨̨
→ 0. We then have

√
n

n

X
i

˛̨̨̨„
n · wi −

1

ez;i

«
I(Zi = z) {Yi − —z(Xi )}

˛̨̨̨
≤
√
n

n

X
i

˛̨̨̨„
n · wi −

1

ez;i

«
I(Zi = z)

˛̨̨̨
|Yi − —z(Xi )|

≤ ess: sup
i

˛̨̨̨„
n · wi −

1

ez;i

«
I(Zi = z)

˛̨̨̨
1√
n

X
i

|Yi − —z(Xi )| ;

where ess: sup is the essential supremum. The essential supremumquantity goes to 0 as a consequence of Corollary
1while the residual quantity has finite expectation and variance by assumption. This implies 1√

n

P
i |Yi − —z(Xi )|

L−→

L for some random variable L and that the desired quantity goes to 0 by Slutsky’s theorem.
Second, for C, we have by assumption that S–(w; a) = op(n−1=2). This implies that the empirical expectations

also converge at a faster than√n-rate. Alternatively, for the basis function constraints, we have

|Ew{I(Z = z)—z(X)} − Ea{—z(X)}| ≤
X
k

‹k |‚k | ≤ ‖‹‖2
2‖‚‖2

2:
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Thus, for each value z of Z,√n |Ew{I(Z = z)—z(X)} − Ea{—z(X)}| = op(1):

Finally, with Assumption 1, we can replace Yi with Yi (Zi ). This means that by Assumption 1 and Assumption
5, E(A) = 0 and limn→∞ E(fî) = fi . Thus, under Assumptions 1–5 and by the fact that A has the form of
the semiparametrically efficient score function, A converges to fi at a √n-rate and √n(fî − fi) has the desired
asymptotic distribution.

A.3 Proof of Theorem 3

Before we proceed to our proof, a slight digression is necessary to discuss how the barycentric projection in the
setting of this paper will differ slightly from the usual formulation in optimal transport. Typically in optimal transport
problems, wewould include all of the available data in our distancemetric; however, themissing potential outcomes
make this inadvisable. Simply throwing in the observed outcomes into the optimal transport problem could lead
to weights that bias treatment effects towards zero. Thus, we estimate the optimal transport plan only on the
covariate data X and then incorporate the outcomes after estimation of the transport plan.

Further, we require the following definition.
Definition 1

The primal form of (5) with an entropy penalty for generic measures ¸ and ˛ on X is equivalent to

OT– (¸; ˛) = inf
ı∈U(¸;˛)

Z
X×X

c(x; y)dı(x; y) + – log

„
ı(x; y)

¸(x)⊗ ˛(y)

«
dı(x; y): (11)

Eq. (11) has the dual form

sup
f ;g

Z
X
f (x)d¸(x) +

Z
X
g(y)d˛(y)− –

Z
X×X

e(f (x)+g(y)−c(x;y))=–d¸(x)d˛(y) + –; (12)

with a primal solution equal to e(f (x)+g(y)−c(x;y))=–d¸(x)d˛(y).

We note that the dual form is justified by Fenchel-Rockafellar duality but defer a proof to sources such as Peyré
and Cuturi (2019).
Proof. Denote limn→∞w = ! and limn→∞ a = ¸. By assumption, ! = ¸. Without loss of essential generality,
assume the weights only adjust one treatment group towards the full sample. We also assume both groups have
equal sample sizes since it will make some of the notation easier to follow.

We will denote the optimal transportation plan between ! and ¸ as ı. The barycentric projection from ¸

into ! is then RX xdı(x | x ′), where dı(x | x ′) = dı(x; x ′)=d¸(x ′). Under the assumptions of the theorem, this
transport plan,ı is unique and is supported on the graph of aMongemap (Brenier, 1987). Moreover, the barycentric
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projection will be the optimal map, T (Ambrosio et al., 2005, Lemma 12.2.3). Finally, the optimal transport plans
in finite samples will converge to the limiting value: Pn → ı (Villani, 2008, Theorem 5.20). We also note that the
Monge map T will be the identity function since the distributions are the same.

—z is like a Monge map for the outcomes. For ease of exposition, we can think of units from ! as having their
outcome Y (z) observed, while the outcomes are completely missing for units in ¸. Thus, we need some way of
projecting an individual from ¸ to ! and generating their hypothetical outcome. For an individual with covariate
values x ′, this will be

Z ˆ
y(z)
x

˜
dp(y(z) | x)dı(x | x ′) =

Z ˆ
y
x

˜
dp(y | x)dı(x | x ′) =

Z ˆ
—z (x)
x

˜
dı(x | x ′) =

ˆ
—z (x ′)

x ′

˜
;

where under Assumptions 1–2, the observed outcomes can be used for the potential outcomes and there is no
interference.

This means the Monge map is ˆ —z (x ′)

x ′

˜ in our particular case when we map from a space without outcomes to
a space with outcomes. The failure of the values of x ′ to change aligns with our assumption that the covariates
precede treatment causally so their value does not change depending on the treatment group. Also, we note that
since the outcomes are unknown, the best projection we can hope for is the conditional mean outcome function.

Given this fact and that we do not care about projecting the covariates, we will focus on the barycentric pro-
jection of just the outcome:

ı̄(x ′) =

Z
ydp(y | x)dı(x | x ′) =

Z
—z(x)dı(x | x ′) = —z(x ′) = T (x ′):

The estimated barycentric projection converges to —z . Denote P̄– as the distribution implied by the barycentric
projection from the entropy-penalized optimal transport problem and ı̄ = ı(· | x ′) as the optimal barycentric
projection distribution. First, we rewrite our equation to make the barycentric projections explicit. Starting with
the L2 metric, we can represent Y as the convolution of its conditional mean, —z , with another random variable
with mean zero, ›:

‚‚‚‚Z y dP̄– −
Z
—z dı̄

‚‚‚‚ =

‚‚‚‚Z (—z + ›) dP̄– −
Z
—z dı̄

‚‚‚‚
≤
‚‚‚‚Z —z( dP̄– − dı̄)

‚‚‚‚+

‚‚‚‚Z › dP̄–
‚‚‚‚

≤ L
‚‚‚‚Z x( dP̄– − dı̄)

‚‚‚‚+

‚‚‚‚Z › dP̄–
‚‚‚‚ :
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Then taking the square and expectation:

E¸
‚‚‚‚Z y dP̄– −

Z
—z dı̄

‚‚‚‚2

≤ L2 E¸
‚‚‚‚Z x( dP̄– − dı̄)

‚‚‚‚2

+ 2LE¸
‚‚‚‚Z x( dP̄– − dı̄)

‚‚‚‚‚‚‚‚Z › dP̄–
‚‚‚‚

+ E¸
‚‚‚‚Z › dP̄–

‚‚‚‚2

≤ L2 E¸
‚‚‚‚Z —z( dP̄– − dı̄)

‚‚‚‚2

| {z }
E

+ 2L

s
E¸
‚‚‚‚Z —z( dP̄– − dı̄)

‚‚‚‚2
s

E¸
‚‚‚‚Z › dP̄–

‚‚‚‚2

| {z }
F

+ E¸
‚‚‚‚Z › dP̄–

‚‚‚‚2

| {z }
G

For the term in G, we have

G = E¸

 X
i

›iP
–

i

!2

= E¸

 X
i

X
i ′

›i›i ′P
–

i P
–

i ′

!

= E¸ E

 X
i

X
i ′

›i›i ′P
–

i P
–

i ′ |X;X ′
!

≤ E¸

 X
i

‰2(P
–

i )2

!
:

We then argue that this term goes to zero since P
–

i converges to ı–, which is without an atom. By the primal
solution in Definition 1 and the structure of the penalty in of Eq. (5), we knowP

–

i = e [f (xi )+g(x ′)−c(x;x ′)]=–wi < 1;∀i .
Further, because (P

–

i )2 < P
–

i , each value of the square is bounded away from one as well. Additionally, P–i will
converge to zero for all i since ı– has a density with respect to ! and ¸ (Peyré and Cuturi, 2019). This also implies
that the empirical mean and variance of P–i will also go to zero and, thus,Pi (P

–

i )2 → 0.
The rate of this convergence will be determined by the rate of convergence of the regularized optimal transport

problem,
Kd–

„
1 +

ffd5d=2e+6

–d ′+3

«
n−1=2

for a constant Kd depending only on the dimension d , ff a constant determined by the subgaussian tail of the

27



random variable, and d ′ = d5d=4e (Mena and Weed, 2019, Corollary 1). As long as – goes to zero slowly enough,
the sum will converge to zero. This will be the case if we take

– � n−
1

2d′+9 : (13)

Lastly,
E¸

 X
i

‰2(P
–

i )2

!
→ 0

by Lebesgue’s Dominated Convergence Theorem.
Turning next to the term in E, we have by Theorems 4 and 5 in Pooladian and Niles-Weed (2021) that

E . –1−d ′′=2 log(n)n−1=2 + –(t+1)=2 + –2I0 + –−1(1 + –1−d ′′=2) log(n)n−1=2;

where I0 is the Fisher Information of¸, d ′′ = 2dd=2e, and t ∈ [2; 3] is related to the number of derivatives that exist
for the optimal Kantorovich potential (Chizat et al., 2020; Pooladian and Niles-Weed, 2021). These theorems also
require several assumptions which hold for our particular case. First, in our particular case where Brenier’s Theorem
holds, the derivatives of the dual potentials of the unpenalized problem equal the Monge map. These maps are
then infinitely differentiable since in our case they are equal to the identity function. This also means t = 3. Also
since we assume I0 exists, we do not need the bounded densities required in Pooladian and Niles-Weed (2021).
Then using the value of – from (13), we get

E . (1 + I0)n−
2

2d′+9 :

Finally, to establish the rate is determined by E, we need for the term in F to go to zero faster than the term in
E. To see this, we have that

2LF

E
=

2L
√
E
√
G

E
=

2L
√
G√
E

:

Since the numerator goes to zero faster than the denominator, the overall rate is determined by E.
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A.4 Proof of Proposition 1

Proof. It will be sufficient to show the proof for the estimator of E Y (z) for one such group Z = z . The barycentric
projection estimator of the mean in this group will be n−1

P
i Ŷi (z). Expanding the term,

n−1
X
i

Ŷi (z) = n−1
X
i

n
X
j

YjI(Zj = z)Pj i

=
X
j

YjI(Zj = z)
X
i

Pj i

=
X
j

YjI(Zj = z)wj ;

where the first equality is by definition and the last equality is by the constraints of the optimal transport problem.

A.5 Proof of Proposition 2

Proof. Under the assumptions of the proposition, the limiting optimal transport plan is unique and supported on
the graph of a Monge map, the Monge map will be equal to the barycentric projection, and the empirical transport
plans converge to the limiting value (Brenier, 1987; Ambrosio et al., 2005; Villani, 2008).

Let T̂ (Xj) =
P

i :Zi=z
Xiwi . We also take our data to be univariate for notational simplicity but the results are

easily extended to data in Rd . Then the objective for SCM can be written as

SCM = inf
T̂
n−1

X
j

‚‚‚T̂ (Xj)− Xj
‚‚‚2

2

= n−1
X
j

T̂ (Xj)
2 − 2T̂ (Xj)Xj + X2

j :

We can represent T̂ (Xj) as a matrix of weights with certain constraints instead of the sum over the weights for
each j :

SCM = inf
P̃∈Rnz×n

+ :P̃>1=1
n−1

X
j

 X
i :Zi=z

Xi P̃i j

!2

− 2Xj
X
i :Zi=z

Xi P̃i j + X2
j

= inf
P̃∈Rnz×n

+ :P̃>1=1
n−1

X
j

X
i :Zi=z

Xi P̃i j X̃j − 2
X
i :Zi=z

XjXi P̃i j + X2
j

= inf
P∈Rnz×n

+ :P>1=a

X
i :Zi=z;j

Xi X̃jPi j − 2
X

i :Zi=z;j

XjXiPi j +
X

i :Zi=z;j

X2
j Pi j (14)

The terms in X̃j are equivalent to a barycentric projection from a into az . And we can see that the solution Pi j is
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equivalent to an optimal transport plan with one of the margins allowed to vary. The corresponding problem under
a Kantorovich relaxation is

inf
P∈Rnz×n

+ :P>1=a

X
i :Zi=z;j

X2
i Pi j − 2

X
i :Zi=z;j

XjXiPi j +
X

i :Zi=z;j

X2
j Pi j : (15)

The marginal distributionsw from both of these problems can be found asw = P1. Eqs. (14) and (15) will be equal
in finite samples ifPj X̃jPi j = Xi

P
j Pi j , which is not guaranteed. However, in the limit they will be the same, as

we show next.
Under a similar argument to the proof of Theorem 1, OT (wNNM ; a) ≤ OT (w?; a) → 0. Then, denoting the

Monge problem using barycentric projections as M, M(wSCM ; a) ≤ M(wNNM ; a) → 0. The last term holds since
wNNM → ¸ and R xdı(x | x ′) = x ′.

Finally, to see the equivalence of the Monge and Kantorovich formulations for fixed margins ¸; ! under the
given assumptions:

inf
T

Z
|T (x ′)− x ′|2d¸ = inf

T

Z
T (x ′)2d¸+

Z
(x ′)2d¸− 2

Z
x ′T (x ′)d¸

= inf
T

Z
x2dT#¸+

Z
(x ′)2d¸− 2

Z
xT (x)d¸

=

Z
x2d! +

Z
(x ′)2d¸− inf

ı

Z
x ′
»Z

xdı(x | x ′)
–
d¸

=

Z
x2d! +

Z
(x ′)2d¸− inf

ı

Z
xx ′dı(x; x ′)

= inf
ı∈U(!;¸)

Z
|x − x ′|2dı(x; x ′)

B Further empirical studies

B.1 Empirical convergence

The data generating model in this section comes from the setting in Section 5 with high-overlap between covariate
distributions and the estimand of interest is the ATE. We examine three measures of performance of the estimated
weights, w, at approximating 1) the target empirical distribution, a, in terms of 2-Sinkhorn divergence, 2) the dis-
tribution of the self-normalized propensity score, w?, in terms of the 2-Sinkhorn divergence, and 3) the difference
between w and w? under an L2 norm. We present averages across 1000 replications.

The comparator methods we use are: a Probit Generalized LinearModel (GLM), the true data-generatingmodel;
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Figure 3: Convergence of the weights to the distributions specified by the empirical distributions (top) and the distributions specified
by the true propensity score/Radon-Nikodym derivatives (bottom). Weights are a Causal Optimal Transport (COT), Nearest Neighbor
Matching (NNM), a Probit model (GLM), and Stable Balancing Weights (SBW). Lines denote means across 1000 simulations. Both
axes are on the log scale.

Stable Balancing Weights (SBW) using the correct propensity score covariate functions; and Nearest Neighbor
Matching (NNM) with replacement, which is of course equivalent to an unpenalized COT (see Section 4). For
NNM, we use a cost function that is equal to ‖ · ‖pp with p = d=2 + 1 to meet the conditions of Theorem 1 in
Fournier and Guillin (2015).

In Figure 3, we see that the COT weights do a better job of approximating the target distribution under the 2-
Sinkhorn Divergence but that the GLM model does better at targeting the distribution implied by the true inverse
propensity score under the same metric. Of note, SBW displays decaying rates convergence as the sample size
increases and even performs worse than NNM for large sample sizes.

Figure 4 displays the convergence in L2-norm for the various methods. As we would expect, the GLM model
converges fastest to the values of the true inverse propensity score. The COT weights using the Sinkhorn diver-
gence display slightly worse rates of convergence, on average, followed by NNM. SBW again displays a rate that
decays with the sample size, though it does perform better than other methods when sample sizes are small.
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Figure 4: Convergence of the estimated weights to the values of the true inverse propensity score in terms of the L2 norm. Weights
are a Causal Optimal Transport (COT), Nearest Neighbor Matching (NNM), a Probit model (GLM), and Stable Balancing Weights
(SBW). Lines denote means across 1000 simulations. Both axes are on the log scale.

B.2 Empirical coverage of asymptotic confidence interval

The empirical coverage of the confidence interval is the focus of this subsection. We utilize the generating model
from the setting in Section 5 with high-overlap between covariate distributions and a linear outcome model linear
outcome model

Y (0) = Y (1) = X1 + X2 + X3 − X4 + X5 + X6 + ”

with ” ∼ N (0; 1). The target distribution, a, is the full sample, making the estimand of interest the ATE. We run
1000 replications of our experiment.

Figure 5 displays results for increasing sample sizes. In the top part, Figure 5a, we examine the coverage of
the true estimate of zero in a variety of settings. Amazingly, the COT method achieves well-calibrated confidence
intervals without using an augmented estimator or mean constraints. Similar results are observed for the empirical
expectations in Figure 5b. In both cases, the non-augmented balancing constraint method converges a bit faster
than the non-augmented method without balancing constraints.
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(a) Coverage of the true treatment effect
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(b) Coverage of the estimated average treatment effect

Figure 5: Coverage of the asymptotic confidence interval for both the true effect (a) and the average estimated effect (b). Solid
lines denote no basis function balancing (“none”) and the balancing of the means of covariates (“means”).

B.3 Tuning algorithm

In this section, we examine the performance of the tuning algorithm presented in Algorithm 1. We again use
the setting of Section 5 with high-overlap between covariate distributions, use COT with an L2 metric and no
balancing functions, and for a variety sample sizes from 32 to 4096. The target distribution in this case is the full
sample making the estimand the ATE. Performance is measured in terms of an Anderson-Darling statistic between
the estimated weights, w, and the self-normalized inverse propensity score, w?:

1

n

nX
i

(wi − w?i )2

w?i (1− w?i )
:

We use this term rather than a simple L2 norm because it will appropriately adjust for the discrepancy between
weight vectors as the values become small. Finally, we run this experiment 1000 times.

Figure 6 displays the results for the tuning algorithm as the sample size increases. We can see that initially the
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algorithm avoids the highest discrepancy area for intermediate values of the penalty parameter –. As the sample
size increases, the algorithm concentrates on – values that minimize the difference between the true and estimated
propensity scores. This holds true for both the treated and control observations.

C Additional case study: the LaLonde Data

We also validate our method on the LaLonde data set (LaLonde, 1986).

C.1 The National Supported Work Demonstration program

The original data come from a job training program called the National Supported Work Demonstration program
(NSW) in which people were randomized to receive or not receive training from the program in the year 1976. The
outcome of interest was then to look at the difference in incomes between the treatment and control groups in
1978. The original experimental estimate was a difference of $1,794 with a confidence interval of ($551; $3038).
The variables available in the original study include 10 pre-intervention characteristics: earnings and employment
in 1974 and 1975, years of education, whether the person received a high school degree, marital status, and
indicators for black or Hispanic ethnicity.

C.2 LaLonde’s modification

LaLonde then proceeded to modify the original study data by removing the control group and seeing if he could
recover the original treatment effect by utilizing an observational data sample taken from the Current Population
Survey (CPS) with the same variables measured. This gives 185 participants from the NSM in the treated group
and 15,992 non-participants from the CPS in the control group.

C.3 Methods

From the Causal Optimal Transport weighting methods, we include no constraints (“none”) and mean constraints
(“means”). Hyperparameters were tuned with the algorithm detailed in Algorithm 1. The distance metric is an L2

metric on the binary covariates and a Mahalanobis L2 metric on the continuous covariates. We consider the Háyek
estimator in (2), a doubly robust/augmented estimator using linear regression with linear terms of the covariates, a
weighted least squares estimator, and the barycentric projection estimator of Eq. (7) utilizing an assignment matrix
P constructed utilizing an L1 cost.
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Figure 6: Performance of the tuning algorithm in Algorithm 1. Discrepancy between the weights estimated by COT and the true
self-normalized inverse propensity score in terms of an Anderson Darling statistic in blue. The probability that a – value was selected
is given by the histogram.
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C.4 Design diagnostics

We now display the before and after weighting balance in variable means and 2-Sinkhorn divergence to give a
sense of distributional balance. We can see that for all weighting methods both means and distributions are much
more similar after weighting than before (Figure 7).

C.5 Results

In Table 3 and Figure 8, we see that we are able to get very close to the original effects for the Hájek, Augmented,
and weighted least squares approaches. The barycentric projection estimators have a notable upward bias but still
have confidence intervals covering the true effect.

Hajek Augmented Weighted OLS Barycentric ProjectionCOT 1791 (649, 2932) 1791 (650, 2932) 1791 (418, 3164) 2435 (1287, 3583)COT, means 1816 (675, 2957) 1816 (675, 2957) 1816 (532, 3100) 2390 (1243, 3538)
Table 3: Results for treatment effect estimation for the National Work Support demonstration treated group and the weighted set
of controls from the Current Population Survey. The estimate is the difference in 1978 earnings in dollars between the two groups.
Values are estimates with asymptotic 95% confidence intervals.

D Other versions of Causal Optimal Transport

We can also represent COT using Eq. (5):

COT– (a) = min
w∈∆n

OT– (w1; a) + OT– (w0; a) : (16)

In these equations, we can either use an entropy or an L2 penalty and can also incorporate balancing constraints.
We can, of course, show that Theorems 1 and 2 hold.

D.1 Other versions of COT also converge

Starting with the proof of convergence, we need the following additional assumption:
Assumption 6

For COT– (a) in Eq (16) with an entropy penalty: –→ 0 as n→∞

Proof. We begin by proving the L2 regularized weights converge, then the entropically regularized weights, and
finally, the Sinkhorn divergence. We also have that under Assumption 2, w? exists. Then by Lemma 1, w? * ¸.
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Figure 7: An examination in the change in balance before and after utilizing the optimal transport methods with the listed constraints
for the LaLonde data. “COT” corresponds to no constraints and “COT, mean” corresponds to constraints on the mean balance between
distributions.

L2 penalization. Theorem 1 of Blondel et al. (2018) give bounds on OT– (az ; a) :
–

2

X
i :Zi=z;j

„
az;i
n

+
aj
n
− 1

n2

«2

≤ OT– (w?; a) − OT (az ; a) ≤ –

2
min{‖az‖2; ‖a‖2}:: (17)
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Figure 8: Results for treatment effect estimation for the National Work Support demonstration treated group and the weighted set
of controls from the Current Population Survey. The estimate is the difference in 1978 earnings in dollars between the two groups
targeting the average treatment effect of the treated (ATT). We see that all optimal transport methods and estimators displayed are
able to get close to the original treatment effect. Note that “COT” corresponds to no constraints and “COT, mean” corresponds to
constraints on the mean balance between distributions.

Then the upper bounds on the L2 regularized problem for the importance sampling weights are

OT– (az ; a) ≤ OT (w?; a) +
–

2
‖a‖;

where the first inequality follows from rearrangement of Eq. (17) and the fact that min{‖w?‖2; ‖a‖2} is minimized
by the measure where all the observations have the same weight. Also,

‖a‖2 =
X
j

a2
j =

1

n
→ 0:

Thus, OT– (w?; a) → OT (w?; a) and by Corollary 6.9 of Villani (2008), OT (w?; a) → 0.
Now we turn directly to the Causal Optimal Transport weights. The problem is convex (Blondel et al., 2018),

which means that
OT– (wCOT; a) ≤ OT– (c; a)

for all c ∈ ∆n that satisfy the constraints of the problem. Further, by assumption ∃n > 0 such that the importance
sampling weights w? also satisfy the balancing constraints. This means that

OT– (wCOT; a) ≤ OT– (w?; a)
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and both quantities also satisfy the problem constraints for some n.
Finally, if OT– (wCOT; a) goes to 0, this will meanwCOT * ¸ since OT– (wCOT; a) → OT (wCOT; a) . Thus, since

OT– (wCOT; a) → 0 because OT– (w?; a) goes to 0, by Corollary 6.9 in Villani (2008)

wCOT * ¸:

Entropy penalization. The entropy penalized Causal Optimal Transport problem is also a convex problem, which
allows us to conclude

OT– (wCOT; a) ≤ OT– (c; a)

for ∀c ∈ ∆n since wCOT minimizes this loss. This gives us the bound

0 ≤ OT– (wCOT; a) ≤ OT– (w?; a) :

Since the entropy penalized optimal transport problem does not metrize weak convergence, we require that –→ 0.
As –→ 0 (by assumption) and n→∞,

OT– (w?; a) → 0

since w? * ¸. This implies that
OT– (wCOT; a) → 0;

which implies that wCOT * ¸ by Corollary 6.9 in Villani (2008) since at – = 0, OT– = OT.

D.2 Convergence happens at a
√
n-rate

Then semiparametric efficiency also holds with the following additional assumption:
Assumption 7

For L2 penalized weights, c(·; ·) = dX (·; ·)p , with p > d=2 and E |X|q <∞ for q > 2p.

Proof. First, w? exist under Assumption 2 and w? * ¸ by Lemma 1. Also, under Assumption 3, Theorem 1 holds
and wCOT * ¸.

L2 regularization. Theorem 1 of Blondel et al. (2018) give bounds on OT– (az ; a) :
–

2

X
i :Zi=z;j

„
az;i
n

+
aj
n
− 1

n2

«2

≤ OT– (az ; a) − OT (az ; a) ≤ –

2
min{‖az‖2; ‖a‖2}:
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This implies that regularized problem converges at a linear rate to the unregularized problembecausemin{‖az‖2; ‖a‖2} =

‖a‖2 because under an iid assumption aj = 1=n;∀j . Therefore,

OT– (az ; a) ≤ OT (az ; a) +
–

2
‖a‖2:

Then
‖a‖2

2 =
X
j

a2
j =

1

n
→ 0:

This also implies that
lim
n→∞

OT– (wCOT; a) = OT– (¸;¸) = OT (¸;¸)

since wCOT * ¸.
Further, using Theorem 1 in Fournier and Guillin (2015) we have that under Assumption 7,

E{OT (wCOT; a) } ≤ E{OT (wCOT; ¸) + OT (a; ¸) } = O
„

1√
n

«
:

Then,
E {OT (wCOT; a) − OT– (¸;¸) } = E {OT (wCOT; a) } = O

„
1√
n

«
:

Entropy regularization. First, by convexity

0 ≤ OT– (wCOT; a) ≤ OT– (w?; a)

and
0 ≤ OT– (a; a) ≤ OT– (wCOT; a) :

Also,

OT– (a; a) − OT– (¸;¸) ≤ OT– (wCOT; a) − OT– (¸;¸) ≤ OT– (w?; a) − OT– (¸;¸) :

Then with Assumptions 2–4, the conditions of either Theorem 3 of Genevay et al. (2019) or Corollary 1 of Mena
and Weed (2019) hold. This means that

E {OT– (w?; a) − OT– (¸;¸) } = O
„

1√
n

«
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and
E {OT– (a; a) − OT– (¸;¸) } = O

„
1√
n

«
:

Thus,
E {OT– (wCOT; a) − OT– (¸;¸) } = O

„
1√
n

«
:

D.3 Dual formulation

Finally, we also have the following dual form for this problem:
Theorem 4

The dual of each term in Eq. (16) is

max
g;‰

g>a−
X
k

‹k |‰k | −
1

m

X
j

‰>B(Xj)−
X
i ;j ′

I(Zi = z)H∗–
`
gj ′ − ‰>B(Xj ′)− Ci j ′

´
; (18)

where B(X) =

„
B1(X) ::: BK(X)

«>
andH∗– is the convex conjugate of the penalty functionH–.

Note that the convex conjugate of H–(x) = –x log(x) is H∗–(y) = exp{(y − 1)=–} and the convex conjugate of
H–(x) = –x2=2 is H∗–(y) = y2=(2–).
Proof. We present the proof of the dual form provided in Theorem 4. First, some tools from convex analysis (Boyd
and Vandenberghe, 2004).

Strong duality. If strong duality holds then the value of the primal objective at the optimal primal solution is equal
to the dual objective at the optimal dual solution.

Slater’s conditions. Slater’s conditions are that the objective function is convex and only has equality and inequal-
ity constraints .

Slater’s theorem. If Slater’s condition’s hold, then strong duality holds.
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We are now ready to proceed. As a reminder, the primal optimization problem is

COT–;z (a) = argmin
P≥0

X
i ;j

Ci ;jPi ;j + –
1

2
P 2
i ;j

subject to X
i ;j

Pi ;jI(Zi = z) = 1

P>1n = a˛̨̨̨
˛̨X
i ;j

Bk(Xi )Pi ;j −
1

n

X
j ′

Bk(Xj ′)

˛̨̨̨
˛̨ ≤ ‹k ; ∀k ∈ {1; :::; K}:

We first note that we can separate the basis function constraint into the following two inequality constraints
X
i ;j

Bk(Xi )Pi ;j −
1

n

X
j ′

Bk(Xj ′) < ‹k ;

−
X
i ;j

Bk(Xi )Pi ;j +
1

n

X
j ′

Bk(Xj ′) < ‹k :

Further we combine the k basis function upper bounds into one vector ‹ and similarly denoteB(X) as a n×k matrix
of the basis function constraints andB as the average of the basis functions in the target population: 1

m

P
j ′ Bk(Xj ′).

Then we re-write the primal problem in its Lagrangian form, defining 〈x; y〉 = tr(x>y).

L = min
P≥0

max
g;‰L;‰U

〈C;P〉+
–

2
〈P;P〉 − 〈g;P>1n − a〉+

〈‰U ; B(X)>P1n − ‹ − B〉+ 〈‰L;−B(X)>P1n − ‹ + B〉:

Because the primal problem contains only equality and inequality constraints and the primal objective is a convex
function, then strong duality holds,

= max
g;‰L;‰U

min
P≥0
〈C;P〉+

–

2
〈P;P〉 − 〈g;P>1n − a〉+

〈‰U ; B(X)>P1n − ‹ − B〉+ 〈‰L;−B(X)>P1n − ‹ + B〉

= max
g;‰L;‰U

g>a− (‰U + ‰L)>‹ − (‰U − ‰L)>B+

min
P≥0
〈C;P〉+

–

2
〈P;P〉 − g>P>1n + (‰U − ‰L)>B(X)>P1n

= max
g;‰

g>a− ‹‖‰‖1 − ‰>B+

min
P≥0
〈C;P〉+

–

2
〈P;P〉 − g>P>1n + ‰>B(X)>P1n
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where we have combined the two positive dual variables ‰U and ‰L into one unconstrained variable. Then we can
rearrange to get

= max
g;‰

g>a− ‹‖‰‖1 − ‰>B+

min
P≥0
〈C− 1ng

> + B(X)‰1>n ;P〉+
–

2
〈P;P〉:

Then taking the derivative with respect to P,

∇PL = C− 1ng
> + B(X)‰1>n + –P

and finding the critical point of the gradient gives

P =
1

–

`
1ng

> − B(X)‰1>n − C
´

+
;

where the function (x)+ = max(0; x) applied element-wise ensures that theweights are constrained to be positive.
Plugging this back in, the objective is now

L = max
g;‰

g>a− ‹‖‰‖1 − ‰>B −
1

2–

`
1ng

> − B(X)‰1>n − C
´2

+
;

as desired.
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