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Abstract—In this paper an interpolation-based decoding al-
gorithm to decode Gabidulin codes transmitted through a new
communication model is proposed. The algorithm is able to
decode rank errors beyond half the minimum distance by one
unit. Also the existing decoding algorithms for generalized twisted
Gabidulin codes and additive generalized twisted Gabidulin codes
are improved.

I. INTRODUCTION

Delsarte [1], Gabidulin [2] and Roth [3] independently
introduced rank metric codes. Those rank metric codes that
achieve Singleton-like bound are called maximum rank dis-

tance (MRD) codes. Gabidulin codes are the most well known
family of MRD codes. Later this family was generalized
by Kshevetskiy and Gabidulin [4] to generalized Gabidulin

(GG) codes. These codes are linear over Fqn . Sheekey in
[5] defined twsited Gabidulin (TG) codes and established a
way to generalize GG codes to linear MRD codes over a
base fields and then he was followed by Lunardon et al. [6],
Otal and Özbudak [7], Trombetti and Zhou [8] and Sheekey
[9] to define generalized twisted Gabidulin (GTG) codes,
additive generalized twisted (AGTG) codes, Trombetti-Zhou

(TZ) codes and new MRD codes by Sheekey, repcetively. For
more constructions of MRD codes, please refer to [10].

Efficient decoding is required for the wide range of appli-
cations of MRD codes in storage system [3], network coding
[11] and cryptography [12]. There are plenty of algorithms
that decode Gabidulin codes up to half the minimum distance
[2], [13]–[15] and some which decode Gabidulin codes beyond
half the minimum distance by considering restricted commu-
nication models [16]–[20]. The previously proposed restricted
models, can generate error vectors that hold some structure
and they do not look random.

Randrianarisoa in [15] gave an interpolation-based decoding
algorithm for Gabidulin codes and also for GTG codes. This
idea is used later in [21], [22], [23] and [24] to decode AGTG
[7], Non-additive partition MRD codes [25], TZ codes [8] and
Hermitain Rank metric codes [26], respectively.

In this paper we decode Gabidulin codes beyond half the
minimum distance and also improve the decoding algorithms
for GTG in [15] and AGTG codes in [21], [27] by making
some delicate restrictions on the communication model. In the
previously defined restricted models, the error vectors hold
some specific structures, for instance symmetric error vectors
[16], space-symmetric error vectors [20], but the channels in

our model generate error vectors without any specific structure.
Moreover, we use low rate GTG and AGTG codes at the end
of this paper to decode error vectors with rank ≤ k where k
is the dimension of the code.

II. PRELIMINARIES

Definition 1. Let q be a power of prime p and Fqm be an

extension of the finite field Fq. A q-polynomial is a polynomial

of the form L(x) = a0x+ a1x
q + · · ·+ ak−1x

qk−1

over Fqm .

If ak−1 6= 0, then we say that L(x) has q-degree k − 1. The

set of all linearized polynomials of the form L(x) is denoted

by Lk(Fqm).

When q is fixed or the context is clear, it is also customary
to speak of a linearized polynomial as it satisfies the linearity
property: L(c1x + c2y) = c1L(x) + c2L(y) for any c1, c2 ∈
Fq and any x, y in an arbitrary extension of Fqm . Hence a
linearized polynomial L(x) ∈ Lk(Fqm) defines an Fq-linear
transformation L from Fqm to itself. The rank of a nonzero
linearized polynomial L(x) =

∑n
i=0 aix

qi over Fqm is given
by Rank(L) = n−dimFq

(Ker(L)), where Ker(L) is the kernel
of L(x).

Proposition 1. Let L(x) =
∑n−1

i=0 aix
qi over Fqm be a

linearized polynomial with rank t. Then its associated Dickson
matrix

D =
(

a
qi

i−j(modn)

)

n×n
=













a0 a
q
n−1 · · · a

qn−1

1

a1 a
q
0 · · · a

qn−1

2

...
...

. . .
...

an−1 a
q
n−2 · · · a

qn−1

0













, (1)

has rank t over Fqm [15]. Moreover, any t × t submatrix

formed by t consecutive rows and t consecutive columns in D
is non-singular [28], [29].

III. MAXIMUM RANK DISTANCE (MRD) CODES

The rank of a vector a = (a1, . . . , an) in F
n
qm , denoted

as Rank(a), is the number of its linearly independent compo-
nents, that is the dimension of the vector space spanned by ai’s
over Fq. The rank distance between two vectors a, b ∈ F

n
qm is

defined as dR(a, b) = Rank(a− b).

Definition 2. A subset C ⊆ F
n
qm with respect to the rank

distance is called a rank metric code. When C contains at

least two elements, the minimum rank distance of C is given by
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d(C) = min
A,B∈C, A 6=B

{dR(A,B)}. Furthermore, it is called a

maximum rank distance (MRD) code if it attains the Singleton-

like bound |C| ≤ qmin{m(n−d+1),n(m−d+1)}.

The most famous MRD codes are Gabidulin codes [2]
which were further generalized in [4], [30]. The generalized
Gabidulin (GG) codes GGn,k with length n ≤ m and dimen-
sion k over Fqm is defined by the evaluation of

{ k−1
∑

i=0

fix
qsi |fi ∈ Fqm

}

, (2)

where (s,m) = 1, on linearly independent points
α0, α1, . . . , αn−1 in Fqm . The choice of αi’s does not affect
the rank property and it is customary to exhibit Gabidulin
codes and its generalized families without the evaluation points
as in (2). For consistency with the parameters of MRD codes in
[5], [7], [8], through what follows we always assume n = m.

For a linearized polynomial L(x) =
∑k

i=0 lix
qi over Fqn ,

it is clear that Rank(L) ≥ n− k if lk 6= 0. Gow and Quinlan
in [31, Theorem 10] (see also [5]) characterize a necessary
condition for L(x) to have rank n−k as below, see [32], [33]
for other necessary conditions.

Lemma 1. [31] Suppose a linearized polynomial L(x) =

l0x + l1x
q + · · · + lkx

qk , lk 6= 0, in Ln(Fqn) has qk roots

in Fqn . Then Normqn/q(lk) = (−1)nk Normqn/q(l0), where

Normqn/q(x) = x1+q+···+qn−1

is the norm function from Fqn

to Fq.

According to Lemma 1, a linearized polynomial L(x) of
q-degree k has rank at least n − k + 1 if the condition in
Lemma 1 is not met. Sheekey [5] applied Lemma 1 and
constructed a new family of Fq-linear MRD codes, known as
twisted Gabidulin (TG) codes, and the generalized TG codes
are investigated in [6] as follows:

Hk,s(ǫ, h) =

{

k−1
∑

i=0

fix
qsi + ǫf qh

0 xqsk | fi ∈ Fqn

}

, (3)

where n, k, s, h are positive integers such that k < n and
(s, n) = 1. Here ǫ is a nonzero element in Fqn satisfying
Normqsn/qs(ǫ) 6= (−1)nk. Later Otal and Özbudak [7] further
generalized this family by manipulating some terms of lin-
earized polynomials and constructed the following Fq0 -linear
MRD codes, known as additive generalized twisted Gabidulin

(AGTG) codes

Ak,s,q0 (ǫ, h) =

{

k−1
∑

i=0

aix
qsi + ǫa

qh
0

0 xqsk | ai ∈ Fqn

}

, (4)

where q = qu0 and nonzero ǫ in Fqn satisfies
Normqsnu

0
/qs

0
(ǫ) 6= (−1)nku.

For the rest of this paper, we use the notation [i] := qsi for
i = 0, . . . , n− 1 , where gcd(s, n) = 1, for simplicity.

IV. NEW COMMUNICATION MODELS

In this section we define two new communication models.
The models contain two authorized parties as sender and
receiver. The sender encodes his/her message and then an
error vector with rank t is added to the encoded message. The
receiver will be able to decode the error vector and recover the
message. Each models uses a different form of interpolation
polynomial to generate its corresponding error vector.

A. First Model

In this modes, a linearized polynomial of the form

eθ1,θ2(x) =

n−1
∑

i=0

zix
[i], zi ∈ Fqn , (5)

z
[n/2]
0 − z0 = αθ1 , (6)

z
[n/2]
k−1 − zk−1 = αθ2 , (7)

is used as the error interpolation polynomial where θ1, θ2 ∈
[0, n − 1] are the models’ public parameters. We denote this
model by Qθ1,θ2 .

B. Second Model

In this model we have two cases:

• case 1. Suppose n is an odd integer, then

b(x) = b0x
[0] +

n−1

2
∑

i=1

(bix
[i] + (bix)

[n−i]), (8)

is the error interpolation polynomial where b̃ =
(b0, . . . , bn−1), bi ∈ Fqn and

bn−i = b
[n−i]
i for i = 1, . . . ,

n− 1

2
. (9)

• case 2. Suppose n is an even integer, then

h(x) = h0x
[0]+

n
2
−1

∑

i=1

(hix
[i]+(hix)

[n−i−1])+hn−1x
[n−1],

(10)
is the error interpolation polynomial where h̃ =
(h0, . . . , hn−1), hi ∈ Fqn , and

hn−i−1 = h
[n−i−1]
i for i = 1, . . . ,

n

2
− 1. (11)

Suppose s(x) be one of the polynomials eθ1,θ2 , b(x) or h(x).
We use s(x) such that

s(αi) = ei, i = 0, . . . , n− 1, (12)

where e = (e0, . . . , en−1) is the error vector and α0, . . . , αn−1

are ordered linearly independent points in Fqn over Fq .



V. DECODING GABIDULIN CODES BEYOND HALF THE

MINIMUM DISTANCE
A. Encoding

Let GGn,k, where n is even and k is odd, be a
Gabidulin code with ordered Fq-linearly independent evalu-
ation points α0, α1, . . . , αn−1. The encoding of a message
m = (m0, . . . ,mk−1) is the evaluation of the following
linearized polynomial at points α0, α1, . . . , αn−1:

f(x) =

k−1
∑

i=0

mix
[i], (13)

Let m̃ = (m0,m1, . . . ,mk−1, 0, . . . , 0) be a vector of

length n over Fqn and M =
(

α
[j]
i

)

n×n
be the Moore matrix

generated by αi’s, where 1 ≤ i, j ≤ n− 1. Then the encoding
of the message m can be expressed as

(m0,m1, . . . ,mk−1) 7→ c = (f(α0), . . . , f(αn−1)) = m̃ ·M
T
,

(14)

where MT is the transpose of matrix M . In this process since
only the first k components of m̃ are nonzero, so only the first
k rows of M are involved.

B. Decoding errors with rank t ≤ n−k+1
2

Let the error vector e = (e0, . . . , en−1) of rank t be added
to the codeword c = (c0 . . . , cn−1) during transmission and
let r = (r0 . . . , rn−1) = c+ e be the received vector.

Suppose we use the communication model Qθ1,θ2 and let
eθ1,θ2 in (5) be the error interpolation polynomial such that

eθ1,θ2(αi) = ei = ri − ci, i = 0, . . . , n− 1, (15)

where α0, . . . , αn−1 are ordered linearly independent points
over Fq in Fqn . One can see that the error vector e is
uniquely determined by the polynomial eθ1,θ2(x) and denote
z = (z0, . . . , zn−1). From (14) and (15) it follows that

r = c+ e = (m̃+ z) ·MT .

Since M is nonsingular, this can be rewritten as

r · (MT )−1 =(c0, c1, . . . , ck−1, 0, . . . , 0)+

(z0, z1, . . . , zk−1, zk, . . . , zn−1).

Let r̃ = (η0, . . . , ηn−1) = r · (MT )−1, then the known
coefficients zi’s are

(zk, . . . , zn−1) = (ηk, . . . , ηn−1), (16)

and we also have the auxiliary equations (6) and (7) which
we will use later.

C. Reconstructing the interpolation polynomial eθ1,θ2(x)

Let

E =
(

z
[j]
i−j (mod n)

)

n×n
= (E0 E1 . . . En−1) , (17)

be the Dickson matrix associated with the linearized
polynomial eθ1,θ2(x), where the indices i, j run through
{0, 1, . . . , n− 1} and Ej is the j-th column of E.

According to Proposition 1, since eθ1,θ2(x) has rank t, so
E has rank t and any t × t sub-miatrix of E which contains
t consecutive rows and columns is nonsingular. Hence the
first column E0 can be written as the linear combination of
columns E1 . . . , Et as E0 = γ1E1 + γ2E2 + · · · + γtEt,
where γ1, . . . , γt are elements in Fqn . Then we can obtain
the following recursive equations

zi = γ1z
[1]
i−1 + γ2z

[2]
i−2 + · · ·+ γtz

[t]
i−t, 0 ≤ i < n. (18)

Due to the relation in (16), we already know zk, . . . , zn−1.
These known coefficients leads us to the following linear
recursive equation

zi = γ1z
[1]
i−1 + γ2z

[2]
i−2 + · · ·+ γtz

[t]
i−t, k + t ≤ i < n, (19)

where γ0 . . . , γt are unknowns. In [34], the q-linearized shift
register is given and the above recursive relation (19) can be
seen as its generalized version. Here (γ1, . . . , γt) is the con-
nection vector of the shift register. We call the equation (19) as
the key equation for the decoding algorithm in this paper and
due to the properties of shift register, finding γ1, . . . , γt leads
us to find the unknown coefficients z0 . . . , zk−1, recursively.
The most complex task in our decoding algorithm is finding
γ1, . . . , γt and then the remaining task (calculating unknown
zi’s) will be a recursive process. We consider Rank(e) = t ≤
n−k+1

2 , i.e., 2t+ k ≤ n+1, and the task of finding γ1 . . . , γt
via (19) is divided into two cases:
Case 1: If 2t + k < n + 1. In this case, (19) contains
n−k−t ≥ t affine equations and t variables γ1, . . . , γt, which
has rank t. Hence the variables γ1, . . . , γt can be uniquely
determined. Here any Gabidulin decoder can be applied, but
here we assume the code has high code rate, for which
the Berlekamp-Massey algorithm is more efficient and it has
polynomial time complexity.

Case 2: If 2t + k = n + 1. In this case (19) is an under-
determined system of n − k − t = t − 1 equations with
t variables γ1, . . . , γt. A set of solutions (γ1, . . . , γt) with
dimension one can be expressed of the form

γ +Xγ′ = (γ1 +Xγ′
1, . . . , γt +Xγ′

t), (20)

where γ, γ′ are fixed elements in F
t
qn and X runs through

Fqn . The modified BM algorithm in [34, Th. 10] can give the
solution with a free variable X .

If we take i = 0 and i = k + t − 1 in (19) and substitute
the solution (20), then we get

z0 = δ0 + δ1X, (21)

and

zk+t−1 = δ2 + δ3X + (γt + γ′
tX)z

[t]
k−1, (22)

where in (21) and (22), z0, zk−1 and X are the only unknowns
and δ0, δ1, δ2, δ3 are derived from γ, γ′ and known coefficients
zk, . . . , zn−1. X = −γt/γt if γt + γ′

tX = 0 and this solution



can be verified by δ2, δ3 and a known coefficient zi in (22).
Substituting (21) in (6) gives

τ0X
[n/2] + τ1X + τ2 = 0. (23)

As the next step, we rise both sides of (22) to the [−t]-th
power and obtain

zk−1 =
a1 + a2X

[−t]

a3 + a4X [−t]
. (24)

We also substitute (24) in (7) and rise both sides to the [t]-th
power to get

u1X
[n/2]+1 + u2X

[n/2] + u3X + u4 = 0. (25)

Finally, one can substitute (23) into (25) and obtain the
following quadratic polynomial equation over Fqn

µ1X
2 + µ2X + µ3 = 0. (26)

If µ1 = 0, then X = −µ3/µ2 and if µ1 6= 0, equation (26)
can be reduced to

X2 + rX + s = 0, (27)

where r = µ2/µ1 and s = µ3/µ1. When the characteristic of
Fq is odd, equation (27) can be solved explicitly as follows:

a) if r2 − 4s is a quadratic residue in Fqn , then it has two

solutions X = −r±
√
r2−4s
2 ;

b) if r2 = 4s, then it has a single solution X = −r/2;
c) it has no solution in Fqn otherwise.

When the characteristic of Fq is two, we have the following
cases:

1) if r = 0, it has a single solution X = s2
nl−1

, where
q = 2l;

2) if r 6= 0, the equation (27) can be reduced to y2+y = β,
where X = ry and β = s/r2. Then y2 + y = β has

• no zero if
∑n−1

i=0 β2i = 1;
• two zeros of the form W =

∑n−1
j=1 β2j (

∑j−1
k=0 c

2k)

and W +1 where
∑n−1

i=0 β2i = 0 and c is any fixed
element such that

∑n−1
i=0 c2

i

= 1.

We expect our quadratic equation to have roots X in Fqn

that lead to solutions γ+Xγ′ in (19) and z0 in (21). With the
coefficients γ1, . . . , γt and also the initial state zn−1, . . . , zn−t,
one can recursively compute z1, . . . , zk−1 according to (18).
Note that even if the equation (26) has two different solutions,
they don’t necessarily lead to correct coefficients of the error
interpolation polynomial. In fact, by the expression of the
Dickson matrix of eθ1,θ2(x), the correct eθ1,θ2(x) should have
the sequence (zn−1, . . . , zn−t, . . .) with period n. In other
words, if the output sequence has period n, we know that
the corresponding polynomial eθ1,θ2(x) is the desired error
interpolation polynomial.

VI. AN IMPROVEMENT OF THE DECODING OF GTG AND

AGTG CODES

In the interpolation-based decodings of GTG and AGTG
codes in [15], [27], [35] and [21], when the rank of the error
vector e is t < n−k

2 , one can use any decoder of a Gabidulin
code GGn,k+1 to recover the message. But when t = n−k

2 ,
the problem of decoding the error vector is transformed to the
problem of solving the projective polynomial P (x) = xqw+1+
u1x+ u2 = 0 over Fqn . In the following, we show that how
one can decode GTG and AGTG codes more efficiently if
he/she communicates via the communication model Qθ1,θ2 .
Moreover, we show that one will be able to decode any error
vector with rank t ≤ k added to a low rate GTG and AGTG
code if one uses the second communication model. In this
paper by a low rate code we mean a code with k ≤ ⌈n−1

2 ⌉.

A. Decoding GTG and AGTG codes

Here we explain an improvement of the decoding algorithm
for GTG codes and the same procedure can be applied to
AGTG codes with some minor differences. In this subsection
we assume n as an even positive integer. To be self-contained,
we recall the decoding algorithm from [21] where the gen-
eral communication model is replaced by the communication
model Qθ1,θ2 .

1) Encoding: The encoding of a message m =
(m0, . . . ,mk−1) is the evaluation of the following linearized
polynomial at ordered points α0, α1, . . . , αn−1:

f(x) =

k−1
∑

i=0

mix
[i] + ǫmqh

0 x[k]. (28)

Then the encoding of GTG codes can be expressed as

(m0,m1, . . . ,mk−1) 7→ c = (f(α0), . . . , f(αn−1)) = m̃ ·M
T
,

(29)

where m̃ = (m0, . . . ,mk−1, ǫm
qh

0 , 0, . . . , 0).
2) Decoding: Let the error vector e = (e0, . . . , en−1) of

rank t be added to the codeword c = (c0 . . . , cn−1) during
transmission and let r = (r0 . . . , rn−1) = c+e be the received
vector. Take e(x) be the error interpolation polynomial of the
form given in (5) where instead of (7) we have

z
[n/2]
k − zk = αθ2 . (30)

Then
e(αi) = ei = ri − ci, i = 0, . . . , n− 1. (31)

As we mentioned before, e is uniquely determined by the
polynomial e(x) and denote z = (z0, . . . , zn−1). From (14)
and (15) it follows that

r = c+ e = (m̃+ z) ·MT .

This is equivalent to

r · (MT )−1 =(m0,m1, . . . ,mk−1, ǫm
qh

0 , 0, . . . , 0)+

(z0, z1, . . . , zk−1, zk, zk+1, . . . , zn−1).

Letting r̃ = (η0, . . . , ηn−1) = r · (MT )−1, we obtain

(zk+1, . . . , zn−1) = (ηk+1, . . . , ηn−1), (32)



and we also have the relations (6) and (30). In (32) we have
n− k− 1 known coefficients zi’s, while in (16) we had n− k
known coefficients ‘i’s.

3) Reconstructing the interpolation polynomial e(x): If we
write the 0th column E0 of the Dickson matrix associated to
e(x) as the linear combination of E1, . . . , Et we will get the
recursive equation

zi = γ1z
[1]
i−1 + γ2z

[2]
i−2 + · · ·+ γtz

[t]
i−t, 0 ≤ i < n, (33)

same as (18), where the subscripts in zi’s are taken modulo n.
Recall that the elements zk+1, . . . , zn−1 are known from (32).
Hence we obtain the following linear equations to replace the
key equation in (19), with known coefficients zi and variables
γ1, . . . , γt:

zi = γ1z
[1]
i−1+γ2z

[2]
i−2+ · · ·+γtz

[t]
i−t, k+ t+1 ≤ i < n. (34)

For an error vector with Rank(e) = t ≤ n−k
2 , i.e., 2t+k ≤

n, we can divide the discussion into two cases.
Case 1: 2t+k < n. In this case, (34) contains n−k−t−1 ≥ t
affine equations in variables γ1, . . . , γt, which has rank t.
Hence the variables γ1, . . . , γt can be uniquely determined.
Any Gabidulin GGn,k+1 decoder can be applied. Here we
assume the code has high code rate, for which the Berlekamp-
Massey algorithm gives a better complexity. Although the
recurrence equation (34) is a generalized version of the ones
in [13] and [34], the modified Berlekamp-Massey algorithm
can be applied here to recover the coefficients γ1, . . . , γt.

Case 2: 2t+k = n. In this case (34) gives n−k−t−1 = t−1
independent affine equations in variables γ1, . . . , γt. For such
an under-determined system of linear equations, we will have
a set of solutions (γ1, . . . , γt) that has dimension 1 over Fqn .
Namely, the solutions will be of the form

γ +Xγ′ = (γ1 +Xγ′
1, . . . , γt +Xγ′

t),

where γ, γ′ are fixed elements in F
t
qn and X runs through

Fqn . As shown in [34, Th. 10], the solution can be derived
from the modified BM algorithm with a free variable X .

Observe that in (33), by taking i = 0 and i = k + t and
substituting the solution γ +Xγ′, one gets the following two
equations

z0 = δ′0 + δ′1X, (35)

and
zk+t = δ2 + δ3X + (γt + γ′

tX)z
[t]
k , (36)

where in (35) and (36), z0, zk and X are unknowns. Using
equations (6),(30), (35) and (36) instead of (6),(7), (21) and
(22) and going through the same procedure in Subsection V-C,
we can get a quadratic equation of the form

µ1X
2 + µ2X + µ3 = 0. (37)

which can be solved in polynomial time as discussed in
Subsection V-C. Hence, if the communication parties use the
model Qθ1,θ2 to transfer their messages, then GTG and AGTG
codes can be decoded with less time complexity.

VII. DECODING ERROR RANK VECTORS WITH ANY RANK

t ≤ k

In this subsection we consider the second communication
model described in IV-B , but the generated error vectors are
still look random and they can have any rank up to n.

In the decoding of GTG codes in Subsection VI-A, let r̃ =
(η0, . . . , ηn−1) = r · (MT )−1, then we obtain

(zk+1, . . . , zn−1) = (ηk+1, . . . , ηn−1), (38)

and also based on the definition of GTG codes we have an
auxiliary equation

− ǫzq
h

0 + zk = ηk − ǫηq
h

0 , (39)

since ǫmqh

0 + zk = ηk, and m0 + z0 = η0. Let k ≤ ⌈n−1
2 ⌉.

If we use (8) ((10)) as the error interpolation polynomial,
one can employ (9) ((11)) and directly obtain z1, . . . , zk from
the known coefficients in (38). The only remaining unknown
coefficient z0 can be calculated using the auxiliary equation
(39) since zk is already calculated.

Hence, by restricting the error interpolation polynomial we
can decode any rank error vector with rank t ≤ k added to a
low rate GTG (AGTG) code.

Remark 1. In [20], an application of space-symmetric rank

errors in code-based cryptography is proposed. But space-

symmetric rank errors similar to symmetric rank errors [16],

contain some structures and this may lead to a new structural

attack. If we use rank error vectors defined in Subsection VII

instead of space-symmetric rank errors and use GTG codes

instead of Gabidulin codes in GPT variants [36] and [37],

we can avoid potential structural attacks and possibly get

the same key size found in [20, Section VI.]. This will be

investigated in future works.

Remark 2. The advantage of the model Qθ1,θ2 or even the

second model IV-B is that it can generate error vectors that do

not carry a specific structure since the structured coefficients’

vector of the error interpolation polynomial goes through an

interpolation process on linearly independent points. Even in

subsection VI. the error space has dimension n/2 but it con-

tains error with high or low ranks with no specific structure.

So based on this observation, to find more suitable rank-based

scheme, besides looking for new MRD codes and find the most

efficient one, one can also look for new communication models

with higher error correctability.

VIII. CONCLUSION

In this paper we made some delicate restrictions on the
communication model and decode Gabidulin codes beyond
half the minimum distance by one unit in polynomial time. The
error vectors which are added to the codewords in our model,
do not carry a specific structure. Moreover, we improved the
decoding algorithms for GTG and AGTG codes proposed in
[15] and [21], if two parties communicate through the first
defined models. We are also able to decode any error vector
with any rank t ≤ k added to low rate (k ≤ ⌈n−1

2 ⌉) GTG and
AGTG codes if we employ the second communication model.
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