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Temporal set prediction is becoming increasingly important as many companies employ recommender systems in their online
businesses, e.g., personalized purchase prediction of shopping baskets. While most previous techniques have focused on leveraging a
user’s history, the study of combining it with others’ histories remains untapped potential. This paper proposes Global-Local Item
Embedding (GLOIE) that learns to utilize the temporal properties of sets across whole users as well as within a user by coining the
names as global and local information to distinguish the two temporal patterns. GLOIE uses Variational Autoencoder (VAE) and
dynamic graph-based model to capture global and local information and then applies attention to integrate resulting item embeddings.
Additionally, we propose to use Tweedie output for the decoder of VAE as it can easily model zero-inflated and long-tailed distribution,
which is more suitable for several real-world data distributions than Gaussian or multinomial counterparts. When evaluated on three
public benchmarks, our algorithm consistently outperforms previous state-of-the-art methods in most ranking metrics.
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1 INTRODUCTION

Many recommendation tasks can be viewed as a problem of predicting the next set given the sequence of sets, e.g.,
predicting the next basket in online markets and the next playlist in streaming services. Previous works mainly focused
on the local information (a given user’s history), applying RNNs [2, 4, 20] or self-attention [21] to learn the temporal
tendency of a sequence of sets within a user. From the recommender system point of view, temporal set prediction
can have a sparsity problem as many users interact with only a small number of items. Throughout the recommender
system literature, the sparsity problem has been dealt with low-rank approximation or collaborative filtering [11, 15–17].
However, such attempts have been less explored in temporal set prediction literature.

In this paper, we propose Global-Local Item Embedding (GLOIE) that integrates global and local information for
temporal set prediction. To capture the global information, we utilize the Variational Autoencoders (VAEs) [10, 12]
which are effective on noisy and sparse data. GLOIE then integrates the local embeddings, that are learned through
dynamic graphs [21], with global embeddings by using an attention method. In addition, we enhance the performance
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2 Jung et al.

Fig. 1. Overview of GLOIE. We first make sum of time decayed vector x𝑖 (left part of the figure). VAE maximizes the ELBO of each x𝑖 .
The weighted sum of x̂𝑖 𝑗 ·w∗ and z𝑖 𝑗 becomes final embedding for interacted items. The weight 𝛼 is determined by the attention
mechanism. For the items that the user never interacted, we just use x̂𝑖 𝑗 .

of GLOIE by using Tweedie distribution for the likelihood of VAE instead of Gaussian or multinomial distributions. We
show that purchase logs follow zero-inflated and long-tail distributions similar to the Tweedie distribution.

We conduct experiments on three public benchmarks, i.e. Dunnhumby Carbo, TaoBao, and Tags-Math-Sx. Empirical
results demonstrate that the proposed method outperforms state-of-the-art methods on most metrics. The main
contributions of the paper are summarized as follows:

• We propose GLOIE which differentiate global and local information and integrates them.
• We claim that using Tweedie output for VAE decoder is beneficial as it naturally models two properties of data
distributions from temporal set prediction problems: zero-inflated and long-tailed.

• We achieve state-of-the-art performance on three public benchmarks.

2 PRELIMINARIES

2.1 Problem Definition

Let U = {𝑢1, 𝑢2, . . . , 𝑢𝑁 } be set of users and E = {𝑒1, 𝑒2, . . . , 𝑒𝑀 } be set of items. Given a user 𝑢𝑖 ’s sequence of sets
S𝑖 = {𝑆𝑘

𝑖
| 1 ≤ 𝑘 ≤ 𝑇𝑖 }, our goal is to predict next set 𝑆𝑇𝑖+1

𝑖
. Each set 𝑆𝑘

𝑖
can also be represented as a binary vector form

v𝑘
𝑖
, where each element v𝑘

𝑖,𝑗
= 1(𝑒 𝑗 ∈ 𝑆𝑘𝑖 ). 1(𝑥) is a indicator function which returns 1 if x is true and 0 otherwise. We

will use the set notation 𝑆𝑘
𝑖
and v𝑘

𝑖
interchangeably to denote user 𝑢𝑖 ’s 𝑘-th set.

2.2 Variational Autoencoders

Variational Autoencoders (VAEs) [10, 13] are a class of deep generative models. VAEs provide latent structures that can
nicely explain the observed data (e.g., customer’s purchase history). Formally speaking, VAEs find the latent variables (z)
that maximize the evidence lower bound (ELBO), a surrogate objective function for the maximum likelihood estimation
of the given observation x:

log 𝑝𝜃 (x) ≥ E𝑞𝜙 (z |x) [log𝑝𝜃 (x|z)] − 𝐷𝐾𝐿 (𝑞𝜙 (z | x) | |𝑝 (z)) (1)

where 𝜃 and 𝜙 are model parameters of a decoder and an encoder, respectively.
Encoders are commonly structured by multilayer perceptrons (MLPs) that produce Gaussian distributions over the

latent variable z. On the other hand, decoders are designed to have different probability distributions of output layer
depending on the characteristics of datasets. For example, Gaussian distribution and multinomial distribution are often
used to represent the real-valued continuous and binary data, respectively.
Manuscript submitted to ACM
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3 METHOD

3.1 Learning Global-Local Information by VAE

We are interested in modeling other users’ history as well as the given user’s history. We proceed with this under the
VAE framework. However, a difficulty arises: every user has a different length of the sequence of sets. To resolve this,
we sum time decayed sequence of sets.

x𝑖 =
∑︁

1≤𝑘≤𝑇𝑖
v𝑘𝑖 · 𝜏𝑇𝑖−𝑘 (2)

where v𝑘
𝑖
is a vector representation of user 𝑢𝑖 ’s 𝑘th set 𝑆𝑘

𝑖
, 𝜏 ∈ (0, 1) is a decay factor and𝑇𝑖 is the length of the user 𝑢𝑖 ’s

sequence as explained in Section 2.1. Note that 𝑘 in v𝑘
𝑖
represents the index and 𝑇𝑖 − 𝑘 in 𝜏𝑇𝑖−𝑘 represents the power.

We then update our model to maximize the ELBO of each 𝑥𝑖 :

L𝑣𝑎𝑒 = Ex𝑖∼D𝑢

[
−Ez𝑖∼𝑞 (z |x𝑖 ) [log 𝑝 (x𝑖 | z𝑖 )] + 𝐷𝐾𝐿 (𝑞(z | x𝑖 ) | |𝑝 (z))

]
(3)

whereD𝑢 is a set of sum of time decayed sequence of sets x𝑖 . Equation (3) is merely an expectation of negative of Equation
(1) over D𝑢 . Equation (3) can be understood as the low-rank approximation with the constraint 𝐷𝐾𝐿 (𝑞(z | x𝑖 ) | |𝑝 (z)).

As most people interact with a few items, v𝑖 contains many 0s and so does x𝑖 . However, the reconstructed vector x̂𝑖
generated from the following process:

z𝑖 ∼ 𝑞(𝑧 | x𝑖 ), x̂𝑖 ∼ 𝑝 (x𝑖 | z𝑖 ) (4)

is a dense vector and contains the information of expected preference of user 𝑢𝑖 to item 𝑒 𝑗 in x̂𝑖 𝑗 even though the user
𝑢𝑖 never interacted with item 𝑒 𝑗 . Consider two users 𝑢𝑖1 and 𝑢𝑖2 with similar histories. z𝑖1 and z𝑖2 should be close as x𝑖1
and x𝑖2 are close. In turn, the distance between two reconstructed vectors x̂𝑖1 and x̂𝑖2 is small. Hence, even if user 𝑢𝑖1
never interacted with item 𝑒 𝑗 , x̂𝑖1 𝑗 should be high if x𝑖2 𝑗 is high.

Note that Hu et al. [5]’s Personalized Item Frequency (PIF) is similar to our sum of time decayed vectors. However,
since their work is based on K-Nearest Neighbor, two shortcomings arise: 1) the inference time grows cubic with the
number of users and 2) they cannot use features unlike traditional deep learning approaches.

3.2 Tweedie Output on Decoder

When training VAE, using gaussian output on 𝑝 (x | z) is a straightforward option. However, the distributions of the
data generated from temporal set prediction problems are zero-inflated and long-tailed as shown in Figure 2.

Tweedie distribution is a special case of exponential dispersion model (EDM) with a power parameter 𝑝 and the
variance function 𝑉 (𝜇) = 𝜇𝑝 [6]. Tweedie distribution with 1 < 𝑝 < 2 corresponds to a class of compound Poisson
distributions [7]. Consider two step sampling process 𝑁 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) and 𝑋𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) for 𝜆, 𝛼, 𝛽 > 0 and
𝑖 = 1, . . . , 𝑁 . Now we define a random variable 𝑍 as follows:

𝑍 =


0 𝑁 = 0

𝑋1 + · · · + 𝑋𝑁 𝑁 > 0
. (5)

It is straightforward that the distribution defined by Equation (5) is zero-inflated for small enough 𝜆 and long-tailed
as 𝑍 is addition of 𝑋𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) for 𝑁 > 0. Hence using Tweedie output on VAE’s decoder for temporal set
prediction is beneficial as Tweedie distribution easily captures the properties of distributions that are shown in Figure 2.

Manuscript submitted to ACM
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(a) 𝜇 = 0.9, 𝑝 = 1.3 (b) 𝜇 = 1, 𝑝 = 1.9 (c) 𝜇 = 0.2, 𝑝 = 1.9

(d) DC (e) TaoBao (f) TMS

Fig. 2. Upper row: Histogram plot of samples from Tweedie distribution. Lower row: Histogram plot of elements of sum of decayed
vector x𝑖 . Across all benchmarks, the distributions are zero-inflated and long-tailed.

Learning the mean parameter 𝜇 and the power parameter 𝑝 of Tweedie distribution via maximum likelihood is easy.
Minimizing

L𝑇𝑤𝑒𝑒𝑑𝑖𝑒 (𝑧, 𝜇, 𝑝) = −𝑧 · 𝜇
1−𝑝

1 − 𝑝 + 𝜇2−𝑝

2 − 𝑝 (6)

maximizes log-likelihood. Here 𝑧 is the target. See Yang et al. [19] for details.
A line of works chose distributions other than Gaussian or Bernoulli on matrix factorization and VAE [3, 12, 18].

Poisson distribution or multinomial distribution are usual choices. This paper is the first attempt to apply Tweedie
distribution for VAE’s decoder output to the best of our knowledge.

3.3 Integrating Global-Local Information

Though VAE with Tweedie output is already competent, it tends to underestimate a user’s preference for the frequently
interacted items. This tendency owes to the learning objective of VAE as the model has to maximize the likelihood of 0
for never interacted items. This sometimes sacrifices the ability to maximize the likelihood of values of interacted items.
Hence, we integrate item embeddings of frequently interacted items which are learned by state-of-the-art models to
our VAE. We use DNNTSP [21] as it is the state-of-the-art method. DNNTSP makes user-dependent embeddings of
items that are interacted at least once via dynamic graph neural networks. We denote z𝑖 𝑗 as the embedding of user 𝑢𝑖
for item 𝑒 𝑗 .

When it comes to combining VAE with embeddings z𝑖 𝑗 , a problem arises: the reconstructed value x̂𝑖 𝑗 of Equation (4)
is a scalar while learned embedding z𝑖 𝑗 is a vector. Hence, to match the size between x̂𝑖 𝑗 and z𝑖 𝑗 , we simply multiply
a vector w∗, which is of same size as z𝑖 𝑗 , to x̂𝑖 𝑗 . We defer the discussion on the selection of w∗ to latter part of this
section.

Now we combine updated embedding with x̂𝑖 𝑗 ·w∗s and z𝑖 𝑗 s. The updated embedding z̃𝑖 𝑗 is defined as
Manuscript submitted to ACM
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Table 1. Statistics of public benchmarks

Dataset # of users # of sets # of elements #E/S #S/U #E/U

DC 9,010 42,905 217 1.52 4.76 5.44
TaoBao 113,347 628,618 689 1.10 5.55 4.96
TMS 15,726 243,394 1,565 2.19 15.48 18.05

z̃𝑖 𝑗 =

𝐴𝑡𝑡 (x̃𝑖 𝑗 ·w∗, z𝑖 𝑗 ) 𝑒 𝑗 ∈

⋃
𝑘 𝑆

𝑘
𝑖

x̂𝑖 𝑗 ·w∗ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

where x̃𝑖 𝑗 =
x̂𝑖 𝑗

max𝑗 x̂𝑖 𝑗 − 0.5 which normalizes all values of x̂𝑖 to [0.5,−0.5] and 𝐴𝑡𝑡 (q, k) is defined as follows:

𝐴𝑡𝑡 (q, k) = 𝛼 · q + (1 − 𝛼) · k, where𝛼 = 𝜎

(
(W𝑞 · q)𝑇 (W𝑘 · k)

)
. (8)

Lastly, we calculate the affinity of a user 𝑢𝑖 to item 𝑒 𝑗 by

ŷ𝑖 𝑗 = 𝜎
(
z̃𝑇𝑖 𝑗w0 + 𝑏0

)
(9)

where 𝜎 (𝑥) = 1
1+𝑒−𝑥 . We choose multi-label soft margin loss for training:

L𝑇𝑆𝑃 = − 1
𝑁

𝑁∑︁
𝑖

𝑀∑︁
𝑗

y𝑖 𝑗 log ŷ𝑖 𝑗 + (1 − y𝑖 𝑗 ) log(1 − ŷ𝑖 𝑗 ) . (10)

We now going back to the selection of w∗ in Equation (7). We set w∗ = w0 in Equation (9) though we can set w∗

as a learnable parameter. If we set w∗ = w0, Equation (9) becomes ŷ𝑖 𝑗 = 𝜎
(
x̂𝑖 𝑗 ·w𝑇0w0 + 𝑏0

)
for non-interacted item

𝑒 𝑗 ∉
⋃
𝑘 𝑆

𝑘
𝑖
, hence it preserves the order of affinity that is learned by VAE. We also run experiments with learnable

parameter w∗ but the performance was on par with w∗ = w0.

4 EXPERIMENTS

4.1 Benchmarks

We evaluate our method on three public benchmarks: Dunnhumby Carbo (DC), TaoBao, and Tags-Math-Sx (TMS). We
partitioned each dataset into train, validation and test into 70%, 10% and 20% respectively following Yu et al. [21]. See
Table 1 for statistics of benchmarks.

4.2 Compared Methods

We compare four methods: Toppop, PersonalToppop, Sets2Sets and DNNTSP.
Toppop simply serves the items that are interacted the most across all users. PersonalToppop serves the items that

the given user interacted with the most. Sets2Sets uses encoder-decoder framework to predict the next set [4]. Set
embeddings are made by pooling operation and set-based attention is used to model temporal correlation relation. This
method also models repeated elements. DNNTSP is composed of three components: Element Relationship Learning
(ERL), Temporal Dependency Learning (TDL) and Gated Information Fusing. ERL is simply a dynamic weighted graph
neural networks. TDL captures temporal dependency. By Gated Information Fusing each user shares the embeddings of

Manuscript submitted to ACM



6 Jung et al.

0.2 0.4 0.6 0.8 1.0
VAE Decay Factor ( )

0.26

0.28

0.30
R

EC
A

LL
@

10

GLOIE VAE

0.2 0.4 0.6 0.8 1.0
VAE Decay Factor ( )

0.18

0.19

0.20

N
D

C
G

@
10

GLOIE VAE

0.2 0.4 0.6 0.8 1.0
VAE Decay Factor ( )

0.28

0.30

PH
R

@
10

GLOIE VAE

Fig. 3. Metric@10 by varying VAE decay factor (𝜏 ) on TaoBao dataset.

uninteracted items. Hence DNNTSP can be seen as an ensemble of model which learns local information and Toppop

model.

4.3 Results & Analyses

The results of our evaluation on three public benchmarks are shown in Table 2. We consider three metrics: Recall, Normal-

ized Discounted Cumulative Gain (NDCG) and Personal Hit Ratio (PHR). 𝑃𝐻𝑅@𝐾 is calculated as
∑𝑁 ′
𝑖=1 1

(��𝑆𝑖 ∩ 𝑆𝑖 �� > 0
)
/𝑁 ′

where 𝑁 ′ is the number of test users, 𝑆𝑖 is the predicted top-K elements, and 𝑆𝑖 is the ground truth set.
We trained VAE for 30 epochs and then trained DNNTSP for 30 epochs. We used only one layer for the VAEs across

all benchmarks. For the decay factor in Equation (2), we set 𝜏 = 0.6. As illustrated in Figure 3, 𝜏 = 0.6 shows the best
performance on TaoBao dataset. We empirically observe that 𝜏 = 0.6 could provide decent results across all metrics on
the other datasets as well. The dimension of latent space is 128 for DC and TaoBao, and 512 for TMS. We used Adam
optimizer [9] with learning rate 0.001.

Across all benchmarks and metrics, GLOIE with Tweedie output outperforms or is on par with all compared methods.
Especially, GLOIE with Tweedie output outperforms the other methods on all metrics on DC and TaoBao datasets.
We can see that GLOIE with Tweedie outperforms DNNTSP on every metric when 𝐾 = 10 which means that the
embeddings learned by VAE are richly used as well as the embeddings learned by DNNTSP.

One thing to remark is that VAE with Tweedie output shows comparable performance to all compared methods on
most metrics. Given that the number of items a user interacted with is 5.44, 4.96, and 18.05 respectively in DC, TaoBao,
and TMS, this shows that VAE with Tweedie output captures the preference of users to non-interacted items.

To investigate the effectiveness of the attention-based integration method illustrated in Equation (8), we compared
GLOIE with attention to the one with itemwise learnable weight similar to the method proposed in Yu et al. [21]. For
overall datasets and metrics, we could observe performance gains: 3.09%, 0.45%, 0.92% improvement of NDCG@10 on
DC, Taobao, and TMS, respectively.

Lastly, we note that the selection of output distribution of decoder on VAE largely affects the performance. We
empirically show that both Gaussian and multinomial outputs do not fit temporal set prediction problems even though
Gaussian is a popular choice for VAE and multinomial is a common choice in recommender system literature after the
advent of VAECF [12].

5 CONCLUSION

This paper proposes Global-Local Item Embedding (GLOIE) that learns to utilize the temporal properties of sets across
whole users as well as within a user. The proposed model learns global-local information by maximizing ELBO of the
sum of time decayed vectors under the VAE framework and integrates local embeddings learned by dynamic graph
Manuscript submitted to ACM
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Table 2. Comparison between various state-of-the-art methods and ours on three public benchmarks. All highest scores are in bold
and all second best scores are underlined.

Dataset Model k = 10 k = 20 k = 40
Recall NDCG PHR Recall NDCG PHR Recall NDCG PHR

DC

Toppop 0.1618 0.0880 0.2274 0.2475 0.1116 0.3289 0.3940 0.1448 0.4997
PersonalToppop 0.4104 0.3174 0.5031 0.4293 0.3270 0.5258 0.4747 0.3332 0.5785

Sets2Sets 0.4488 0.3136 0.5458 0.5143 0.3319 0.6162 0.6017 0.3516 0.7005
DNNTSP 0.4564 0.3165 0.5557 0.5294 0.3369 0.6272 0.6180 0.3568 0.7165

VAE - Gaussian 0.1618 0.0882 0.2274 0.2507 0.1128 0.3333 0.3847 0.1430 0.4903
VAE - Multinomial 0.1602 0.0850 0.2230 0.2492 0.1097 0.3311 0.3767 0.1387 0.4786
VAE - Tweedie 0.4166 0.3000 0.5108 0.5122 0.3267 0.6062 0.6217 0.3517 0.7088

GLOIE - Gaussian 0.3108 0.2349 0.3971 0.3738 0.2526 0.4664 0.4545 0.2706 0.5563
GLOIE - Multinomial 0.3265 0.2465 0.4143 0.3870 0.2633 0.4798 0.4615 0.2803 0.5602
GLOIE - Tweedie 0.4658 0.3264 0.5613 0.5415 0.3477 0.6351 0.6428 0.3708 0.7288

TaoBao

Toppop 0.1567 0.0784 0.1613 0.2494 0.1019 0.2545 0.3679 0.1264 0.3745
PersonalToppop 0.2190 0.1535 0.2230 0.2260 0.1554 0.2306 0.2433 0.1590 0.2484

Sets2Sets 0.2811 0.1495 0.2868 0.3649 0.1710 0.3713 0.4672 0.1922 0.4739
DNNTSP 0.3035 0.1841 0.3095 0.3811 0.2039 0.3873 0.4776 0.2238 0.4843

VAE - Gaussian 0.1592 0.0750 0.1635 0.2480 0.0974 0.2530 0.3665 0.1219 0.3727
VAE - Multinomial 0.1588 0.0798 0.1634 0.2494 0.1027 0.2545 0.3660 0.1268 0.3723
VAE - Tweedie 0.2954 0.1939 0.3006 0.3775 0.2148 0.3827 0.4768 0.2353 0.4822

GLOIE - Gaussian 0.2982 0.1768 0.3044 0.3790 0.1973 0.3851 0.4769 0.2175 0.4835
GLOIE - Multinomial 0.2980 0.1791 0.3040 0.3783 0.1995 0.3846 0.4750 0.2195 0.4819
GLOIE - Tweedie 0.3099 0.2007 0.3152 0.3917 0.2216 0.3972 0.4868 0.2412 0.4924

TMS

Toppop 0.2627 0.1627 0.4619 0.3902 0.2017 0.6243 0.5605 0.2448 0.8007
PersonalToppop 0.4508 0.3464 0.6440 0.5274 0.3721 0.7146 0.5495 0.3771 0.7374

Sets2Sets 0.4748 0.3782 0.6933 0.5601 0.4061 0.7594 0.6627 0.4321 0.8570
DNNTSP 0.4693 0.3473 0.6825 0.5826 0.3839 0.7880 0.6840 0.4097 0.8748

VAE - Gaussian 0.2731 0.1919 0.4660 0.3913 0.2288 0.6195 0.5496 0.2688 0.7813
VAE - Multinomial 0.2548 0.1615 0.4431 0.3830 0.2001 0.6020 0.5437 0.2412 0.7740
VAE - Tweedie 0.4661 0.3744 0.6548 0.5579 0.4040 0.7432 0.6663 0.4316 0.8341

GLOIE - Gaussian 0.1345 0.0833 0.2486 0.2363 0.1155 0.4018 0.4014 0.1570 0.6033
GLOIE - Multinomial 0.1479 0.1029 0.2797 0.2192 0.1252 0.3872 0.3259 0.1524 0.5362
GLOIE - Tweedie 0.4860 0.3823 0.6863 0.5868 0.4144 0.7753 0.6926 0.4418 0.8538

neural networks. As users with similar histories are reconstructed to close vectors, we could model the preference of
the given user for a non-interacted item if other users with similar histories frequently interacted with the item. Data
analysis and empirical results show that using Tweedie output for VAE’s decoder is effective for modeling temporal
set prediction. The proposed method achieves state-of-the-art results by considering global information which is less
explored in temporal set prediction literature.

Though the proposed VAE is powerful in itself, there is some room for improvement. Instead of using the sum of
time decayed vector, we can model change of sets in continuous time by Neural ODE [1, 14]. Finding an appropriate
form of prior that captures long-tailed distribution for the temporal set prediction can also be a future direction. Graph
modality can also be used [8]. Last but not least, searching for better ways to integrating embeddings learned by VAE
and embeddings learned by other algorithms which focus on local information is also an important future work.
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