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Abstract

The function approximators employed by traditional image-based Deep Rein-
forcement Learning (DRL) algorithms usually lack a temporal learning compo-
nent and instead focus on learning the spatial component. We propose a technique,
Temporal Shift Reinforcement Learning (TSRL), wherein both temporal, as well
as spatial components are jointly learned. Moreover, TSRL does not require addi-
tional parameters to perform temporal learning. We show that TSRL outperforms
the commonly used frame stacking heuristic on all of the Atari environments we
test on while beating the SOTA for all except one of them. This investigation has
implications in the robotics as well as sequential decision-making domains.

1 Introduction

Developing Reinforcement Learning (RL) algorithms that can make effective decisions
using high dimensional observations such as images is quite challenging. In addition,
it consumes a lot of time and energy. In recent months researchers have worked on
developing sample efficient RL, plug and play algorithms, that can directly learn from
pixels. Srinivas et al. incorporated Contrastive Learning, into off-policy algorithms, to
learn relevant features from image based inputs. Laskin ef al. investigated developing
data efficient and generalizable algorithms, by introducing a generic data augmentation
module for RL algorithms; [Laskin et al.| (2020); Shang et al.| (2021)); |Srinivas et al.
(2020).

While a lot of work has been devoted to extracting positional information from
image inputs, very little investigation has been done on learning from temporal infor-
mation. Shang er al. performed experiments using DMControl (Tassa et al.| (2018)))
to highlight the importance of temporal information in RL. They compared two Soft-
Actor-Critic (SAC) RL algorithms, wherein one had access to pose and temporal infor-
mation and the other only had access to pose. It was found that the former algorithm
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swiftly learned the optimal policy, while the latter failed to do so. Furthermore, a recur-
ring heuristic used by many papers is to stack sequential observations together while
inputting it to a neural network; Mnih et al.| (2015). This heuristic combines frames,
without processing it and therefore can be considered analogous to early fusion; |Karpa-
thy et al.| (2014). Recently, Shang er al. approached this as a video classification prob-
lem. This is a lucid approach, as considering a DRL state equivalent to a video, will
help improve the prediction capabilities of the underlying neural network. Successful
video recognition architectures use late fusion where all frames are processed, using
neural networks, before they are combined together; |Shang et al.| (2021), |[Laskin et al.
(2020).

Moreover, a video stream consists of both spatial and temporal aspects. The for-
mer contains information about the video frame including objects and its surroundings,
while the movement of the frame and its associated objects can be learned from the
temporal portion; [Simonyan & Zisserman| (2014). While learning the spatial aspect
is enough for image recognition, video recognition requires learning both spatial and
temporal components. Enabling agents to extract temporal information from a given
set of frames will result in the DRL agent making better Q-value predictions and there-
fore result in improved data efficiency. Furthermore, it will contribute to the agent
understanding the differences between seemingly similar actions, such as opening and
closing objects;|Lin et al.| (2019), Shang et al.| (2021)).

There has been a plethora of work related to video recognition using 3D and stan-
dard 2D CNNs. 3D CNNs have the ability to simultaneously extract out spatial and
temporal features from videos. However, they are computationally costly, which makes
them hard to implement in real-time situations. Incorporating similar architectures
with vision-based DRL exacerbates this problem, as many applications require fast
predictions during training, and having latency is infeasible. Furthermore, the extra
parameters could make the model more prone to overfitting without large amounts of
data. This once again poses a roadblock to the development of sample efficient RL{Lin
et al. (2019); 'Tran et al. (2015); (Carreira & Zisserman| (2017). 2D CNNs, although
relatively efficient however fail to extract out temporal informationjSimonyan & Zis-
serman| (2014).

Amiranashvili et al.| (2018)) incorporated optical flow in their RL algorithm, al-
though their technique required state variables in addition to pixel observations during
training. Modeling temporal information in RL using simply pixel inputs was inves-
tigated by |Shang et al.| (2021)), and it brought a new approach to efficiently reducing
sample complexity in reinforcement learning. We intend to further optimize this tech-
nique by leveraging recent work in the field of video action prediction and therefore
propose the Temporal Shift Reinforcement Learning (TSRL) algorithm.

The contributions of our work [1_-] are presented here:

1) We propose a plug and play architecture works with any generic vision-based
DRL algorithms.

2) We augment a video recognition; [Lin et al.| (2019)) that does not require any
additional parameters to model temporal information in DRL.

!Our code is available at ht t ps : //anonymous . 4open. science/r/TSM_RL-85F5/README .
md


https://anonymous.4open.science/r/TSM_RL-85F5/README.md
https://anonymous.4open.science/r/TSM_RL-85F5/README.md

2 Related Work

2.1 Latent Flow

Simonyan et al. investigated the use of optical flow techniques to perform video classi-
fication and was able to achieve SOTA performance by a significant amount over previ-
ous work in video classification. They developed a dual-stream architecture using Con-
vNets, consisting of spatial and temporal recognition components. The spatial stream
was learned using a pre-trained ConvNet, wherein each frame was sent to the network
as input. The input to the temporal stream was stacked optical flow displacement fields
generated from consecutive frames. Movement among frames can be obtained from
optical flow fields, thereby eliminating the need for the network to learn it. This tech-
nique achieved high accuracies without requiring a lot of data. More importantly, they
established that training a temporal CNN using optical flow was a drastically better
technique compared to training on a stacked bunch of images; Simonyan & Zisserman
(2014); [Karpathy et al.| (2014). The downside of this algorithm is that it is computa-
tionally costly both during inference and training and therefore cannot be combined
with RL algorithms; Shang et al.|(2021).

2.2 Flow of Latents

Shang et al. looked for a computationally feasible technique to integrate RL with op-
tical flow. They were inspired by late fusion techniques; wherein every frame was run
through a CNN before fusion was applied. Late fusion provides improved performance
with lesser parameters and also allows multi-modal data [Jain et al.| (2019); |(Chebotar
et al.| (2017). They presented a structured late fusion architecture, wherein each im-
age frame was encoded using a neural network. The encodings at each time step were
subtracted from their prior, and this difference was fused with the latent encodings,
which was then used by the RL algorithm. This technique was analogous to the work
done by Simonyan & Zisserman| (2014). The optical flow was approximated using the
difference in encodings, which provided temporal information. The spatial component
was obtained by encoding each of the frames. This technique provided the CNN with
a necessary inductive bias. They chose Rainbow DQN, and RAD; Laskin et al.| (2020)
to be their base algorithm and found that it outperformed SOTA algorithms in perfor-
mance and sample efficiency. Also, they showed that their algorithm reached optimal
performance in state-based RL despite only being provided positional state information
and no state velocity.

They also separately investigated encoding frames and then stacking the encodings
together instead of the raw images. This technique yielded sub-par results, and the
authors hypothesized that stacking high dimensional image frames would allow CNNs
to learn temporal information. However, by stacking latent frames, the temporal infor-
mation was lost and thereby causing the difference in results.



2.3 Temporal Shift Module

While working with video model activations consisting of IV frames, C' channels and
H height and W width,

A € RNXCXTXHXW o CNNs don’t consider the temporal dimension 7" thereby
ignoring it. [Lin et al.| (2019) addressed this by shifting channels, thereby mixing in-
formation from neighboring frames through the temporal dimension and referred to it
as the Temporal Shift Module (TSM). Therefore the current frame contains informa-
tion that was obtained from its surroundings. They leveraged the concepts of shifts
and multiply-accumulate, which are the basic principles of a convolution operation.
They extended it by shifting one step forward and backward along the temporal dimen-
sion. Furthermore, the multiply-accumulate was folded from the channel dimension to
the temporal dimension. However, for online video recognition, only previous frames
could be shifted forward and not the other way around. Therefore in such cases, a
uni-directional TSM was implemented.

While this process doesn’t require extra parameters, they found that this technique
had drawbacks - 1) The data movement generated due to the shift strategy was not effi-
cient and would increase the latency, especially since 5D activation of videos results in
large memory usage. This implied that moving all channels would result in inference
latency and large memory footprint on the hardware hosting the model. 2) Moving
channels directly across the temporal dimension, referred to as in-place shift, would
affect the accuracy of model since the spatial model is distorted. This is because the
current channel would have some of its frames (or feature maps) shifted, and there-
fore, the 2D CNN would lose that information during the classification process. The
authors obtained a 2.6 % accuracy drop relative to their baseline; Wang et al.| (2016
while naively shifting channels. The former issue was mitigated by shifting only a par-
tial number of channels, thereby reducing the amount of data movement and latency
incurred. For the latter problem, the TSM module was inserted within the residual
branch of a Res-Net, thereby enabling the 2D CNN to learn spatial features without
degrading. The authors claimed that this method, namely residual shift, allows the in-
formation present within the original activation to be retained after channel shifting due
to identity mapping. Therefore, the TSM module is a simple modification to the 2D
CNN. After encoding images, it shifts frames in the temporal dimension by +1, -1, and
0. However, shifting frames by -1, i.e. backward, is only possible for offline problems.
For online image classification problems, the frames are moved +1;|Lin et al.|(2019).

A major advantage of online TSM was that it enabled multi-level temporal fusion.
Other online methods are generally limited to late and mid-level temporal fusion. The
authors found multi-level temporal fusion to significantly influence temporal problems;
Zhou et al.|(2018); Lin et al.| (2019); | Zolfaghari et al.| (2018]).

2.4 Prioritized Deep Q Network

Mnih et al.|(2015) combined Q Networks with CNNs in order to obtain an approxima-
tion of the Q values -

Q*(s,a) = max; E[ry +yriy1 +¥2riio + ...|st = s,a; = a, 7]

The above expression maximizes the sum of discounted rewards for an agent fol-
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Figure 1: A schematic of Temporal Shift Reinforcement Learning algorithm

lowing a policy, 7 = P(als), r using a discount factor, v during every time step ¢.
It was known to be the first RL algorithm that could be integrated into various envi-
ronments with raw pixels as inputs. They addressed the learning instabilities that RL
presented when coupled with a deep neural network using a replay buffer and target
network. They found that the sequential observations were highly correlated with each
other and also that minimal changes to () would drastically affect the policy. The use
of a replay buffer mitigated this issue by randomizing the data during the training pro-
cess. This was done by storing the transitions as a tuple (s, at, st41, 7t + 1) of state,
action, next states and rewards within a cyclic buffer. This provided a two-fold ben-
efit. The replay buffer reduced the number of environments needed for the agent to
learn since the agent could always resample from the buffer. Furthermore, this reduces
the variance during gradient descent since batches are sampled. The target network
takes the weight from the current network but updates it only after a fixed duration of
time. The target network’s weights are then used to compute the TD error, which is
the difference between the Q value and the TD target. If we use the parameters from
the current network to estimate both these values, they’ll become correlated and will
result in instability. [Hasselt| (2010) suggested using dual instead of single estimators to
estimate the expected return since the latter led to over-estimated values and introduced
the Double-Q learning algorithm (DDQN). A later investigation by |Van Hasselt et al.
(2016) showed that rather than learning a separate function, the target network could
be used to obtain the estimate; Mnih et al.|(2015); /Arulkumaran et al.[(2017).

In addition, |Schaul et al.| (2015) modified the experience replay process so that,
instead of the conventional uniform sampling process, important samples were given
a higher priority. The Prioritized Experience Replay (PER) technique was found to
double the learning speed and also achieve SOTA scores on Atari games.
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3 Approach

The motivation behind TSRL was to introduce an efficient algorithm that did not re-
quire any additional parameters, leveraging the benefits of multi-level temporal fusion.
The architecture developed by |Lin et al.| (2019) for online Temporal Shift was modi-
fied and incorporated into a Double DQN with Prioritized Experience Replay (DDQN-
PER).Lin et al.|(2019) used a ResNet model for their experiments, however going with
the conventional CNN models used by the vision RL community, we used a shallow
three layer CNN.

Also, we used in-place shift instead of residual shift wherein the channels were di-
rectly moved across the temporal dimension. We assumed that the accuracy improve-
ments obtained, in predicting the Q values, while modeling the temporal aspect would
compensate for the loss obtained due to spatial degradation. Furthermore, the online
TSM algorithm |Lin et al.| (2019) cached the features in memory and then replaced it
with those in the next time step. Our approach was to directly roll the features across
time steps.

Finally, the authors of the TSM paper found that the highest accuracy for the online
model was obtained by shifting 1/8th of channels for each layer of the neural network.
However, while testing our algorithm, we found that the best results were obtained
when we shifted around 1/5 to 1/3 of our channels.

A schematic of our algorithm has been given in Figure [I] and a PyTorch based
pseudocode for our algorithm has been presented here -

Algorithm 1 TSRL

For each step t do
For each convolution step do
x = self.relul (self.convl(x))
n,c,h,w = x.shape
x = x.reshape(n//T, T, c, h, w)

copy = torch.clone(x)
x[:,:, :¢//8, :, :] = torch.roll(x[:,:, :c//8, :, :],
shifts = 1, dims = 1)
x[:,0, :¢//8, :, ] = copyl[:,0, :c//8, :, :]
z_t = FullyConnected (x)
End For

End For

4 Experiments

We tested our algorithm using OpenAl Gym Atari environments with visual images as
input. An open-sourced implementation of DDQN (https://github.com/higgsfield/RL-
Adventure) combined with PER was used. The images were converted to grayscale to
speed up the learning process. To gauge the sample efficiency of TSRL we compared



it with a generic DDQN-PER getting stacked images as input. Also, we used our own
implementation of the algorithm developed by [Shang et al.| (2021) and referred to it as
Flare, in order to compare against state of the art. The number of stacked images was
kept equal to the timesteps considered by TSRL both for DDQN-PER and Flare. Also,
all algorithms were run for 1.4M time steps using 5 different trials. The performance
of the algorithm was gauged by averaging the trials and then summing over all rewards

obtained; [Brockman et al.| (2016); Bellemare et al.| (2013)); Mott & Team| (1996)).
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Figure 2: OpenAl Gym environments used for training



4.1 Results

Table [.1] shows the sum of average rewards obtained across the five runs for each
environment. The shift parameter, s column, shows the ratio of channels that were
shifted. For instance, if s = 3, then the first 1/3™ channels would be shifted across the
temporal dimension for every layer of the CNN.

Figure [3| shows the reward obtained per episode. In some cases, an algorithm may
have large step sizes relatively early. This would lead to a lower number of episodes

and vice versa.

TSRL outperforms both DDQN-PER and Flare in all environments except Asterix,
wherein it only defeats the DDQN-PER.
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Figure 3: Plots of episode vs reward for different Atari environments

Table 1: Sum of average rewards obtained.

H Environment  Shift TSRL DDQN-PER  FLARE H
Freeway 3 18291.5 17807.6 14686.19
Asterix 5 22854.25 20702.0 33496.93
Riverraid 5 41850.3 34849.2 34966.0
Pong 5 7892.17 7221.80 -36528.20

4.2 Discussion

A major difference between our algorithm and other RL algorithms taking temporal
aspects into account is that we provide multi-level temporal fusion. Most RL algo-

rithms implement early fusion [Mnih et al|(2015) and the recent ones




et al.| (2018); [Shang et al.| (2021) have experimented with late fusion. However, our
approach enables RL to have temporal fusion across all levels. This type of fusion was
found to significantly help difficult temporal modeling problems|Lin et al.[(2019).

It is interesting to note that instead of a single shift hyperparameter being optimal
for all tasks, it varies across environments. We hypothesize that this is caused due
to the trade-off between spatial and temporal learning. Some environments might not
require a higher number of feature maps and therefore could work with a lower shift
hyperparameter. This would permit a larger number of channels to be moved, leading
to improved temporal learning. However, this might not be the case in complicated
environments, and such situations might require the shift hyperparameter to be higher.

Finally, we see that TSRL is able to beat the baseline and SOTA for almost all the
environments. E] Since Flare concatenates latent flow with features, we feel that this
increases the number of parameters and, therefore, the relative training time compared
to TSRL. Furthermore, the latent flow is obtained by subtracting the current frame from
the immediately preceding frame while ignoring the frames before that. This might not
provide much information in situations when the difference between immediate frames
is minute. This problem is mitigated by the multi-level fusion abilities of our algorithm.

5 Conclusions

We present a facile shifting technique for learning temporal features in DRL problems
without the requirement of additional parameters. After testing our algorithm on Ope-
nAl Atari environments, we find that our algorithm outperforms the commonly used
frame-stacking heuristic.

A major drawback of our algorithm is the requirement to find a suitable shift hy-
perparameter. Future work could include either learning the optimal value of this hy-
perparameter online or changing how the shift is performed (such as residual shift|Lin
et al. (2019)) so that the spatial features aren’t disturbed.
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