arXiv:2109.02332v1 [cs.LG] 6 Sep 2021

Hindsight Reward Tweaking via Conditional Deep Reinforcement
Learning

Ning Wei'!, Jiahua Liang!, Di Xie! and Shiliang Pu!

Abstract— Designing optimal reward functions has been de-
sired but extremely difficult in reinforcement learning (RL).
When it comes to modern complex tasks, sophisticated reward
functions are widely used to simplify policy learning yet even
a tiny adjustment on them is expensive to evaluate due to
the drastically increasing cost of training. To this end, we
propose a hindsight reward tweaking approach by designing
a novel paradigm for deep reinforcement learning to model
the influences of reward functions within a near-optimal space.
We simply extend the input observation with a condition
vector linearly correlated with the effective environment reward
parameters and train the model in a conventional manner
except for randomizing reward configurations, obtaining a
hyper-policy whose characteristics are sensitively regulated over
the condition space. We demonstrate the feasibility of this
approach and study one of its potential application in policy
performance boosting with multiple MuJoCo tasks.

I. INTRODUCTION

As a classic approach to solve intelligent decision-making
problem, reinforcement learning [1] has been on its way to
revive with the development of deep learning technology
in the last decade [2][3]. RL algorithms relies on reward
functions to perform well. Despite the recent efforts in
marginalizing hand-engineered reward functions [4][5][6] in
academia, reward design is still an essential way to deal
with credit assignments for most RL applications. [7][8] first
proposed and studied the optimal reward problem (ORP).
Later [9] reported that a somehow bounded agent can hardly
achieve best performance under the direct guidance of the
designer’s goals yet well-designed alternative reward func-
tions enable better and faster learning.

A general formulation of reward functions takes the form
r(s,a,8") = wl¢(s,a,s’), where w is a scalar vector
composed of encouraging/discouraging reward items and ¢ is
a vector of predefined indicator features dependent on states
s, s, and the action a. With ¢ fixed, ORP seeks to find the
optimal w that leads to RL policies maximizing the given
fitness functions. One major difficulty in reward design is
the lack of instant feedback mechanism from w to its actual
effect due to the inherent inefficiency of RL algorithms. Most
existing ORP-oriented approaches rely on sufficient training
to provide good indicators for further improvement on w
[71(81[9][10][11][12][13][14][15]. However, the scalability
of these approaches are undefined since they are only verified
with small tasks.

In this paper, we propose a new scalable approach named
conditional deep reinforcement learning (cDRL). Instead

IN. Wei, J. H. Liang, D. Xie, and S. L. Pu is with Hikvision Research
Institute, Hangzhou 310051, China {weining5, liangjiahua,
xiedi, pushiliang}@hikvision.com

observations cEC®

e

environments with
reward parameters
drawn from R¢

N

Fig. 1. High-level overview of the proposed conditional deep reinforcement
learning approach.

N

cDRL
algorithms

actions

of optimizing reward functions directly, we leverage the
representation power of deep neural networks to model their
influences on RL policies. As illustrated in Fig. 1, by extend-
ing the input observation with a condition linearly correlated
with the effective reward parameters and training the model
with corresponding featured examples, we expect deep RL
algorithms to learn policies sensitive to this condition while
being able to adapt behaviors according to the underlying
long-period preferences. This approach is time & resource
efficient in the sense that it only makes tiny modifications
to the frameworks and training processes of standard deep
RL algorithms without requiring extra computing resource or
prolonged training, so it can be easily applied to any large-
scale tasks in a plug and play fashion.

Once a cDRL agent is trained, the input condition could
solely act as a control panel to tweak the policy’s character-
istics in a totally hindsight perspective since the consequent
effects can be readily measured without any further train-
ing. Despite the potential modeling inaccuracy on reward
influences, which also should be well realized, cDRL indeed
alleviates the dilemma in reward design as long as the policy
stays sensitive to the input condition and their asymptotic
high-level interaction mechanism is properly learned. Given
the convenience introduced by cDRL, a straightforward
application for it is to perform hindsight policy boosting with
respect to fitness functions given by the designer. We validate
this potential with multiple experiments in section 4.

II. CONDITIONAL DEEP REINFORCEMENT
LEARNING

A. Problem Set-Up

When facing a new RL task, we need to figure out a
group of indicator features based on observations, actions
and history in accordance with the designer’s goal. These
features, either scalar or binary, should be highly expressive
and correlated with the intrinsic logic behind the intended
behaviors.

Assumption 1. For any specific task domain, we assume
that all reward-related indicator features are predefined and
well capable of conveying the designer’s goal.

Moreover, we also need to set a scalar vector, i.e. the
reward parameters, as the weights of these indicator features,
which is the core procedure for reward design in ORP. In
RL, parallel vectors of reward parameters normally have
equivalent effects. To tackle this redundancy, we select the
first element as anchorﬂ with constant value ¢ and study
the others’ influences when they are varying with respect
to it. This dimension reduced parameter space is denoted as
R_ to distinguish from the whole space R. Since we are
only interested in the near-optimal region of R_, another
assumption similar to [15] is made below.

Assumption 2. Each non-anchor reward parameter is
assigned with a reasonable range according to the anchor
based on available domain knowledge so that the sampled
combinations are likely to lead to high true utility behaviors
as desired.

Essentially, these ranges delimit a subspace R of interest
within R_. We argue that this is pragmatically much easier
than setting exact optimal values for reward parameters.
Hence our target now is to model the underlying interaction
mechanisms among different dimensions of R¢ , which pro-
vides the opportunity to perform hindsight reward tweaking
and achieve better performance than standard RL algorithms
with hand-designed rewards.

To facilitate cDRL training for a certain domain, we need
instance environments with randomized reward parameters
uniformly drawn from R while outputting these param-
eters along with original observations at every step. Note
that different dimensions of R® may vary drastically in
numerical scales, which increases learning difficulty. We thus
introduce an adaptive affine transformation M : R_ — C
which simply maps each dimension of R¢ to [-1,1]in C. We
name C as the condition space and denote the normalized
subspace corresponding to R¢ as C¢(see Fig. 2). All reward
parameters within R¢ are projected to C¢ before they are
concatenated and output with the original observations. Then
the stepwise reward function can be reformulated as:

re(s,a,8) = [M ()] 6 (s,a,5) 1)

where ¢ € C°, M™! uniquely maps c to a valid reward
parameter vector within R¢ which, combined with the

! Actually any element in reward parameters can be set as anchor, we here
choose the first element to make (1) concise.

A clementl
g————— - -
’ 7
» reward vectors | 7/
4 — — — I g 1
IR !
I 1
1 7 71
R_ 7
anchor surface / £ = — — — — 7 element2
element3 0
element3
A
------ = M
R_ [¢
|
e
I €0
: 0
|
1 -
M1
1
0 element2
Fig. 2. Illustration of reward-related space definitions and transformations

in cDRL. For a RL task with N reward parameters, we settle the first
element as anchor and the consequent hypersurface of dimension N-1 forms
the non-redundant reward parameter space R_ to study. A near optimal
subspace R€ is defined with domain knowledge and projected to C¢ by
a normalization operation with affine transformation M. During ¢cDRL
training, reward parameters are sampled from R¢ and output as their
correspondences in C¢ with observations.

anchor ¢, forms a whole group of weights for indicator
features.

B. CDRL Algorithms

When applying deep RL to a certain domain, different
reward parameters produce different returns and thus are
in favor of different behaviors for the same observation.
If the input observation is extended with a conditiorﬂ that
exclusively embodies the relevant reward parameters, gradi-
ents will consist of two components during backpropagation.
One drives the neural network to extract useful features
from the original observation; the other drives the network
to interpret different input conditions and combine them
with the extracted features properly to generate specifically
desirable behaviors as well as value estimations. With this
intuition above, we expect such a conditional deep neural
policy can learn to adapt its characteristics as the input
condition changes.

We denoted a conditional policy parameterized by 6 as
7 (als, ¢) or w§ for simplicity, where ¢ represents the input
condition. Assume ¢, (sg) is the initial state distribution

2Conditions are not necessarily to be fed into the neural network at
input layer with original observations, one can also concatenate them with
intermediate features as needed, which is especially the case when image-
like observations are used.

under ¢, then the cDRL optimization target is formulated
as:

L (0) = _E&awqc,ﬂg;cwce [Z ’Ytrc (St7 Qg 5t+1)] (2)

t=0

Apparently, the desired training data is nested, both the
condition subspace C¢ and the consequent conditional exam-
ple spaces should be sufficiently explored. This may seem
extremely inefficient in the first place, but keep in mind
that the feature extraction task is shared across all reward
parameters while various reward parameters will induce
observation distributions with better diversity which in turn
is beneficial for this task. We assume that the main learning
burden for deep RL algorithms lies in extracting efficient
high-level features strongly correlated with decision making
from raw input information. Then it’s possible for cDRL to
learn without requiring more examples or notably prolonged
training compared to standard deep RL as long as its extra
task of preference adjustment is relatively simple. Actually,
we evaluate both our approach and baselines with equal
amount of training in section 4. The experimental results
support our assumption well.

On the other hand, to enhance exploration diversity in
R, we adopt the asynchronous methods as in [16] by
running a batch of environments in parallel with individually
sampled reward parameters which are updated periodically.
Other measures of standard deep RL algorithms to improve
data efficiency and learning stabilization are kept unchanged.
We next describe the conditional versions of A3C [16],
DDPG [17], and Deep Q-learning [2] in detail. As a general
case, the full cDRL algorithm is outlined in Algorithm 1.
For the chosen deep RL frameworks, any neural network
approximator that takes observation as input will become
conditional in the sense that original observation has been
concatenated with an extra condition. We discuss these cDRL
frameworks in detail as below.

o Conditional A3C: the algorithm maintains a condi-
tional policy mp (a|s,c) and a conditional value es-
timation function Vi (s). The policy is optimized
according to the advantage-based policy gradient
Ac (s,a) Vologmg (als, ¢), where A, (s,a) is the con-
ditional advantage of action a for state s under con-
dition c¢. For moment ¢ and a followi% episode of
length H, A. (s, a;) is estimated by Zk:_ol Vg e +
YAV (stva) = Vi (s¢). We adopt PPO [18] to stabilize
learning. As an online RL algorithm, a big batch size
of sampling environments is important for the success
of conditional training.

« Conditional DDPG: the algorithm learns a conditional
Q-function @, (s,a) with parameter v by fitting the
target value 7. (s, a, s") +7Qy, - (s',m5- (")) based on
the bootstrapping property of Bellman Equation. 7§ is
the conditional deterministic policy parameterized by 6,
which is optimized through the gradient directly stem-
ming from Qf, given by V,QY, (8, @) |a=rs(s) Vorg ().

Algorithm 1 Conditional Deep Reinforcement Learning

Require: R¢: near-optimal reward parameter subspace
Require: M: affine transformation from R to C°¢
Require: «: step size hyperparameter
Require: 7: refresh period of reward parameters

1: randomly initialize 6, step < 1

2: while not done do

3: sample a batch of reward parameters from R€ , apply
them to environments separately, and project to C°
with M for output
while step%7 # 0 do

Evaluate VL (0) with respect to a batch of mixed

examples
6 Update 6 < 0 — aVyL (0)
7: step < step + 1
8
9:

AN

end while
end while

Independent target networks pr_ and mj;_ are used
and softly updated with a temperature parameter to
stabilize learning. Conditional transitions [s & ¢, a,
s ®c, r.(s,a,s")] are pushed into a replay buffer and
resampled in batches for training, where & represents
concatenating operation.

o Conditional DQN: similar to conditional DDPG,
this algorithm also learns a conditional Qj (s,a) pa-
rameterized by 6 from conditional transitions but
with a different target value given by 7. (s,a,s’) +
ymaxyeq Q- (s',a’), where Ais a discrete collection
of all available actions for state s’. A lagged target
network Qg, is used to stabilize learning, which is
updated with a lower frequency than Q§. For a certain
state s under condition ¢, the desired action is selected
according to Qf (s,a) with e-greedy strategy during
training or greedy strategy at test time. No explicit
conditional policy is learned in this algorithm.

III. RELATED WORK

As proof-of-concept researches, [7][8][9] used exhaustive
search to examine the nature of reward functions and verify
the benefits of well-designed rewards. [10] made one step
towards pragmatic applications and proposed a lightweight
approach which utilizes policy gradient to optimize reward
parameters online. This approach requires an explicit model
of the Markov Decision Process which is impractical for
complex or continuous tasks. Another research direction
adopts nested optimizations which apply a high-level rein-
forcer or genetic programmer to optimize reward parame-
ters while optimizing RL policies [11][12][13][14]. These
approaches are strongly bounded on task complexities and
available computation resources. [15] presented a Bayes
approach for reward design by estimating a posteriori over
optimal rewards with parameter samples and their perfor-
mance. They used alternative planning methods instead of
RL to circumvent the intractability of the original idea which
also confines their approach to relatively simple tasks.

Meta reinforcement learning (meta-RL) is a sort of RL
algorithms designed for fast adaption to new tasks via learn-
ing internal representations broadly suitable to a certain task
distribution. Theoretically, meta-RL could be trained to adapt
to different reward parameters and perform similar hind-
sight policy characteristic tweaking as in cDRL. However,
it relies on either special network structures [21][22][23]
or a special loss computed by two consecutively sampled
batches [24], which significantly increases learning difficulty
and inevitably demands for longer training periods. Besides,
sufficient meta-adaptions are needed before performance
evaluations on reward functions can be executed. In con-
trast, as a highly specialized approach for hindsight reward
tweaking, cDRL is efficient both in training and evaluation.

Analogies has been made between deep reinforcement
learning with Actor-Critic structures and generative adversar-
ial nets (GANs) [25][26]. Similarly, cDRL also corresponds
to conditional GANs (cGANSs) [27] for applying the same
methodology: featured conditions are added to the input and
trained to be sensitive for corresponding data distributions
which in cGANs are manipulated via data feeding while in
cDRL are determined by reward parameters in a relatively
unstraightforward way. cGANs have been widely reported to
sharpen the predictive distributions for both the discriminator
and generator, thus significantly improve the visual quality of
generated images [27][28]. They are also easier to train than
vanilla GANs [29]. These facts endorse the effectiveness and
feasibility of our approach in a way.

IV. CASE STUDY: HINDSIGHT POLICY BOOSTING
A. Method Formulation

After a cDRL policy is trained, all learnable parameters are
held constant as #*. Given a certain fitness function, the input
condition ¢ becomes the only control interface for further
optimization. Then, search for the optimal policy wg: reduces
to search for the optimal input condition ¢*, which is given
by:

¢* = argmax E [F (75.)] (3)

ceCs
where F (7§.) represents any evaluation process on the
conditional policy mg. which returns scalar fitness scores.
C® D (¢ stands for the searching space for c¢* at test
time. With sufficient training, a cDRL policy can generalize
to boarder space within C such that the potential optimal
condition may locate outside C¢ within which the policy
is trained. Since we have little prior knowledge about C*®
with respect to agent performance, a natural choice for
optimization method is genetic programming [20], which
places no assumption on problem domains and ensures global

optimum in searching space.

Compared to separate ’trial-train-test’ circles, cDRL com-
bines the first two phases into a single one-time training
process, which makes the hindsight reward tweaking and
evaluation much more flexible. This is the key advantage
of cDRL over former ORP solutions on large-scale complex

tasks which could take tremendous amount time of training
[19].

B. Experimental Configurations

We choose MuJoCo [30] integrated in OpenAl Gym [31]
to test the proposed cDRL approach. MuJoCo provides
excellent physics simulations and is widely adopted for
benchmarking high-dimensional continuous control tasks.
Our target is to verify if a trained cDRL policy can be
tweaked by the input condition and if a hindsight boosted
cDRL policy outperforms policies trained by standard deep
RL algorithms with default reward parameters given equal
amount of training. In specific, we choose three locomotion
tasks: HalfCheetah, Walker2d, and Ant, all of which aim to
maximize the agents’ forward velocity without falling to the
ground (if applicable). We apply the conditional versions of
both A3C and DDPG to these domains and use deep polices
trained by corresponding standard frameworks with default
reward parameters in Gym environment settings, which are
already well optimized, as our baselines for benchmarking.

We follow the original indicator features defined in Gym
such as forward reward, healthy reward, control cost and
contact cost, etc. and then a vector of ones acts as baseline
reward parameters. When applying cDRL algorithms, we
choose forward reward as anchor with constant weight 1.0
and the other reward parameters varied within [1 — ¢€,1 + €]
where € is a small positive value. We set ¢ = 0.2 for
HalfCheetah and Walker2d while € = 0.05 for Ant. Note that
this is not necessarily the case for tasks of which indicator
features are not well scaled and substantially heterogeneous
ranges might need to be specified for these tasks. During
training, baseline and cDRL models use almost identical
configurations and hyperparameters except for three main
differences: a) cDRL uses a slightly modified network archi-
tecture to admit the extra input condition; b) cDRL indepen-
dently samples reward parameters from the predefined ranges
and refresh them periodically for every environment while
baseline uses default reward parameters for all environments;
c) baseline models are trained 3x10* more agent steps
than cDRL models to compensate their extra exposure to
environments during hindsight optimization.

A3C: The Actor and Critic have identical and separated
fully-connected network structures with 3 hidden layers of
256 units and tanh nonlinearity. We use PPO loss [18]
to compute stabilized policy gradient with a clip range of
0.2 and Adam [32] to update network parameters with a
learning rate of 3x10™. 50 environments are run in parallel
with an episode length of 2048, a full batch from all 50
environments are divided into 4 minibatches and utilized for
16 epochs per update. For each experiment, a total number
of 810 updates are performed with samples of about 8x 10’
agent steps. We use 0.99 and 0.95 for discounting factor
and truncation factor of generalized advantage estimation
(GAE) [33] respectively. The entropy coefficient is set to
0.0 as default for MuJoCo tasks in Gym. For the conditional
version of A3C, we resample the reward parameters for all
environments every 10 updates.

generation 1

generation 2

generation 4

1.04 182 1o ., 1o
38.1 : 382 : 382
= 05{" 05{ " 05{ " 3
& * 38.0 ’ . ’ . 3
2 * 38.0 * 38.0 %
4 X 379 . =
g 0.0 0.0 . 0.0 . £
= . 37.8 s
: . . . 378 + 378 &
g 37.7 g
8 -0.5- * -0.5 . A -0.5 : . g
. . 37.6 . 37.6 . 376 °
.+ . o
1.0 5 10 1.0 L
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
generation 8 generation 16 generation 30
.04 104 .04 38.4
: 382 38.2 .
g 05" . 051" 054" 382 ¢
3 " kS
2 * 38.0 * 38.0 * ®
H tare, tate, 380 5
g 0.0 . 0.0 . 0.0+ . H
g . 37.8 + 378 . =
E 37.8 5
3-05 : ROt -05) TSI -0.5 . . E:
w ohy e g 37.6 ¥ 37.6 . 376
N L e T #+
-1.01 + + -1.0 * -1.0 +
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
healthy reward weight healthy reward weight healthy reward weight
Fig. 3. Evolution heatmaps of conditional A3C on Walker2d domain. Each cross represents an individual from some generation of size 50. Accumulated

populations at generation 1, 2, 4, 8, 16, and 30 are illustrated. Displaying range of each dimension are limited within [-1,1] for better detail visibility. As
expected, crosses gradually aggregate in regions corresponding to long average travel distances which indicate desirable interaction effects among different
reward parameters. Note that there are multiple high-density regions which could likely be interpreted as local optima.

DDPG: The Actor and Critic have identical and separated
fully-connected network structures with 2 hidden layers of
64 units and ReLU nonlinearity after which layer normal-
ization [34] is applied. Adaptive parameter noise is used for
HalfCheetah and Walker2d for exploration while Ornstein-
Uhlenbeck noise [17] is used for Ant. 50 environments are
run in parallel to sample transitions which are pushed into a
replay buffer of size 1x10°. A batch of 128 transitions are
resampled from the buffer for gradient calculation per update.
Adam is used to update network parameters with learning
rates 1x10* and 1x10 for Actor and Critic respectively.
For each experiment, 50 updates are performed after every
100 agent steps which is repeated for 2x10* times. We use
a discounting factor of 0.99 and a soft update coefficient
of 0.001 for target networks. For the conditional version of
DDPG, we resample the reward parameters every 2048 agent
steps.

For hindsight optimization, we choose the average travel
distance of 1000 continuous steps along forward direction for
50 random seeds as the fitness function. Outliers caused by
occasional fallings are excluded for stabilization while runs
with over 10 fallings return 0. Genetic programming with
real-valued encoding was applied to a predefined condition
subspace C° of which each dimension varies within [-2,2]
for conditional A3C policies while [-10,10] for conditional
DDPG polices. A population size of 50 is used for every
generation. We use tournament selection strategy with elite
preservation and single point crossover with a probability

of 0.8 for recombination after which a mutation could
happen with probability 0.1. All optimizations evolve for 30
generations and the extra environment exposures during this
process are compensated for baseline trainings as mentioned
above.

C. Results

The evolution processes are visualized in Fig. 3. We stored
the populations of all generations during hindsight optimiza-
tion of the conditional A3C policy trained on Walker2d
domain which has 2 non-anchor reward parameters. These
2D parameter coordinates are illustrated with scatter plotting
of which colors indicate measured performance and densities
reveal evolution trends. Obviously, a cDRL policy exhibits
distinct characteristics, and thus different performance, while
the input condition is varying in the condition space, which
validates the feasibility of cDRL as we expected. From
the evolution heatmaps in Fig. 3, we can also learn some
good intuition about the interaction mechanisms of reward
parameters for Walker2d domain: bigger healthy reward plus
smaller control cost tend to result in better ability of running
forward.

To verify the ability of cDRL in boosting policy per-
formance, we compared the best individuals of generations
during genetic evolution with baseline models. As shown
in Fig. 4, hindsight optimized cDRL policies consistently
yields longer travel distance than baseline policies in all the
three domains, which proves that the long-period influences
of reward parameters can not only be modeled by cDRL but

halfcheetah & A3C

— —
— —
— ~

110

—
=3
o

—
=3
«®

average travel distance

—
=3
2

1 1 1 1 1
I I I I I

10 15 20 25 30 0 5 10

<>
w

halfcheetah & DDPG

walker2d & A3C

walker2d & DDPG

ant & A3C

| | | |

<
wn

15 20 25 30 10 15 20 25 30

ant & DDPG

38

440
8 36
=
g 34
2435
2 32
«
£
g 430 30
g
g 28
«

425 2 205

0 5 10 15 20 25 30 24 5 10 15 20 25 30 0 5 10 15 20 25 30

generations

generations

generations

Fig. 4. Performance comparisons between cDRL (blue) and baseline (green) policies. Average forward distance of 1000 steps out of 50 trials are evaluated
as reference and used as fitness when applying genetic programming on condition spaces of cDRL policies. As illustrated, the top elite cDRL policies
during evolution exhibit considerably superior performance to baseline policies.

also further utilized to search for better polices. Apparently,
one can also make use of cDRL approach to achieve better
performance on real-world RL tasks where hand-designed
raw reward parameters works but sophisticated interaction
mechanisms exists among them.

For better understanding of cDRL, we performed extra
qualitative experiments on its unique hyperparameters, i.e.
refresh period 7 and exploration range e of reward param-
eters. We found that a too small 7 or too big € would
lead to significant performance decrease. The former is
caused by unbalanced sample structure which overempha-
sizes horizontal diversity in reward parameter space at the
expense of vertical data sufficiency in conditional example
spaces; the latter results from the loss of focus on core
near-optimal region. In practice, the selection of these two
hyperparameters, especially for ¢, is dependent on specific
task properties. As a rule of thumb, one should use as big a
batch of sampling environments as possible and avoid very
small 7s. For unfamiliar task domains, one should start with
small exploration ranges for each reward parameter given a
group of rewards that already works.

V. CONCLUSION AND FUTURE WORK

We observe the fundamental role of reward design in
RL, refer to the wisdom of ’conditional deep learning’, and
propose a new paradigm for deep RL called cDRL which
models the influences of reward functions while doing its
original job. This approach is scalable for modern complex
RL tasks. We successfully verify the feasibility of cDRL with

several experiments on MuJoCo tasks and demonstrate one
potential application in hindsight performance boosting of
trained policies. Our approach tries to bridge the gap between
reward changes and their actual effects by exempting routine
trainings and enabling hindsight reward tweaking with more
handy feedbacks. Importantly, cDRL doesn’t require substan-
tial modifications on learning processes of standard deep RL
frameworks.

Essentially, our trained conditional polices provides a ma-
nipulation interface stemming from the learned long-period
functioning mechanism of several key factors (reward param-
eters in this paper) in the form of internal neural weights.
Sensitivity takes no less credit than modeling accuracy does
for the effectiveness of cDRL. Given the success of our
approach on reward parameters, it’s promising to extend
this paradigm to other hyperparameters with fundamental but
delayed influences, such as the discounting factor, truncation
factor of GAE, etc. as long as they could be individually
configured in separate sampling pipelines. We’ll leave this
research for future work.

REFERENCES

[1] R.S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA: MIT Press, 1998.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, Human-Level Control through
Deep Reinforcement Learning. Nature 518(7540): pp.529-533. 2015.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V.
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Pan-neershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

Sutskever, T. Lillicrap, M. Leach, K. Kavuk-cuoglu, T. Graepel, and
D. Hassabis, Mastering the game of go with deep neural networks and
tree search. Nature 529(7587): pp.484-489. 2016.

P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D.
Amodei, Deep reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems, pp.4299-4307.
2017.

D. Bahdanau, F. Hill, J. Leike, E. Hughes, A. Hosseini, P. Kohli, and E.
Grefenstette, Learning to understand goal specifications by modelling
reward. arXiv:1806.01946v2 [cs.Al]. Ithaca, NY: Cornell University
Library. 2018.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, Diversity is all you
need: Learning skills without a reward function. JarXiv:1802.06070
[cs.Al. Ithaca, NY: Cornell University Library. 2018.

S. P. Singh, R. L. Lewis, and A. G. Barto, Where do rewards come
from? In Proceedings of the Annual Conference of the Cognitive
Science Society, pp.2601-2606. 2009.

S. P. Singh, R. L. Lewis, A. G. Barto, and J. Sorg, Intrinsically
motivated reinforcement learning: An evolutionary perspective. IEEE
Transactions on Autonomous Mental Development 2(2):pp.70-82.
2010.

J. Sorg, S. P. Singh, and R. L. Lewis, Internal rewards mitigate
agent boundedness. In Proceedings of the International Conference
on Machine Learning, pp.1007-1014. 2010.

J. Sorg, R. L. Lewis, and S. P. Singh, Reward design via online gra-
dient ascent. In Advances in Neural Information Processing Systems,
pp.2190-2198. 2010.

S. Niekum, A. G. Barto, and L. Spector, Genetic programming for
reward function search. IEEE Transactions on Autonomous Mental
Development 2(2): pp.83-90. 2010.

L. Spector, D. M. Clark, I. Lindsay, B. Barr, and J. Klein, Genetic
programming for finite algebras. In Proceedings of the Genetic and
Evolutionary Computation Conference, pp.1291-1298. 2008.

C. Mericli, T. Mericli, and H. L. Akin, A reward function generation
method using genetic algorithms: A robot soccer case study. In Pro-
ceedings of the Adaptive Agents and Multi Agents Systems, pp.1513-
1514. 2010.

J. Bratman, S. P. Singh, J. Sorg, and R. L. Lewis, Strong mitigation:
Nesting search for good policies within search for good reward.
In Proceedings of the Adaptive Agents and Multi Agents Systems,
pp.407-414. 2012.

D. Hadfield-Menell, S. Milli, P. Abbeel, S. Russell, and A. D.
Dragan, Inverse reward design. In Advances in ppNeural Information
Processing Systems. pp.6765-6774. 2017.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap,
D. Silver, and K. Kavukcuoglu, Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference
on Machine Learning, pp.1928-1937. 2016.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. P. Wierstra, Continuous control with deep reinforcement
learning. arXiv:1509.02971] [cs.LG]. Ithaca, NY: Cornell University
Library. 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimoyv,

(19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[34]

Proximal policy optimization algorithms. jarXiv:1707.06347 [cs.LG].
Ithaca, NY: Cornell University Library. 2017.

OpenAl Openai five. https://openai.com/blog/openai-five/. 2019.

J. R. Koza, Genetic programming: on the programming of computers
by means of natural selection. Cambridge, MA: MIT Press. 1992.

J. X. Wang, Z. Kurthnelson, D. Tirumala, H. Soyer, J. Z. Leibo, R.
Munos, C. Blundell, D. Kumaran, and M. M. Botvinick, Learning to
reinforcement learn. arXiv: 1611.05763 [cs.LG]. Ithaca, NY: Cornell
University Library. 2016.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett?l. Sutskever, and
P. Abbeel, RI2: Fast reinforcement learning via slow reinforcement
learn-ing. arXiv:1611.02779v2 [cs.Al]. Ithaca, NY: Cornell University
Library. 2016.

G. Wayne, C. Hung, D. Amos, M. Mirza, A. Ahuja, A. Grabska-
barwinska, J. W. Rae, P. Mirowski, J. Z. Leibo, A. Santoro, M. Gemici,
M. Reynolds, T. Harley, J. Abramson, S. Mohamed, D. J. Rezende, D.
Saxton, A. Cain, C. Hillier, D. Silver?K. Kavukcuoglu, M. Botvinick,
D. Hassabis, and T. P. Lillicrap, Unsupervised predictive memory in
a goal-directed agent. arXiv:1803.10760 [cs.LG]. Ithaca, NY: Cornell
University Library. 2018.

C. Finn, P. Abbeel, and S. Levine, Model-agnostic meta-learning for
fast adaptation of deep net-works. In Proceedings of the International
Conference on Machine Learning, pp.1126-1135. 2017.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, X. Bing, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial
nets. In Advances in Neural Information Processing Systems, pp.2672-
2680. 2014.

D. Pfau and O. Vinyals, Connecting generative adversarial networks
and actor-critic methods. arXiv:1610.01945| [cs.LG]. Ithaca, NY: Cor-
nell University Library. 2016.

M. Mirza and S. Osindero, Conditional generative adversarial nets.
arXiv:1411.1784v1[cs.LG]. Ithaca, NY: Cornell University Library.
2014.

K. Sricharan, R. Bala, M. Shreve, H. Ding, K. Saketh, and J. Sun,
Semi-supervised conditional gans. arXiv:1708.05789 [stat.ML]. Ithaca,
NY: Cornell University Library. 2017.

Soumith. How to train a gan? tips and tricks to make gans work.
https://github.com/soumith/ganhacks. 2016.

E. Todorov, T. Erez, and Y. Tassa, Mujoco: A physics engine for
model-based control. In Proceedings of the Intelligent Robots and
Systems, pp.5026-5033. 2012.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, Openai gym. jarXiv:1606.01540v1 [cs.LG].
Ithaca, NY: Cornell University Library. 2016.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980[cs.LG]. Ithaca, NY: Cornell University Library.
2014.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, High-
dimensional continuous control using generalized advantage esti-
mation. arXiv:1506.02438| [cs.LG]. Ithaca, NY: Cornell University
Library. 2015.

J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization.
arXiv:1607.06450v1[stat. ML]. Ithaca, NY: Cornell University Library.
2016.

http://arxiv.org/abs/1806.01946
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1803.10760
http://arxiv.org/abs/1610.01945
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1708.05789
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1607.06450

	I INTRODUCTION
	II CONDITIONAL DEEP REINFORCEMENT LEARNING
	II-A Problem Set-Up
	II-B CDRL Algorithms

	III RELATED WORK
	IV CASE STUDY: HINDSIGHT POLICY BOOSTING
	IV-A Method Formulation
	IV-B Experimental Configurations
	IV-C Results

	V CONCLUSION AND FUTURE WORK
	References

