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Abstract—Currently nearing human-level performance, Visual
Question Answering (VQA) is an emerging area in artificial
intelligence. Established as a multi-disciplinary field in machine
learning, both computer vision and natural language processing
communities are working together to achieve state-of-the-art
(SOTA) performance. However, there is a gap between the SOTA
results and real world applications. This is due to the lack of
model generalisation. The RAMEN model [1] aimed to achieve
domain generalization by obtaining the highest score across two
main types of VQA datasets. This study provides two major
improvements to the early/late fusion module and aggregation
module of the RAMEN architecture, with the objective of further
strengthening domain generalization. Vector operations based
fusion strategies are introduced for the fusion module and
the transformer architecture is introduced for the aggregation
module. Improvements of up to five VQA datasets from the ex-
periments conducted are evident. Following the results, this study
analyses the effects of both the improvements on the domain
generalization problem. The code is available on GitHub though
the following link https://github.com/bhanukaManesha/ramen.

Index Terms—visual question answering, computer vision,
natural language processing, attention, generalisation, RAMEN,
early fusion, late fusion, transformer

I. INTRODUCTION

Visual Question Answering (VQA) is a multi-disciplinary

problem in machine learning that exists at the intersection of

the computer vision, natural language processing and knowl-

edge representation fields [2]. Recently, the task of VQA has

been classified as an AI-complete task due to the complexity of

it. This problem requires the semantic understanding of each

of the three fields as well as the relationship between each

one of them [3]. One of the main issues in VQA is that the

state-of-the-art (SOTA) results on the datasets do not translate

on to real-world applications. This has directed the VQA field

towards generalization.

The datasets in the field of VQA can be separated into

two main categories [1]. The first type focuses on answering

questions by understanding the objects on natural real world

images and the other focuses on using synthetic images to test

reasoning questions. The problem with this categorization is

that the algorithms tend to focus on one or the other and not

generalize on both. This known as the domain generalization

problem, because the VQA models generalize on both types

of dataset either through training from scratch or fine tuning to

the domains and not overfitting on one type. [1] addressed this

issue by introducing a framework for domain generalization.

This framework allows to train models of both domains with

similar visual and textual features to evaluate their generaliza-

tion ability.

They also introduced the RAMEN model architecture which

was able to outperform all the other models compared in the

study in terms of domain generalization. However, this model

uses a simple architecture with a potential for improvement

and exploration. Therefore, this study proposes improvements

to the architecture of the RAMEN model while analyzing

the effect of these changes to the overall problem of domain

generalization.

The main contributions of this study includes the following:

• Improvements to the domain generalization performance

of the RAMEN model architecture by proposing modifi-

cations to the fusion and aggregation modules.

• A broad comparison of the vector based fusion operations

for early and late fusion pertaining to domain generaliza-

tion.

• Implementation and analysis of a transformer based

aggregation module to map the relationships between

bi-modal embeddings of the regional proposals in the

RAMEN model.

The rest of the paper is organized as follows: Section II

provides more context to the domain generalization problem

in VQA, the RAMEN model and the transformer architecture

in VQA. The proposed improvements to the RAMEN model

is detailed in Section III, which is followed by the experiment

strategy used in Section IV. A comprehensive analysis of the

results is conducted in Section V which is then summarized

in Section VI.

II. RELATED WORK

This section first summarizes the main VQA datasets used

in this study, followed by the RAMEN model. Next, the back-

ground of the transformer architecture in VQA is explored.

A. VQA Datasets

The dataset is the most important part of the VQA pipeline

as it determines what the model learns. If the dataset contains

inherent biases, the model will learn these and the performance

http://arxiv.org/abs/2109.02370v1
https://github.com/bhanukaManesha/ramen
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Fig. 1: High-level architecture of the RAMEN model

of the model will be affected. Many datasets were introduced,

with each dataset focusing on either solving biases [6]–[8],

[10], [11] or solving a specific type of question domain [12]–

[15].

This study focuses on the datasets used by [1], where

the datasets were divided into two groups; VQA datasets

for natural image understanding and VQA datasets to test

reasoning. Table I summarizes the VQA datasets used by [1]

to test for generalization.

1) VQA Datasets for Natural Image Understanding:

These datasets aims to provide answers by identifying objects

in the image. This can be through colour, count or other visual

cues. All the datasets in this group uses the MSCOCO dataset

[16] as the base image dataset except for TDIUC which adds

extra images.

a) VQAv1 [2]: One of the most widely known datasets

with the current SOTA accuracy of 75.26%. This dataset

mainly focuses on detection questions such as Is there food

on the table [2] and lacks reasoning questions such as What is

behind the computer in the corner of the table? [10]. However,

it consists of inherent question-answer biases where questions

such as Where is the giraffe standing on? always contains the

answer grass.

b) VQAv2 [4]: The successor to VQAv1, was able to

reduce the question-answer biases by introducing complemen-

tary questions. However, even though this allowed the VQAv2

dataset to be more balanced, the bias of having more detection

questions is still prevalent in this dataset; which makes the



TABLE I: Summary of VQA datasets used in this study. [1]

Dataset Image Type Question Type Images Q&A Pairs Download links

VQAv1 [2] Natural Human 204K 614K https://visualqa.org/vqa v1 download.html

VQAv2 [4] Natural Human 204K 1.1M https://visualqa.org/download.html

TDIUC [5] Natural Both 167K 1.6M https://kushalkafle.com/projects/tdiuc.html

C-VQA [6] Natural Human 123K 369K https://computing.ece.vt.edu/∼aish/cvqa/

VQACPv2 [7] Natural Human 219K 603K https://computing.ece.vt.edu/∼aish/vqacp/

CLEVR [8] Synthetic Synthetic 100K 999K https://cs.stanford.edu/people/jcjohns/clevr/

CLEVR-Humans [9] Synthetic Human 32K 32K https://cs.stanford.edu/people/jcjohns/iep/

CLEVR-CoGenT-A [8] Synthetic Synthetic 100K 999K https://cs.stanford.edu/people/jcjohns/clevr/

CLEVR-CoGenT-B [8] Synthetic Synthetic 30K 299K https://cs.stanford.edu/people/jcjohns/clevr/

models trained on VQAv2 datasets inherently weaker when

answering questions with reasoning.

c) TDIUC [5]: This dataset was created with the primary

aim of evaluating the performance of models on 12 distinct

types of VQA tasks. Color attributes, positional reasoning

and object presence are some of the types of tasks. A new

metric called Mean-per-type was also introduced as shown in

Equation 7 in Section 7. Therefore, it is evident that a model

needs to perform well across all the question types to get a

good performance score.

d) C-VQA [6]: Aims to re-split the VQAv1 dataset to

introduce novel combinations for the question-answer pairs

when testing. During testing the models will come across new

combinations of question-answer pairs. Therefore, the models

need to be able to generalize on the task and not the question

and answer.

e) VQACPv2 [7]: Overcomes the question and language

bias by splitting the VQAv1 and VQAv2 dataset. A completely

different answer distribution is present in the test split com-

pared to the training split. This allows the models to test their

ability to generalize by not over-fitting on the training set.

2) VQA Datasets to Test Reasoning: These datasets aim to

test the ability of models to answer reasoning based questions

by using synthetic images. These synthetic computer generated

images allow this dataset to generate complex reasoning

questions automatically. All the datasets in this group use the

images from the CLEVR dataset, with each dataset having

different question-answer pairs.

a) CLEVR [8]: The main goal of this dataset is to test the

reasoning capability of models on geometric shapes. Similar

to TDIUC, this dataset is classified into five categories.

b) CLEVR-Humans [9]: The main downside of CLEVR

dataset is that the questions are computer generated, thus being

very structured. The CLEVR-Humans dataset addresses this

issue by using free form human generated question-answer

pairs. It still uses the same images from the CLEVR dataset.

c) CLEVR-CoGenT [8]: This dataset was introduced

with the CLEVR dataset having two splits with mutually

exclusive color and shapes, namely, CLEVR-CoGenTA and

CLEVR-CoGenTB. This dataset aims to study the model’s

ability to recognize novel combinations of attributes such as

color and shapes at test time. For example, CLEVR-CoGenTA

contains red colour cylinders in the training set, in contrast,

CLEVR-CoGenTB does not contain red colour cylinders.

B. RAMEN

The VQA pipeline consists of five main components; VQA

dataset, Image representation, Question representation, Multi-

modal representation and Answer classification. Many studies

have been done in the field of VQA, with each focusing on

improving different sections of the VQA pipeline [2], [17]–

[28].

[1] proposed a framework to compare the performance of

VQA algorithms across different domains. They standardize

the image representation and the question representation across

the VQA datasets of multiple domains. With this, they were

able to compare the performance of multiple algorithms [12],

[24], [26], [29], [30] across domains and assess the general-

ization ability of the model architectures.

They also proposed a model named RAMEN with a con-

ceptually simple architecture that was able to generalize across

multiple domains. Figure 1 shows the high-level architecture

of the RAMEN model, where the five main components of the

VQA pipeline can be identified in this model.

a) Image Representation: The image representation

module focuses on extracting features from the image and

converting them into visual features. Various methods exists

that focuses on extracting features from images using different

techniques such as VGG-Net [2], [18], [31]–[33], ResNet [19],

[22], [23], [34], [35] and Faster-RCNN [24], [36]–[38]. The

RAMEN model uses a Faster-RCNN based technique where

the image is passed through the bottom-up-top-down network

[24], which uses attention on the object level to return visual

features as a set of regions. These regions corresponds to the

main object regions in the image which are used to answer

the questions. For VQAv1, VQAv2, CVQA, VQACPv2 and

TDIUC datasets the bottom-up attention module returns 36

regions and for the CLEVR family of datasets it return 15

regions.

b) Question Representation: The question representation

module converts the question into a vector representation. This

vector representation encodes all the words while maintaining

the flow and positional information of the question. Studies

have proposed multiple ways to extract these features by

using CNN [21], [39], LSTM [19], [23], [31] and GRU [24],

https://visualqa.org/vqa_v1_download.html
https://visualqa.org/download.html
https://kushalkafle.com/projects/tdiuc.html
https://computing.ece.vt.edu/~aish/cvqa/
https://computing.ece.vt.edu/~aish/vqacp/
https://cs.stanford.edu/people/jcjohns/clevr/
https://cs.stanford.edu/people/jcjohns/iep/
https://cs.stanford.edu/people/jcjohns/clevr/
https://cs.stanford.edu/people/jcjohns/clevr/


[34], [37] networks. The RAMEN model uses a GRU based

approach by first splitting the questions into multiple word

tokens. Each token is instantiated with the GLOVE embedding

[40]. Then the embeddings are passed through a GRU based

RNN [41] to obtain the question representation.
c) Multi Modal representation: Once the image and

question representations are passed into this module, the two

vectors are fused together using concatenation. This step is

also known as early fusion in the model architecture. Next,

the RAMEN model uses a Multi Layer Perceptorn (MLP) to

create a bimodal embedding. This allows the model to learn the

relationship between the image and question representation.

Then the bimodal embedding is concatenated with the question

representation, with the Late Fusion module. The fused vector

is then passed to the aggregation module where it is passed

through a bi-directional GRU network. This step captures the

relationships between the bimodal embeddings.
d) Classification: In the final module, the output of the

multi-modal representation is pass through a series of linear

layers to perform the pre-classification step. This is then

followed by a single linear layer for classification.

C. Transformer

The introduction of the transformer architecture [42] has

been a pivotal moment in the NLP community. The main use

case of the transformer network is for machine translation.

The main advantage of using transformer over traditional

RNN networks is that the sequences are processed as a

whole compared to one by one. Moreover, the transformer

uses multi-head attention and positional encoding to obtain

more information about the relationships between the features.

This allows the transformer architecture to be parallelizable

compared to sequential RNN networks.

Many studies have been done in the field of VQA that

incorporated transformers into the architecture [43]–[45]. Most

of them focus on encoding the question using the transformer

architecture. The Bidirectional Encoder Representations from

Transformers (BERT) architecture [46], which is derived from

the transformer architecture is commonly used to encode the

question [47], [48]. However, limited research has been done

where the transformer architecture is used to capture the

relationship between visual and question features. [47] showed

that the transformer architecture is able to capture intra-

modality and cross-modality relationships on the VQA and

GQA [49] datasets. Therefore, this study aims to investigate

the effect of using transformer as an encoder in VQA.

III. METHODOLOGY

The key focus of the improvements are on the multi modal

representation section of the RAMEN model. Based on the

ablation study done by [1], the early fusion module has

a significant effect on the performance of the model. The

aggregation technique also has an effect on the performance

of the model, whereas, the late fusion module has the mini-

mum effect on the performance of the model. Therefore, the

experiments are done on the Early Fusion, Late Fusion and

the Aggregation modules of the model as shown in Figure 1.

A. Fusion Strategies

[3] performed a survey on the fusion strategies in Im-

ageVQA and VideoVQA studies. They classified the fusion

strategies into three main types; Vector operations, Neural

Networks (NN) and Bilinear pooling.

The RAMEN model uses a mix of vector operations and

neural networks to perform the multi-modal fusion. The early

and late sub-modules uses simple concatenation of the features

and the shared projection and aggregation sub-modules uses

neural networks as the strategy. First in the early fusion

module, the regional visual features are fused using concate-

nation with the question embedding to obtain the early fused

embedding. This is then passed through the neural network

based shared projection and the output bi-modal embedding is

obtained. In the late fusion module, the bi-modal embedding is

again fused using concatenation with the question embedding

to obtain the late fused embedding. After the fusion operation,

both early and late fusion embeddings are passed through

a Batch Normalization [50]. Finally, the vector is passed

through the aggregation module, which is a Recurrent Neural

Network based fusion strategy to obtain the fused vector for

classification.

In the survey, [3] also categorized the vector operations

into three main sections; concatenation, addition and multi-

plication. In this study, these three main vector operations

will be experimented on the RAMEN model to observe the

performance effect on the NN. Figure 2 shows the overview

of the fusion strategies tested in this study.

1) Concat Fusion: This is the baseline strategy used by

the RAMEN model. A question embedding size of 1024 and

visual feature size of 2048 is used to obtain a final embedding

size of 3072. In this approach the output embedding passes all

the information from both embeddings to the NN to identify

the relationships. No information is lost in this approach and

all the feature points are given similar weights. In order to per-

form vector operations, the question embedding is repeated to

match the size of the visual features and bi-modal embedding.

To do this, the question embedding is repeated 36 times for

the VQA family of datasets and 15 times for the CLEVR

family of datasets. This is done for all the fusion strategies

experimented in this study.

Equation 1 is used to obtain the final embedding (ci), where

qi is the question embedding and vi is the regional visual

features or the bi-modal embedding.

ci = BatchNorm([qi, vi]) (1)

2) Additive Fusion: For the additive fusion, the question

embedding is matched to the same size as the visual features.

Therefore, the embedding size is changed from 1024 to 2048

to obtain the final embedding size of 2048. This approach

emphasizes on the different feature points which allows the

model to update the question embeddings to focus on them.

This approach has information loss due to the addition op-

eration, however, it is compensated by the increase in the
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question embedding size. Equation 2 is used to obtain the final

embedding (ci). qi and vi are as described as in Equation 1.

ci = BatchNorm(vi ⊕ qi) (2)

3) Multiplicative Fusion: Similar to additive, the question

embedding size of 2048 is used for this strategy. In this

approach, the emphasis on different feature points is greater

than the additive fusion. Equation 3 is used to obtain the final

embedding (ci). qi and vi are as described as in Equation 1.

ci = BatchNorm(qi ⊙ vi) (3)

4) Question Fusion: Question fusion uses a dual concate-

nation strategy. The question embedding is concatenated be-

fore and after the visual features. An embedding size of 1024 is

used for the question embedding, with the final embedding size

of 4096. The main emphasis in this strategy is to provide more

feature points for the question embedding. Datasets such as the

CLEVR family that are used to test reasoning contains longer

questions compared to other datasets. Therefore, limiting the

question embedding to a single vector of size 1024 or 2048

can effect the emphasis of the question on the model. Equation

4 is used to obtain the final embedding (ci). qi and vi are as

described as in Equation 1.

ci = BatchNorm([qi, vi, qi]) (4)

B. Aggregation Strategies

This module is used to calculate the relationship between the

question and bi-modal embeddings. The bi-modal embeddings

contains the relationship between the question and each re-

gional visual feature. Thereby this module aims to identify the

relationships between the visual regions. Higher performance

on this module will lead to better results on questions that

require multi object or localized information to answer.

1) bi-GRU network: The baseline aggregation strategy in

the RAMEN model uses a bidirectional GRU based RNN

to calculate the feature vector. The main downside to this

approach is that the model goes through each region sequen-

tially in both directions. Therefore, to obtain a relationship

between two regions of the image, the model needs to pass

through the other regions which can lead to information loss.

This approach is best used when all the regions are equally

important for the question.

2) Transformer network: The transformer architecture is

stronger in identifying the relationship between the multiple

regions/vectors, because the network processes all the regions

at once and not sequentially. This is the reason why the

transformer model performs well on the machine translation

tasks [36]. This allows it to capture relationships among

regions better than RNNs.

However, the positional encoder in the traditional trans-

former network masks out half of the regions. This is to

ensure the model is not able to see the next word in machine

translation. For the RAMEN model, this is not an issue. So

the mask is removed and the transformer is able to view all

the regions.

The output of the original transformer model is a set of

decoders for the translated sentence. But in this case, the

main aim is to obtain a representation to be passed to the



classification module. Therefore, the decoder is replaced with a

fully connected NN that returns a vector representation instead

of the transformer decoder module.

One of the main downside of the transformer network is

the slow convergence. Typically the transformer network might

take upto sixty hours to fully convergence on translation tasks.

IV. EXPERIMENT

A. Dataset specification

In the baseline paper, the accuracy of the CLEVR-CoGenTB

dataset was obtained on a sub split of the test set. But in

this study, the accuracy is obtained on the complete test

set. Similarly, the original paper fine-tuned the model trained

on the CLEVR-dataset with the CLEVR-Humans dataset to

obtain the accuracy. However, this study, trains the CLEVR-

Humans dataset from scratch. All other training and testing

splits of the datasets are identical to the baseline paper.

B. Model specification

Due to the changes in the datasets, the baseline accuracies

are all re-calculated to ensure consistency. All the model

hyper-parameters are maintained as mentioned in the baseline

paper.

The model with the transformer as the aggregation strategy

is named as the TransformerNet and for baseline model with

the bi-GRU network the name RAMEN model is used. With

each model, the four different fusion strategies are experi-

mented for both the early and late fusion modules. Therefore,

in total the nine datasets are trained on eight versions of the

models.

C. Evaluation metrics

Three types of evaluations metrics are used in this study to

compare the results between the datasets. These are the same

metrics used in the baseline study.
a) 10-choose-3: Equation 5 shows the evaluation metric

used by VQAv1, VQAv2, CVQA and VQACPv2. These

datasets provide multiple answers for each question from

multiple human annotators. Thus using this metric reduces the

inter-human variability [2].

Acc(answer) = min{
# of annotators provided answer

3
, 1}

(5)
b) Simple Accuracy: CLEVR, CLEVR-Humans,

CLEVR-CoGenT-A and CLEVR-CoGenT-B uses the simple

accuracy shown in Equation 6 as the evaluation metric [8].

Acc(answer) =
# correct answer

# questions
(6)

c) Mean-per-type: The TDIUC dataset uses the mean-

per-type evaluation metric as shown in Equation 7 [5]. This

ensures that the model is able to perform well on each

category, even though the number of test instances of each

category are different.

Acc(answer) =

∑
{ # correct answer per type

# of questions per type
}

# of types
(7)

D. Training specifications

All the experiments were done on a PC running Ubuntu

18.04.1 LTS with an Intel® Xeon(R) W-2145 CPU @ 3.70GHz

with 16 logical cores and 64GB RAM. A single Quadro P5000

GPU was used to perform the NN training with a 7200RPM

Seagate hard drive to store the data. The gradual learning rate

warm up is used similar to [1], [26]. The mini-batch size of

256 is used for all the experiments. The models are trained

until 25 epochs with some exceptions in the TransformerNet

experiments; mainly due to the slower convergence rate. As

shown in Appendix A, an average training time of 46 minutes

per epoch was elapsed for all experiments.

V. RESULTS & DISCUSSION

This section focuses on the key observations from the

experiments and the effect of changing the aggregation and

fusion strategies. Table II show the scores obtained by each

experiment. The top three models are highlighted with darker

colours indicating better performance. Appendix B contains

the full results table with the training scores and number of

epochs.

When comparing the baseline results (Ramen-Concat) with

the results from the RAMEN study [1], it is evident that there

exist a minor difference in the scores. The training was done

with the same hyper-parameters as stated in the baseline paper

even though there exists a deficiency in the scores. However,

since all the experiments are done with the fixed set of hyper-

parameters, the scores in this study are consistent.

A. Overall observations

First, considering the model with the highest mean score

across all the datasets, the Ramen-Question model has a score

of 68.76. With a percentage difference of about 1%, it is

evident that the improvement of using different fusion and

aggregation strategies is minor. However, many other patterns

in the results can be observed which can help improve the

performance of future models. It is also noted that Ramen-

Multiplicative and TransformerNet-Concat was also able to

improve the performance by about 0.5% and 0.65% respec-

tively.

Next, it is evident that TransformerNet model did not

perform at all on most of the datasets, with differences in accu-

racies of more than 25% on the CLEVR datasets. This issue

is addressed in Section V-D. However, the TransformerNet-

Concat model performed well on most of the datasets.

When considering the model with the highest number of top

scores on the nine datasets, the Ramen-Multiplicative model

has achieved the highest score on three of the main datasets.

Therefore, it is evident that this model can perform well on

both natural and synthetic types of VQA datasets. However,

the model is not able to generalize to question and attribute

biases well. This is identified from the CVQA and VQACPv2

datasets, due to the lower performance on them. When compar-

ing the performance of the model between CLEVR-CoGenTA

and CLEVR-CoGenTB datasets, it is found to be evident that

the model is seeing a dip in performance.



TABLE II: Results from all eight model with the nine VQA datasets.

Dataset
Ramen TransformerNet

Baseline

Concat [1]
Additive Multiplicative Question Concat Additive Multiplicative Question

VQAv1 63.30 63.21 65.54 64.76 63.32 55.88 60.91 55.08

VQAv2 62.16 63.64 65.28 65.07 64.06 59.79 56.32 50.14

VQACPv2 37.61 36.73 36.28 37.03 37.47 27.60 27.60 26.89

CVQA 56.98 55.82 56.58 56.81 57.74 53.49 54.20 48.47

TDIUC 66.48 64.90 65.69 64.81 65.47 58.03 56.34 53.90

CLEVR 96.52 96.26 96.72 96.06 95.79 50.52 57.31 50.07

CLEVR-Humans 44.57 40.21 46.46 48.63 46.49 38.45 40.07 37.99

CLEVR-CoGenTA 96.59 96.84 96.63 96.90 96.43 64.26 72.07 60.24

CLEVR-CoGenTB 88.27 89.42 86.22 88.74 89.68 55.80 60.18 55.19

Mean 68.05 67.45 68.38 68.76 68.49 51.53 53.89 48.66

Number of datasets improved out of the 9 total datasets
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Fig. 3: Summaries of the results.

Next, comparing the performance of the model based on the

scores in the top-3 rank of the experiments, it is evident that

Ramen-Question has the overall best performance. In seven

out of the nine dataset, this model was able to achieve the

top three results. This indicates the ability of the model to

generalize across multiple datasets. Also the TransformerNet-

Concat model was able to achieve top three in seven out of

nine datasets even though it only have the highest scores for

the CVQA dataset.

With reference to Figure 3a, the Ramen-Additive model was

able to improve on three datasets. However, due to the lower

scores on the other datasets, especially CLEVR-Humans, the

model is not able to achieve a positive mean. This indicates

that the model is not able to perform well on free-form

questions.

In the following section the performance of the models on

specific datasets are analysed.

B. Dataset observations

Figure 3b demonstrates the datasets impact on the improve-

ment of the models. It only showcase the experiments with

at least one improvement, hence TransformerNet-Additive,

TransformerNet-Multiplicative and TransformerNet-Question

are ignored. All of the remaining models were able to improve

on the VQAv2 dataset. This suggests that all the fusion strate-

gies and the transformer aggregation strategy can improve the

performance of localizing and detecting items.

However, only the Multiplicative and Question fusion were

able to improve the VQAv1 dataset. Since, VQAv1 has inher-

ent bias in the questions, this implies that the these two fusion

strategies are more prone to over-fitting on the VQA based

datasets. This is also made clear by the poor performance on

the CVQA and VQACPv2 datasets.

However, the most performance gain is by the Ramen-

Question on the CLEVR-Humans dataset. It points to an



indication that the pre and post concatenation of the question

embedding has an improvement on the free form questions.

This is also true for the models performance on VQAv1 and

VQAv2 datasets.

Compared to the baseline, the TransformerNet-Concat is the

only model to have an improvement in the score for CVQA.

This highlights that the transformer aggregation module pro-

vides the ability for the module to generalize. This is further

emphasized since the CLEVR-CoGenTB and VQAv2 datasets

also show improvement in the scores.

C. Fusion Strategies

Overall it is clear that the different fusion strategies favor

various datasets due to the unique characteristics in them.

1) Concat Fusion: The baseline concatenation fusion ap-

proach was able to get the highest score for VQACPv2

and TDIUC dataset using the RAMEN model and CLEVR-

CoGenTB using the TransformerNet model. The VQACPv2

dataset aims to test the answer bias in the models. Therefore,

concatenation based fusion is able to generalize well in terms

of answer biases as both Ramen-concat and TransformerNet-

Concat was able to achieve high scores.

Next, the TDIUC MPT metric measures the performance

of the model on multiple question types. Considering that

both the Ramen-Concat and TransformerNet-Concat have high

scores on the TDIUC dataset, it is clear that concatenation

based fusion allows for much more question type based

generalization.

The TransformerNet-Concat model is trained on CLEVR-

CoGenTA and tested on CLEVR-CoGenTB. Therefore, the

model will not learn any details about the complementary

attributes in the dataset. This indicates that the model is able

to generalization well onto unseen combinations of attributes.

However, the relationship between concatenation based fusion

and attribute based generalization cannot be established. This

is due to the lower score in the Ramen-Concat model, which

implies that the performance gain is due to the transformer

aggregation strategy.

2) Additive Fusion: The additive fusion strategy was not

able to get the highest score for any of the datasets. How-

ever, the Ramen-Additive model was able to improve on

the CLEVR-CoGenTA and CLEVR-CoGenB datasets, which

point towards the model’s ability to generalize to new concept

compositions. The main issue with the additive fusion strategy

is the information loss and the lower emphasis on the vector

operation.

3) Multiplicative Fusion: The multiplicative fusion strategy

achieved the highest score for VQAv1, VQAv2 and CLEVR

datasets. As mentioned in Section V-A, the model suffers with

generalization. However, the emphasis on the vector operation

is higher compared to additive fusion, therefore the most

important details are passed on through the fusion module.

4) Question Fusion: The question fusion obtained the

highest score for CLEVR-Humans and CLEVR-CoGenTA. It

also achieved high scores for all the CLEVR datasets. This

is an indication that for reasoning type datasets with higher

significance on the question, the double concatenation of the

question has an effect.

The ability for the model to generalize on new concept

compositions can be observed due to the performance on

CLEVR-CoGenTA and CLEVR-CoGenTB.

D. Aggregation Strategies

The transformer module as the aggregation strategy does not

perform well. With only decent performance using the concat

fusion strategy, it may not be suitable to be part of the RAMEN

model. Many issues where faced when training the transformer

module such as slow convergence and longer training time.

However, the slow convergence of the transformer module

remains a significant drawback.

This is evident when considering the number of epochs used

to train TransformerNet-Concat vs TransformerNet-Question

on the VQAv2 dataset. TransformerNet-Concat was trained

for 50 epochs where the highest score was obtained at epoch

46, whereas TransformerNet-additive was only trained for 25

epochs. Appendix B reports all the training details used for

each dataset. Therefore, training the TransformerNet models

for longer can provide better scores.

Additionally, due to the longer training times and the time

constraint, hyper-parameter tunning was not an option. With an

average time of 58 minutes per epoch for the TransformerNet-

Question model, the training would take more than 48 hours

on a single GPU. However, as observed by TransformerNet-

Concat, in an ideal scenario the model is able to convergence.

VI. CONCLUSION

The proposed improvements of this study resulted in mi-

nor gains in performance of about 1%. However, in-terms

of domain generalization the Ramen-Multiplicative, Ramen-

Question and TransformerNetwork-Concat models were able

to achieve improvements in five out of the nine datasets.

Also, Ramen-Question and TransformerNetwork-Concat mod-

els were able achieve the top three scores in seven out of the

nine datasets.

Analyzing the fusion strategies, provided insights to the

different characteristics that effect domain generalization. For

example, Question fusion performed well on reasoning ques-

tions due to the increase in the number of question embedding

data points, which resulted in an increase in the amount of in-

formation passed into the aggregation module. This knowledge

can be used to improve the performance of model and domain

generalization.

When studying the effects of the Transformer module as the

aggregation strategy, it is clear that selecting the correct hyper-

parameters and providing the necessary amount of training

time to converge are two main requirements when training

the transformer module. This is one of the main limitations

of this study. The time constraint and high computational

cost of the experiments led to some of the experiments not

converging to the higher scores. Therefore, since VQA datasets

tend to be larger in size, more powerful hardware is needed



to perform a broader hyper-parameter search to optimize the

models performance.

Focusing only on the vector operation based fusion strate-

gies was also another limitation of the study. Bilinear Pooling

techniques for fusion has proven to be effective when it comes

to identifying relationships. However, the added computational

cost of pooling on top of the transformer module will result

in poor performance if training is not done till convergence.

Nonetheless, this is a probable path that can be explored in

the future.

Another limitation of the study is that the RAMEN archi-

tecture itself may be causing the bottle neck when trying to

improve the generalization. Since both improvements were

done to sub-modules of the multi-modal section of the RA-

MEN model, inherent limitations may exist in the architecture.

Using the knowledge gained from the analysis of the fusion

and aggregation module, a new architecture can be developed

to well suite domain generalization.

In conclusion, this study paved the path to understanding

the characteristics required for domain generalization as well

as improving the performance of the RAMEN model.
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APPENDIX A

TOTAL TRAINING TIME

Dataset

Training Time per Epoch (minutes)

RAMEN TransformerNet

Baseline

Concat [1]
Additive Multiplicative Question Fusion Concatenation Additive Multiplicative Question Fusion

VQAv1 17.00 27.51 27.67 41.52 32.75 29.04 29.10 58.12

VQAv2 27.15 50.80 50.94 76.59 58.45 77.88 78.30 110.40

VQACP2 16.29 26.27 32.74 40.08 25.00 45.39 45.67 77.67

CVQA 11.09 14.87 15.04 26.31 21.67 42.94 28.11 39.85

TDIUC 48.79 85.32 86.13 129.87 91.65 89.73 90.00 183.57

CLEVR 28.51 49.31 51.49 47.26 28.18 56.28 56.82 63.57

CLEVR-Human 0.80 1.01 1.39 1.28 0.82 1.52 92.38 2.19

CLEVR-CoGenTA 16.40 47.47 49.28 44.95 28.11 53.52 53.74 60.49

CLEVR-CoGenTB - - - - - - - -

Average 20.75 37.82 39.33 50.98 35.83 49.54 59.26 74.48

Total Average Time 46.00

APPENDIX B

TRAINING RESULTS

Dataset

Ramen Concat TransformerNet Concat Ramen Additive TransformerNet Additive

Training Score Test Score Training Score Test Score Training Score Test Score Training Score Test Score

Epoch Score Epoch Score Epoch Score Epoch Score Epoch Score Epoch Score Epoch Score Epoch Score

VQAv1 25 88.44 25 63.3 50 8388.85 50 63.32 25 84.65 25 63.21 50 58.33 50 55.88

VQAv2 25 84.95 25 62.16 46 82.56 46 64.06 25 82.43 25 63.64 25 62.99 25 59.79

VQACP2 18 80.81 18 37.61 16 80.92 16 37.47 14 86.53 14 36.73 93 53.93 93 27.6

CVQA 8 68.36 8 56.98 16 73.61 16 57.74 8 68.23 8 55.82 20 79.66 20 53.49

TDIUC - - 9 66.48 - - 16 65.47 - - 14 64.9 - - 7 58.03

CLEVR 20 99.75 20 96.52 68 96.94 68 95.79 18 99.63 18 96.26 16 50.5 16 50.52

CLEVR-Human 31 100 31 44.57 77 99.2 77 46.49 10 87.67 10 40.21 83 38.96 83 38.45

CLEVR-CoGenTA 15 99.76 15 96.59 83 98.86 83 96.43 24 99.82 24 96.84 32 64.48 32 64.26

CLEVR-CoGenTB - - 15 88.27 - - 83 89.68 - - 20 89.42 - - 32 55.8

Average 68.05 68.49 67.45 51.53

Dataset

Ramen Question Fusion TransformerNet Question Fusion Ramen Multiplicative TransformerNet Multiplicative

Training Score Test Score Training Score Test Score Training Score Test Score Training Score Test Score

Epoch Score Epoch Score Epoch Score Epoch Score Epoch Score Epoch Score Epoch Score Epoch Score

VQAv1 25 76.9 25 64.76 25 54.61 25 55.08 25 70.32 25 65.54 25 62.83 25 60.91

VQAv2 25 79.53 25 65.07 25 49.31 25 50.14 25 68.98 25 65.28 25 56.1 25 56.32

VQACP2 30 87.09 30 37.03 26 55.75 26 26.89 25 71.76 25 36.28 93 53.93 93 27.6

CVQA 8 75.38 8 56.81 25 56.16 25 48.47 38 90.41 38 56.58 17 54.2 17 54.2

TDIUC - - 11 64.81 - - 11 53.9 - - 15 65.69 - - 8 56.34

CLEVR 14 97.83 14 96.06 25 49.84 25 50.07 21 99.86 21 96.72 25 57.24 25 57.31

CLEVR-Human 17 99.76 17 48.63 89 39.36 89 37.99 25 100 25 46.46 25 54.64 25 40.07

CLEVR-CoGenTA 21 99.68 21 96.9 23 60.35 23 60.24 16 99.81 16 96.63 25 72.42 25 72.07

CLEVR-CoGenTB - - 21 88.74 - - 23 55.19 - - 16 86.22 - - 16 60.18

Average 68.76 48.66 68.38 53.89
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