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Abstract
We consider federated learning (FL), where the
training data is distributed across a large num-
ber of clients. The standard optimization method
in this setting is Federated Averaging (FedAvg),
which performs multiple local first-order opti-
mization steps between communication rounds.
In this work, we evaluate the performance of sev-
eral second-order distributed methods with local
steps in the FL setting which promise to have fa-
vorable convergence properties.
We (i) show that FedAvg performs surprisingly
well against its second-order competitors when
evaluated under fair metrics (equal amount of lo-
cal computations)—in contrast to the results of
previous work. Based on our numerical study, we
propose (ii) a novel variant that uses second-order
local information for updates and a global line
search to counteract the resulting local specificity.

1. Introduction
Federated learning (FL) is a new machine learning paradigm
where the used data can not be sent to a central server and
the individual clients have to participate in the optimization
process (McMahan et al., 2017; Kairouz et al., 2019). These
limitations make classical optimization algorithms not di-
rectly applicable to FL, which spurred the interest of the
optimization community. The high iteration cost—due to
the need to communicate for each update—requires algo-
rithms that make as much progress as possible per round
of communication. Second-order methods promise to be a
class of algorithms which can do this on a suitable class of
functions.

The communication cost in the cross-silo federated learn-
ing (Kairouz et al., 2019) is between the one of classical
distributed optimization and cross-device federated learning.
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Assuming that clients are reliable and participate in each
round, we can formulate a distributed problem of the form:

f(w) =
1

|S|
∑
i∈S

li(w) +
γ

2
‖w‖22 , (1)

with regularization as studied in (Wang et al., 2018) and
where all losses li(w) are convex and S denoting the set of
all clients defining this problem.

The optimization wall-clock time in the cross-device feder-
ated learning (Kairouz et al., 2019) setting is dominated by
high latency and low bandwidth connections. Often only a
fraction of all (stateless1) clients participate in each round.
This leads to a stochastic approximation of Eq. (1) in the
form of

ft(w) =
1

|St|
∑
i∈St

li(w) +
γ

2
‖w‖22 , (2)

as the set of participating clients St changes at each step t.
The optimization algorithm nevertheless has to optimize
problem (1) to find the global optimum. This setting permits
relatively expensive updates as the communication costs
usually outweigh the computation costs by far (especially
for first-order methods). Such expensive updates can be the
ones from second-order methods or even multiple steps of
a cheap method. These local steps before synchronizing
the updates make classical convergence rates for a non-
distributed setting not directly transferable to this setup.
The changing nature of Eq. (2) becomes problematic when
the optimum on a single client is not the optimum of all
clients, e.g. in the realistic case when data is heterogeneous.
Here, a better local solution is possibly not helping to solve
the global problem. While it is a challenge for distributed
algorithms in general, FedAvg facilitates a balance between
the quality of the local update and the overall progress by
varying the number of local steps, which is more challenging
for second order methods which only do few steps to achieve
the same progress.

GIANT (Wang et al., 2018) is a proposed distributed second
order method to optimize Eq. (1) which has better com-
munication complexity than first-order accelerated gradient

1Stateless in this setting means that the clients do not have
access to any information from previous communication rounds,
e.g. accumulated gradients, unless communicated by the server.
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descent (Wang et al., 2018, Tab. 1). GIANT calculates an
approximation of the Newton update [∇2f(wt)]−1∇f(w)
by using the global gradient and the local Hessians on each
client combined with a global backtracking line search over
all clients. This involves three rounds of communication2

which can be considered quite expensive in comparison with
for example local SGD (Zinkevich et al., 2010; Stich, 2018)
which only needs one communication round and GIANT
does not allow local steps. LocalNewton (Gupta et al., 2021)
uses only the local gradient and local Hessian for its updates
combined with a local backtracking line search. This allows
to do multiple local steps before communicating only once
for a global update step but with the risk of calculating an
update too specific to the client. When we directly apply
both methods to the cross-silo federated learning setting
defined by Eq. (2), GIANT has a disadvantage compared to
other methods by its many communication rounds and Lo-
calNewton can find a solution which is good for the current
client but does not decrease the objective function overall.

Contributions. Our contributions can be summarized as:

• We investigate different new variants of distributed
second-order optimizers and derive LocalNewton with
global line search which is suitable for the federated
learning setting, especially with heterogeneous data
meaning that each client has a specific data distribution.

• We show empirically that FedAvg with multiple local
steps is surprisingly effective in the cross-silo and cross-
device setting, performing as well as the second-order
methods in our experiments.

• We argue for a fairer comparison of first and second order
methods in distributed optimization by considering the
number of gradient evaluations.

2. Related Work
FedAvg (McMahan et al., 2017) and Local SGD (Stich,
2018) use only the first-order gradients for their updates.
The considerable faster computation compared to com-
puting a Hessian is a big advantage over second order
methods in settings with fast communication. Adaptive
step size methods like AdaGrad (Duchi et al., 2011),
RMSProp (Tieleman & Hinton, 2012) and ADAM (Kingma
& Ba, 2014), which MIME (Karimireddy et al., 2020a)
transfers to the distributed setting, are trying to improve the
convergence properties further. The step size adaption can
also be expressed as a diagonal matrix D and represents
in the update D−1∇f(x) an alternative preconditioning
to the Hessian in H−1∇f(x) of Newton’s method. The
advantage of local steps is studied in (Woodworth et al.,
2020; Karimireddy et al., 2020b; Woodworth et al., 2021).

2We define sending and receiving of a gradient (or model/state
vector) with O(d) elements as one communication round.

The proposed second order methods can be divided in meth-
ods which use second order information indirectly (Shamir
et al., 2014; Li et al., 2019; Reddi et al., 2016) and meth-
ods which calculate them explicitly (Zhang & Lin, 2015;
Wang et al., 2018; Gupta et al., 2021; Zhang et al., 2020;
Crane & Roosta, 2019; Ghosh et al., 2020). DANE (Shamir
et al., 2014) calculates a mirror descent update on the local
function (Eq. (3)) which is equal to the GIANT update for a
quadratic function. Li et al. (2019) propose FedDANE as a
version of DANE for federated learning. They use FedAvg
as baseline with 20 local epochs and see no improvement
with their proposed method. AIDE (Reddi et al., 2016) is
an accelerated inexact version of DANE. Another category
are distributed quasi-newton methods like in (Agarwal et al.,
2014). CoCoA (Smith et al., 2018) and its trust-region ex-
tension (Duenner et al., 2018) also perform local steps on a
second-order local subproblem, but only address the special
case of generalized linear model objectives. Karimireddy
et al. (2018) study inexact updates with global curvature
information.

The methods which use the Hessian are calculating it indi-
rectly with the so-called Hessian-free optimization (Martens,
2010) approach. DiSCO (Zhang & Lin, 2015) only
computes the Hessian-vector-product on the machines
and performs the (preconditioned) conjugate gradient
method (Hestenes et al., 1952) on the server which results in
one communication round for each conjugate gradient itera-
tion. GIANT (Wang et al., 2018) and LocalNewton (Gupta
et al., 2021) perform the conjugate gradient method on the
clients whereas GIANT uses the global gradient and Local-
Newton the local gradient. Islamov et al. (2021) and their
FL extension (Safaryan et al., 2021) iteratively build an ap-
proximation to the global Hessian using a similar amount
of communications rounds than GIANT but achieve a better
convergence rate. They use stateful clients for FedNL and
their construction works with the assumption that the num-
ber of iterations goes to infinity. One needs to investigate
if their experimental results also hold with the few commu-
nication rounds we saw in our experiments. They do not
experimentally compare their methods with FedAvg with
multiple steps.

3. Method
An optimization algorithm for the federated learning set-
ting defined in Eq. (2) only has access to the subset St of
all clients S in each timestep t and each client i can only
optimize its local objective

fi(w) = li(w) +
γ

2
‖w‖22 (3)

individually. The function li(w) can be any convex function.
The regularization term γ

2 ‖w‖
2
2 makes each local function

fi(w) strongly convex which implies a positive definite
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definition properties

local server global global local #comm.
optimization update gradient line search steps rounds

GIANT (Wang et al., 2018) Alg. 2 Alg. 7 yes yes no 3
GIANT with local steps and global line search* Alg. 3 Alg. 7 yes yes yes 3
GIANT with local steps and local line search* Alg. 4 Alg. 8 yes no yes 2
LocalNewton with global line search* Alg. 5 Alg. 9 no yes yes 2
LocalNewton (Gupta et al., 2021) Alg. 6 Alg. 8 no no yes 1

Table 1. Definition of studied algorithms by used local optimization algorithms and server updates and resulting properties of these
algorithms. New methods proposed by us are marked with *. Communication rounds are counted per parameter update on the server.

Algorithm 1 Blueprint of all methods from Table 1
while not converged do
. Select active subset St ⊂ S of clients
. Optional: Compute global gradient on active clients

Send parameters wt to active clients St
Compute∇fi(wt) on clients St and send to server
∇ft(wt) = 1

|St|
∑
i∈St fi(w

t)

Send ∇ft(wt) to clients
. Optimize local functions on active clients St

with Algorithm 2, 3, 4, 5 or 6
. Compute update on server

by a global backtracking line search (Alg. 7),
or by averaging weights (Alg. 8),
or by a global line search (Alg. 9).

end while

Hessian. The function over all clients is then defined by
Eq. (1) whereby the optimization algorithm only has access
to the stochastic approximation Eq. (2) in each step.

Implementing Newton’s method naively by using the global
gradient and sending the local Hessians Hi,t = ∇2fi(w

t)
to the server that would then calculate the global Hessian by
Ht = 1

|St|
∑
i∈St Hi,t and invert it for the update

wt+1 = wt − µt
(

1
|St|

∑
i∈St Hi,t

)−1
∇ft(wt) (4)

leads to a communication and space complexity of O(|St| ·
d2) which is already prohibitive for a moderate-sized dimen-
sionality d.

Instead, we can use the method of Pearlmutter (1994) to
calculate Hessian-vector-products in conjunction with solv-
ing Hiui = ∇fi(w) for ui with the conjugate gradient
method (Hestenes et al., 1952) which gives us the update
ui = H−1i ∇fi(w) without having to form the Hessian nor
invert it explicitly. This involves O(niq) gradient evalua-
tions where q is the number of CG iterations needed and ni
is the number of samples on client i. We then only have to

send the update with sizeO(d) to the server which averages
them and calculates the new weights as

wt+1 = wt − µt
|St|

∑
i∈St

ui = wt − µt
|St|

∑
i∈St

H−1i,t ∇ft(w) (5)

using a backtracking line search to find µt. One can see
that the update in Eq. (5) is not the same as in Eq. (4)
as the former first inverts the Hessians and then averages
them instead of the other way round in the correct update.
Derezinski & Mahoney (2019) show that the used update
in Eq. (5) is a biased estimate where using more machines
to calulcate the update does not result in a better estimate
(starting at roughly 100 machines in their experiments). An
open question is how to use their proposed determinantal
averaging to remedy this problem without having access to
an explicit Hessian.

The convergence properties of the conjugate gradient
method solving Hi,tui = ∇f(w) is very important to the
overall performance of all discussed second order meth-
ods. The time complexity is O(nidq) (Wang et al., 2018)
where q is the number of CG iterations and d is the dimen-
sionality of the problem. Each evaluation of Hv with an
arbitrary vector v takes as much time as one gradient com-
putation (Pearlmutter, 1994). A fair comparison between
first- and second-order methods therefore uses as many lo-
cal steps for FedAvg as the second order methods need to
iterate the CG method. GIANT treats maximal iteration for
CG additionally as hyperparameter.

A naively implemented backtracking line search needs one
communication round for each line search iteration as it
potentially decreases the step size continuously. Wang et al.
(2018) propose to use a fixed set of step sizes for which
the losses are calculated and then sent to the server in one
communication round (See Alg. 10 for details).

Each of the possible algorithms (See Table 1 and Alg. 1)
can then either use the global gradient ∇ft(w) =
1
|St|

∑
i∈St fi(w) or only the local gradient∇fi(w), either

use a global line search over Eq. (2) or a local line search
only over Eq. (3) and all of our proposed variants use local
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steps. The global gradient and global line search each need
one more communication round than their local counterparts
but lead to the inclusion of global information in the update
process. GIANT with local steps and global line search
and LocalNewton with global line search introduce an
additional step size parameter for the local steps. The local
steps are performed with this additional step size parameter
and the global line search is performed over the resulting
update from multiple local steps (ui = wt

l −wt
0). We select

a new active subset of clients for the global line search of
LocalNewton with global line search similar to the sampling
of a new minibatch proposed for the adaption of the Armijo
line-search (Armijo, 1966) in a stochastic setting (Vaswani
et al., 2019). LocalNewton with global line search does
not use the global gradient for the update calculation and
we would need to calculate it only for the backtracking
line search. This could be done in parallel to the update
computations and is therefore possibly not as expensive as
for methods needing it for the update. Instead, we choose
the step size using arg minγ∈γ1,...,γl

∑
i∈St fi(w + γiu)

which can potentially choose a bigger step size than original
backtracking line search would but the backtracking line
search variant of Wang et al. (2018) with a fixed set
of step sizes has the same problem. Both variants of
GIANT with local steps can use the real global gradient
only in the first local step. Afterwards, they can update
the global gradient only by their local gradient with
gj+1 = gj− 1

|St|∇fi(w
t
j) + 1

|St|∇fi(w
t
j+1) as calculating

the global gradient at the new parameters wt+1
i would need

at least one additional communication round.

4. Experiments
We perform `2-regularized logistic regression over all
clients. The optimizers only have access to the subset St of
all clients in each step t. The loss on client i is therefore

li(w) = − 1

n

n∑
j=1

yj log(pj) + (1− yj) log(1− pj)

with pj = 1
1+exp(xjwj)

. A x-axis titled step means an
update step on the server of the form wt+1 = wt + u and
a x-axis titled communication round means that the server
sends O(d) information to the clients and can receive O(d)
information from each client. We use grid search to optimize
the number of local steps and the step size for the local
steps for the methods with global line search and federated
averaging. Gupta et al. (2021) execute local SGD as baseline
for one epoch with batch size one which would be ni steps
with one gradient evaluation per step and therefore O(ni)
gradient evaluations. They perform up to L = 3 local steps
for LocalNewton on all ni local data points resulting in
O(Lqni), e.g. 3× 100ni

3, gradient evaluations. Wang et al.

3Gupta et al. (2021) do not specify the maximal number of CG

(2018) compare GIANT only with accelerated GD as first
order method which only uses O(ni) gradient evaluations.
The baselines in (Wang et al., 2018) and (Gupta et al., 2021)
are therefore disadvantaged which we could reproduce in
our experiments. FedAvg with l local steps and therefore
O(lni) gradient evaluations performs significantly better
than FedAvg with only one step. Figure 1c shows that Local
SGD is competitive with second order methods on w8a
and Figure 1b shows that FedAvg is better than all tested
second-order methods on heterogeneous data.

Data We use the dataset w8a from LibSVM (Chang & Lin,
2011) which we distribute to 50 clients. This would result in
1000 data points per client which can nearly be solved in one
step by most methods and is therefore uninteresting for our
experiments. Sampling only 10% of the data differentiates
the methods better. As an additional dataset, we generate
data for y = 0 with x ∼ N (µ0 + bi,Σi,0) and for y = 1
with x ∼ N (µ1 + bi, ,Σi,1) where Σi,j = A>i,jAi,j with
Ai,j = U(0, 1)d×d and bi = U(−100, 100)d. With this
setup, we can test the performance of the different methods
on i.i.d data by using bi = 0 and ∀i, k, Ai,j = Ak,j and on
non-i.i.d. data. In the experiments, γ is choosen as 1

n with
n = 1000 generated data points.

Results Fig. 1a and Fig. 2a show the advantage of adding
local steps to GIANT. The local steps allow the method
to make more progress in one communication round and
allow to choose multiple steps with a smaller stepsize when
a single step with a higher step size would be too noisy. The
difference between Local Newton and Local Newton with
global line search on an i.i.d. setting like in Fig. 1a is mini-
mal but the global line search definitely helps in a non i.i.d.
setting like in Fig. 1b. Using a local line search for GIANT
and therefore saving one communication round is not work-
ing as can be seen in Fig. 1a and Fig. 2a. This method fails
in nearly all experiments. Table 1 raises the question if one
should invest the second communication round into a global
gradient (GIANT with local steps and local line search) or a
global line search (LocalNewton with global line search) and
our experiments indicate that LocalNewton with global line
search is advantageous (Fig. 1a and 2c). Figure 1b shows
that the second order methods except for LocalNewton with
global line search struggle with the non-i.i.d setup with
client-specific means. The GIANT variants with global line
search are choosing steps which do not improve the overall
loss which is not prevented by using another set of clients
for the global line search (not shown here). The two meth-
ods with only local line search already choose a too specific
first update which results in them diverging. LocalNewton
with global line search shows among the second-order meth-
ods the best performance overall considering the number of

iterations but Wang et al. (2017, Figure 7) use maximal 100 CG
iterations in one of the experiments.
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GIANT: local steps+local line search 
(number_local_steps: 5, )
GIANT: local steps+global line search 
(number_local_steps: 2, step_size: 0.1, )
LocalNewton with global line search 
(number_local_steps: 5, step_size: 1, )
LocalNewton 
(number_local_steps: 1, )
GIANT

(a) w8a
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GIANT with local steps and global line search 
(number_local_steps: 1, step_size: 0.9, )
LocalNewton with global line search 
(number_local_steps: 3, step_size: 0.8, )
LocalNewton 
(number_local_steps: 1, )
federated averaging 
(number_local_steps: 10, step_size: 0.0001, )
GIANT

(b) Synthetic heterogenous data
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federated averaging 
(number_local_steps: 25, step_size: 0.5, )
LocalNewton 
(number_local_steps: 2, )
GIANT

(c) w8a

Figure 1. (a) All second order methods on w8a in cross-device setting. LocalNewton variants working best. (b) Second order methods
on synthethic non-i.i.d. dataset in cross-device setting. Only LocalNewton with global line search is able to minimize loss. (c) Fair
Comparison between Local SGD, GIANT and LocalNewton in cross-silo setting. Local SGD performing as well as second order methods.

used communication rounds. Figure 2d shows the compet-
itiveness of Federated Averaging also in the cross-device
setting when all methods have the same gradient evaluation
budget as discussed in Section 3. An interesting empirical
observation is that the conjugate gradient methods needs
an increasing number of iterations after each update step to
converge to a given tolerance. This makes a fair comparison
with first-order methods more difficult.

5. Conclusion
Our work proposed new second-order methods for federated
learning, showed that the second-order methods exhibit
very different characteristics on i.i.d. and heterogenous data,
showed surprisingly good results for Local SGD/FedAvg
in the cross-silo and cross-device setting and suggested a
fairer comparison between first- and second-order methods
in distributed optimization. An interesting question raised
is if one can characterize federated learning problems were
second-order methods are of advantage.
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A. Implementation Details
We tuned the number of local steps and step size for GIANT
with local steps and global line search, the number of local
steps for GIANT with local steps and local line search, the
number of local steps and step size for LocalNewton with
global line search, number of local steps for LocalNewton
and number of local steps and step size for FedAvg. The con-
jugate gradient method is limited to 250 iterations and ini-
tialized with a random initial point. The second-order meth-
ods were for (number of local steps, step size) optimized
over {0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 1} × {1, 2, 3, 5, 10} and
FedAvg over {10−5, 10−4, 10−3, 10−2, 0.1, 0.5, 0.9, 1} ×
{1, 10, 25, 50, 100}. After running all parameter pairs, we
selected the one which had the smallest loss after the last
step.

Algorithm 2 Local optimization for GIANT
Solve Hi,tui = ∇ft(wt) for ui using CG-method
Send ui to server

Algorithm 3 Local optimization for GIANT with local steps
and global line search on client i with step size γ

wt
0 = wt

g0 = ∇ft(wt)
for j from 0 to number of local steps l do

Solve Hi,juj = gj for uj using CG-method
wt
j+1 = wt

j − γuj
gj+1 = gj − 1

|kt|∇fi(w
t
j) + 1

|kt|∇fi(w
t
j+1)

end for
Send ui = wt

l −wt
0 to server

Algorithm 4 Local optimization for GIANT with local steps
and local line search on client i

wt
0 = wt

g0 = ∇ft(wt)
for j from 0 to number of local steps l do

Solve Hiui = gj for ui using CG-method
Choose γj with local backtracking line search
wt
j+1 = wt

j − γjui
gj+1 = gj − 1

|kt|∇fi(w
t
j) + 1

|kt|∇fi(w
t
j+1)

end for
Send wt

l to server

Algorithm 5 Local optimization for LocalNewton with
global line search with step size γj

for j from 0 to number of local steps l do
Solve Hi,tui = ∇fi(wt) for ui using CG-method
wt
j+1 = wt

j − γjui
end for
Send ui = wt

l −wt
0 to server

Algorithm 6 Local optimization for LocalNewton
wt0 = wt

for j from 0 to number of local steps l do
Solve Hi,tui = ∇fi(wt

j) for ui using CG-method
Choose γj with local backtracking line search
wt
j+1 = wt

j − γjui
end for
Send wt

l to server
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Algorithm 7 Line search procedure for GIANT versions
with global line search

u = 1
|St|

∑
i∈St ui

Send u to clients
for clients S ′

t in parallel do
for predefined step sizes µ1, . . . , µl do

Compute fi(wt − µmu)
end for
Send fi(wt − µ1u), . . . , fi(w

t − µlu) and fi(wt) to
server

end for
Find optimal stepsize µ with global backtracking line
search (Alg. 10)
wt+1 = wt − µu

Algorithm 8 Update on server for methods with local line
search
wt+1 = 1

|kt|
∑
k∈kt w

t+1
k

Algorithm 9 Line search procedure for LocalNewton with
global line search

u = 1
|St|

∑
i∈St ui

Select new active subset S ′

t ⊂ S of clients
Send u to clients
for clients S ′

t in parallel do
for predefined step sizes µ1, . . . , µl do

Compute fi(wt − µmu)
end for
Send fi(wt − µ1u), . . . , fi(w

t − µlu) to server
end for
µ = arg minγ∈γ1,...,γl

∑
i∈St fi(w − γiu)

wt+1 = wt − µu

Algorithm 10 Line search used for methods with global
backtracking line search

for µi in µ1, . . . , µl do
if ft(wt + µiu

t) ≤ ft(wt)− µic〈ut,∇t(wt)〉 then
return µi

end if
end for
return µl
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Figure 2. All Experiments except for (d) are on our synthetic dataset. All Experiments are in cross-device setting. (a) Variations of
GIANT on i.i.d. synthetic data (b) Variation of LocalNewton on synthetic data (c) Comparison of methods using two procedural rounds of
communication (d) Experiment on w8a where Local Newton with global line search and Federated Averaging have the same budget of
gradient evaluations. We use the average of gradient evaluations from Local Newton with global line search although the cg method
needs more iterations closer to the optimum. (e) Sampling another set of clients for the global line search to not ”overfit” to the currently
selected client does not improve performance except for Local Newton with global line search (f) Quality of estimation of overall Hessian
by increasing number of local Hessians on w8a. The norm using the identity matrix as H∗ as in Federated Averaging is circa 17. 5 of the
50 clients are participating in each round of our federated learning experiments.


