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Abstract

Federated recommendation addresses the data silo
and privacy problems altogether for recommender
systems. Current federated recommender systems
mainly utilize cryptographic or obfuscation meth-
ods to protect the original ratings from leakage.
Howeyver, the former comes with extra communica-
tion and computation costs, and the latter damages
model accuracy. Neither of them could simultane-
ously satisfy the real-time feedback and accurate
personalization requirements of recommender sys-
tems. In this paper, we proposed federated masked
matrix factorization (FedMMF) to protect the data
privacy in federated recommender systems without
sacrificing efficiency and effectiveness. In more
details, we introduce the new idea of personalized
mask generated only from local data and apply it
in FedMMF. On the one hand, personalized mask
offers protection for participants’ private data with-
out effectiveness loss. On the other hand, com-
bined with the adaptive secure aggregation proto-
col, personalized mask could further improve effi-
ciency. Theoretically, we provide security analysis
for personalized mask. Empirically, we also show
the superiority of the designed model on different
real-world data sets.

1 Introduction

Federated recommender system (FedRec) is an essential ap-
plication of federated learning in the recommendation sce-
nario [Yang er al., 2020]. In recent years, federated learning
has been a fast-growing research field, which keeps private
data locally at multiple parties and trains models collabora-
tively in a secure and privacy-preserving way [McMahan and
others, 2021; McMabhan et al., 2017; Yang et al., 2019]. For
example, [Ammad-Ud-Din et al., 2019] proposed a federated
matrix factorization algorithm, which distributes the training
process at each local party and aggregates the computed gra-
dients on the central server. Privacy-preserving is one of the
major challenges in federated learning. Data decentralization
does alleviate privacy risks compared with the conventional
data-center training scheme. However, the gradients transmit-
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Figure 1: Illustration of the proposed FedMMF method. First, each
party generates personalized masks via training a local model. Sec-
ond, masked ratings are constructed via a combination of original
ratings and personalized masks. Then, federated matrix factoriza-
tion is performed on the masked ratings of all parties. An adap-
tive secure aggregation method is adopted. The parties with well-
protected original data could share model updates via vanilla aggre-
gation in plain-text format. And the other parties carry out a mask-
based secure aggregation protocol. Finally, only the masked ratings
with limited information are exposed to the server, leaking no data
privacy.

ted among different parties could still leak user privacy [Aono
etal.,2017; Zhu et al., 2019].

To address the privacy problem, current FedRec methods
can be broadly divided into two categories. The first-kind
solutions are based on cryptographic techniques such as ho-
momorphic encryption (HE) [Gentry, 2009] or secure multi-
party computation (SMC) [Yao, 1982]. For example, HE-
based FedRec [Chai et al., 2020] utilizes HE to protect the
transmitted gradients. These methods could lead to loss-
less model performance. However, they produce extra com-
putation and communication costs since federated learning
needs a large amount of calculation and intermediate results
exchange. The second-kind solutions utilize the obfusca-
tion methods such as differential privacy (DP) [Dwork er al.,
2014]. For instance, DP-based FedRec [Hua et al., 2015] has
been designed to provide a recommendation service without
leaking the data privacy of multiple sources. Although DP-
based federated algorithms are efficient, they damage the ac-
curacy of models. Therefore, the above solutions all have



difficulties when applying to practical problems. They can-
not satisfy both the two requirements of recommender system
(RecSys), i.e., personalization and real-time.

In this paper, we propose federated masked matrix factor-
ization (FedMMF) as a novel FedRec method. The designed
FedMMF method could protect the data privacy of FedRec
without sacrificing efficiency and effectiveness. Shown in
Fig. 1, instead of using cryptographic or obfuscation methods,
we introduce a new idea of protecting private data from leak-
age in FedRec, which is called personalized mask. Personal-
ized mask is a locally generated mask that adds on the original
data for preserving privacy without effectiveness loss. Gradi-
ents computed on the masked ratings of one participant could
be secure enough to directly share with other parties. More-
over, combined with the adaptive secure aggregation pro-
tocol, personalized mask also further relieves the efficiency
problem of FedRec. Theoretically and empirically, we show
the superiority of FedMMF.

The paper is organized as follows, in Section 2, we first
introduce the basic models and the privacy leakage problem;
in Section 3, we explain the FedMMF algorithm, the training
process, and the privacy guarantee; in Section 4, we show the
performance of FedMMF in three real-world datasets.

2 Preliminaries

In this section, we first introduce the traditional matrix factor-
ization for recommendation. Then, based on the current chal-
lenges of RecSys, we explain federated matrix factorization
(FedMF). Although FedMF alleviates the privacy problem of
FedRec, there still exists leakage in the training process. Fi-
nally, we talk about the current solutions of secure FedMF.

2.1 Matrix Factorization

Given a rating matrix R € R™*™, the recommender sys-
tem aims to fill in the missing values of the matrix. Matrix
factorization (MF) is regarded as one of the most classic rec-
ommendation algorithm [Koren et al., 2009]. Tt decouples the
original matrix R into two low-rank matrices. The rating 7,,;
that user u gives to the item ¢ can be approximated as:

Fui = @] Du, )
where q; € RF*! represents the latent factors of item 4,
Pu € RFx1 represents the latent factors of user u, and the
latent dimension k can be regarded as the item’s implicit char-
acteristics. We could optimize the latent factors via minimiz-
ing the loss given below using the existing ratings:
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where KC stands for the set of user-item pairs whose rating
Ty 18 already known and A is the regularization coefficient.
Stochastic gradient descent is utilized to update each param-
eter:
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where e,,; = ry; — q,;Tpu and ~y is the learning rate. Conven-
tional recommender systems centrally collect users’ private
data and train MF algorithm on the server, which leads to im-
mense privacy risks.

2.2 Federated Matrix Factorization

With the development of federated learning, federated rec-
ommender system (FedRec) was proposed to address the pri-
vacy and data silo problems in the recommendation scenar-
ios [Yang et al., 2020]. In this paper, we focus on the horizon-
tal FedRec, where each party only contains the rating infor-
mation of one individual user and the user’s private data is not
allowed to leave the local device. Federated matrix factoriza-
tion (FedMF) was designed to train recommendation models
in such a naturally distributed situation. In the vanilla FedMF
algorithm [Ammad-Ud-Din et al., 2019], all the item latent
factors {g; };cz are maintained on the central server, while
each user’s latent factors p,, is kept on the local party. The
training process is as follows and loops until the convergence
of model parameters: 1) party u downloads item ¢’s latent fac-
tors g; from the server; 2) party u updates user’s latent factors
P, using private local data r,; 3) party v computes the gra-
dients of each item’s latent factors 1,; = A - q; — €y - Pu
with r,, and the updated p,,; 4) party u sends n,,; to server;
5) server aggregates the gradients ) ;, 1.; and updates q;.

Privacy Leakage from Gradients in FedMF

Vanilla FedMF makes sure that users’ private data never
leaves the local parties. However, the transmitted gradients
could also lead to privacy leakage [Chai et al., 2020]. From
user u, the server continuously receives the gradients of the
item ¢’s latent vector at step t — 1 and step ¢:

M =A-q ' —e ool (5)
Nl =A-q — el - pl, (6)
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where e, = 1y — q; p, and el; = Ty — q; P,

Besides, the server also knows the update rule of the latent
vector of user u:

pL=p "+ Y (Apit—eli-d), D
1€,
where K, stands for the set of items that user u has rated.
Obviously, only pfjl, pft and r,; are unknown to the server.
Combining equations 5, 6, and 7, the server could solve the
unknown variables [Lazard, 2009]. In this way, private raw
ratings of each user are revealed.

Secure FedMF

To address the gradient leakage problem of vanilla FedMF, a
few secure FedMF algorithms have been proposed. For ex-
ample, HE-based FedMF [Chai er al., 2020] and DP-based
FedMF [Hua et al., 2015], respectively, utilize HE and DP
to further preserve privacy. HE-based FedMF encrypts gradi-
ents of item latent factors with HE before transmitting them
to the server. Then, the server performs secure aggregation



on the encrypted gradients, updates item latent factors in ci-
phertext state, and distributes the new encrypted item latent
factors to each user. In a similar way, DP-based FedMF adds
noises to gradients before aggregation. However, the former
one causes extra costs and the latter one results in accuracy
losses.

3 Federated Masked Matrix Factorization

In this section, we explain the proposed FedMMF method.
First, FedMMF adopts a new idea of the personalized mask
and we analyze its security. Then, FedMMF applies an adap-
tive secure aggregation protocol according to different pro-
tection situations provided by personalized masks on various
users.

3.1 Personalized Mask

We generate the personalized masks via private well-trained
model separately at each party. As shown in Fig. 1, FedMMF
applies the idea of personalized mask in the previous FedMF
architecture. The whole training process is as follows. Firstly,
before the federated training of latent factors, each local party
w trains a private local model using only the user’s own data.
The corresponding loss function is shown below:

mask
L, = MZW faresh (i) ®)

1€,

Without loss of generality, we define the private model of
user v as f%*. Then, the model is used to give prediction
fmask(;) on each user-item pair u, 7, where 7 € K,,. The op-
posite of the prediction is regarded as the personalized mask.
Finally, all parties collaboratively train a matrix factorization
model on the masked rating:

;r:;zsked =Ty — f;nask (’L) (9)
The prediction of FedMMF algorithm for one specific user-

item pair (u, 7) is:

Fui = @i Pu+ [ (0). (10)
The private model ™% could be an arbitrary model which
only trains on the local data. The well-behaved private model
at each local party could protect the privacy of original rat-
ings. Thus, parties with well-behaved private models are able
to directly share their gradients computed on the masked rat-
ings. Theorem 1 provides us with how much privacy could
be protected by personalized masks.

Security Analysis

The private model f7%** aims to hide the information of

rwi € R, which is the rating that each user u € U gives to
item i € Z. For user u, the training data of f7*** is denoted
by 2! = {(4, Twi)}ic{1,...,1}- The training data is sampled
from a joint distribution Prr. We assume R € [0, 1].

Definition 3.1 (Privacy indicator of personalized mask). We
define the private information exposed by one specific user u
after applying personalized masks as:

J(fir**, Prr) = FreR@)P. an

Eizry~prr IR —

With a smaller value of privacy indicator J, personalized
mask could provide a better protection. If the local pri-
vate model predicts more accurately, personalized masks will
cover more information of the original ratings.

Theorem 1. Personalized mask is (e, 6) — private for user u
if there exists a function nx, : (0,1) x (0,1) — N. For any
€,0 € (0,1) and any distribution Pz, if n > ng, then

Preverp (J(f**, Pre) < min J(fu, Prr) + )

>1-4.
(12)

Proof. For any f, € F,, the privacy indicator of user u cal-
culated on the training sample Z" is:

J(fu: Pix) Z IR; = fu(ZHIP. (3)

Each |R; — fu.(Z;)||* is an 1ndependent random variable with
mean J( fy, PIR) We further assume that ||R — fu(Z)|1? €
[0,1]. According to Hoeffding’s inequality !, we obtain:

Pranpse (|(fus Pi) = J(fus Prr)| > €) < 2¢72",

(14)

then we could get:
Prznpn (3fu € Fu, S.t.‘(fu,PfLR) — J(fu, PzR)| 15)

2 6) S 2|]:u|€_2n62-
This shows that if
log(2[Fu|/d)
> 2 16
> 52 , (16)
then

Prznpre(|(fu, Pr) — J(fu.Prr)| <€, (17)

Vi, € Fu) >1-96,

which is equivalent to:

PTZ"NPIR(J(JISWS]% PIR) < }nér}__ J(fu:PZR) + 26)

>1-46.
(18)
The reason is that, given

vfu S fua ‘(fuaP%lR) -
we could obtain step by step:

J(fu, Prr)| <€, (19)

J(f;naSky‘PIR) < J(f;nask’P%R) te
< min J(fu, Prr) + ¢
: (20)

IN

ngéI}J(fu,PIR)+e+e
= min J(f,, P 2¢.
min (fu, Prr) + 2

'https://en.wikipedia.org/wiki/Hoeffding’s_inequality



Let € = 5, we finally get
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The function nz, determines the sample complexity of
user v for training a FedMMF algorithm. It stands for how
many samples at least are required by personalized masks to
guarantee the privacy of user u. Besides, we assume the hy-
pothesis class F,, of local private model is finite. However,
it is not a necessary condition, and Theorem 1 can be fur-
ther generalized. From Theorem 1, we know that the privacy-
preserving ability of personalized mask decides on the qual-
ity of local training data. The users with good enough local
data could generate secure enough personalized masks, which
successfully limit the exposed information from the masked
ratings. The privacy indicator J can be used to judge if the
personalized masks are secure enough. In addition, we should
also try to find the most suitable hypothesis class F,, on vari-
ous data sets.

3.2 Adaptive Secure Aggregation

The data quality of different users varies in the real world.
Therefore, not all users can generate perfect personalized
masks for protection. We propose an adaptive secure ag-
gregation protocol to address this problem. For a given pri-
vacy indicator threshold th;, we could divide the users into
two groups, i.e., secure masked group Usecyre and insecure
masked group U;psecure- The privacy indicator J of user in
Usecure 18 larger than th;, while the privacy indicator J of
user in U;psecure 1S Smaller than th ;.

For user u € Usecure With secure enough personalized
masks, the gradients 7,; could be directly shared with the
central server for aggregation. And the server could get
Zueumwe 7). However, for user u € Ujpsecure With in-
secure personalized masks, sharing plain-text gradients will
disclose the privacy of local rating data. Therefore, we
adopt a mask-based secure aggregation method designed by
[Bonawitz et al., 2017]. For an arbitrary pair of users
U,V € Uinsecure and u < v, they decide a random mask
Sy € RFx1 together. User w adds this random mask s,, ,, to
its gradients, while user v substracts s,, ,, from its gradients.
Then, each user u could calculate:

ﬁui = Nui + Z Su,v — Z Sy,u mod Za (22)

u<v u>v

where [ is a large prime number. Next, each user u €
Uinsecure sends the computed 17,,; to the server. The server
will calculate:

Z ﬁui = Z (nuz + Z Su,v — Z Sv,u)

UEUinsecure UEUinseccure u<v u>v

= Z Nui

UEUinsecure

mod .

(23)
The aggregated gradients could be obtained, and the gradi-
ents of one specific user are protected by the designed random

Algorithm 1 Federated Masked Matrix Factorization

1: Input: 7,cq1, 0y, thy
mask

2: Output: gic(1,...,m}> Pue(t,...np fuei. n}
3: Server initializes q?e (1m}> each party wu initializes

p26{17--~7n} and fgéa{sllf...,n}(gu)

4: for each party u € {1,...,n} in parallel do

5:  //run on each party u

6:  Train private model f™%*¥(6,,) on local data r;

7:  Compute personalized masked rating r™2*¢4 accord-
ing to Eq. 9 for each i € ICy; ,

8:  Grouped to Usecyre OF Uinsecure With thy;

9: end for

10: // run on the server
11: foreacht =1,2,...,7 do
12:  for each party u € Usecure in parallel do

13: Get gradients n},; = MaskedUpdate(q;_ ,éu);

14:  end for

15:  for each party u € U;psecure in parallel do

16: Get gradients 7},; . = MaskedUpdate(qu ,éu);

17:  end for

18:  Get the aggregated gradients ) ., M7 according to
Eq. 24;

19:  Update item factors ¢! = g/~ ' —~- > weu M for each
1 €T,

20: end for

21: // run on each party u
22: MaksedUpdate:

23: Compute e!,; = rmasked _ gt pt for each i € Ky;
24: Update user factors p!, according to Eq. 7;
25: %ompute gradient !, according to Eq. 6 for each i €
u»s
26: Return m;cc or ;e to the server with adaptive se-
cure aggregation protocol.

masks. Furthermore, secret sharing [Shamir, 1979] is utilized
to solve the dynamic user problem. With the adaptive secure
aggregation protocol, the server could obtain

Yo=Y nut Y. i (24
ueU UEUsecure UEU;insecure
The details of FedMMF are shown in Algorithm 1. Compared
with only applying the original aggregation in [Bonawitz et
al., 2017], FedMMF utilizes the adaptive secure aggregation
to further improve efficiency.

4 Experiments

In this section, we show that FedMMF could improve effi-
ciency without the loss of privacy and model effectiveness.
Firstly, we explain the data sets, baseline models, and other
settings in the experiments. Then, we show the improve-
ments of FedMMF on model efficiency. With the help of
adaptive secure aggregation protocol based on personalized
masks, FedMMF accelerates the training process. At last, we



discuss the model effectiveness of FedMMF with different
kinds of personalized masks, compared to the baseline model.

4.1 Settings

We verify FedMMF on three real-world data sets. Two of
them are MovieLens data sets [Harper and Konstan, 2015],
i.e., MovieLens 100K and MovieLens 10M. The other one is
the LastFM data set [Cantador et al., 2011]. In our experi-
ment, each user is regarded as a participant in the collabora-
tive training process. Therefore, the user’s own ratings are
kept on the local party. Besides, we utilize the side informa-
tion (i.e., user profiles and item attributes) to train the local
private model. To construct features from tags in the data
set, we utilize TFIDF [Robertson, 2004] and PCA [Abdi and
Williams, 2010] techniques. Besides, we set bins for the lis-
tening counts of music of the LastFM data set and convert
them into ratings scaling from 1 to 5. In addition, the eval-
uation metrics of model efficacy are root mean square error
(RMSE) and mean absolute error (MAE). They are averaged
by each user-item pair but not each user, which is an align-
ment with most current works. Besides, we run each exper-
iment ten times to obtain the mean and standard deviation
values.

The compared models are: 1) FedMF: parties collabora-
tively train matrix factorization models via sharing the latent
factors of common users, where neither HE nor DP is utilized;
2) One-order FedMMF: each party locally learns linear per-
sonalized masks to hide private rating information via a linear
regression model [Montgomery et al., 2012]. Then, all parties
collaboratively train FedMF on the one-order masked ratings;
3) Two-order FedMMF: similarly, each party constructs
two-order masks to protect private ratings via locally learn-
ing a factorization machine model [Rendle, 2010]; 4) High-
order FedMMEF: each party captures high-order and nonlin-
ear feature interactions through a neural network model [Yeg-
nanarayana, 2009]. We do not compare FedMMF with DP-
based FedMF, because DP causes effectiveness loss while
FedMMF does not. Besides, we also show the performance
of various local context models and federated context models
for reference.

4.2 Efficiency Promotion and Privacy Discussion

Compared with HE-based FedMF [Chai er al., 2020], Fed-
MMF with all users in the insecure user group could largely
speed up the training process [Bonawitz er al., 2017]. Then,
the personalized mask technique could further improve the
efficiency of the secure aggregation process via sharing plain-
text gradients of parties with well-protected ratings. We pro-
vide two attack methods, i.e., recovery attack and ranking at-
tack, for analyzing how much the personalized mask tech-
nique could further promote model efficiency. Taking two-
order FedMMF on MovieLens 10M data set as an example,
we conduct the attack experiments. The rating range of the
MovieLens 10M data set is from 0.5 to 5.0. And the rating
interval is 0.5.

Recovery Attack
Against the masked ratings, an adversary could conduct an
intuitive attack to recover the original ratings. However, the
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(a) The results of recovery attack under different error levels. On
the one hand, when error level g is small, the recovery attack could
hardly reveal the original rating information. On the other hand,
when error level g grows, the recovery attack becomes more accu-
rate. However, the utility of recovered ratings also decreases.
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(b) The results of ranking attack under different top proportions.
With the masked ratings of each party, the adversary wants to choose
the actual high-rated items. When the adversary utilizes a small top
proportion h, the attacks performs on most parties achieve a poor
hit ratio, which is less than 0.5. Although the hit ratio grows as h
increases, a large h results in a useless ranking attack.

Figure 2: Experiments results on recovery and ranking attacks.

attack could be difficult if only the masked ratings are ex-
posed. Therefore, for each party, we assume that the adver-
sary knows the minimum and maximum values of the original
ratings. Then, the adversary could scale the masked ratings
to the range of original ratings for recovery. We define g as
the error level. If the difference between one recovered value
and the corresponding original rating is less than «, the re-
covery is considered successful. Thus, there exists a recovery
rate « for each party’s masked rating. In Fig. 2a, we show the
proportion of parties whose recovery rate is in a certain range
under different error levels. As we can see, when the error
level is small, e.g., g = 1 and ¢ = 2, the adversary could
nearly reveal no party’s privacy with a recovery rate larger
than 0.5. And as the error level increases, the recovery rate
begins to grow. However, a higher error level means a more
inaccurate recovery, and the utility of the recovered ratings is
poorer.



Models MovienLens 100K MovienLens 10M LastFM
RMSE MAE RMSE MAE RMSE MAE

FedMF 0.9491 4+ 0.0040 0.7412 £ 0.0027 0.7753 £ 0.0034  0.5827 £ 0.0015 1.2235 £+ 0.0068 0.8780 + 0.0047
LocalLR 1.0107 4 0.0025 0.8040 + 0.0022 0.8818 £+ 0.0023 0.6766 + 0.0011 1.1081 + 0.0099 0.8163 + 0.0085
FedLR 1.0796 4+ 0.0081 0.8844 + 0.0058 0.9703 £ 0.0020 0.7497 £ 0.0012 1.5448 +£0.0110 1.3538 + 0.0137
One-order FedMMF  0.9340 4+ 0.0043  0.7340 4+ 0.0035 0.7695 + 0.0013  0.5808 + 0.0008 1.0886 + 0.0109 0.8066 + 0.0092
LocalFM 1.0083 4+ 0.0019  0.8054 + 0.0019 0.8938 + 0.0023 0.6862 + 0.0012 1.0845 + 0.0130 0.7988 + 0.0035
FedFM 1.0628 + 0.0070  0.8644 + 0.0053 0.9639 + 0.0022 0.7445 + 0.0015 1.5301 +£0.0133  1.3369 + 0.0117
Two-order FedMMF  0.9218 4+ 0.0037 0.7250 4+ 0.0030 0.7720 4+ 0.0013  0.5827 4+ 0.0007  1.0842 + 0.0090 0.7964 + 0.0031
LocalNN 1.0114 +£0.0021 0.8087 4+ 0.0017 0.8819 £ 0.0020 0.6816 + 0.0009 1.1007 + 0.0068 0.8007 + 0.0123
FedNN 1.0945 + 0.0074  0.9176 4+ 0.0060 0.9756 + 0.0024 0.7689 + 0.0028 1.5461 + 0.0060 1.3598 + 0.0075
High-order FedMMF  0.9319 + 0.0025 0.7317 +0.0018 0.7648 +0.0016  0.5772 4+ 0.0008  1.0860 £ 0.0055 0.7933 + 0.0070

Table 1: Performance of FedMMF compared with baseline models on different data sets. FedMMF models with different personalized masks
have no effectiveness loss compared with FedMF in all data sets. Besides the comparison between FedMMF and FedMF, we also show that
FedMMF outperforms local context models and federated context models.

Ranking Attack

Since the intuitive recovery attack seems not successful
enough, we introduce another method named ranking attack.
Instead of recovering the original concrete ratings, ranking
attack tries to find the high-rating items from their masked
ratings. First, for each party, the adversary ranks the rated
items according to their masked ratings. Then, items in the
top h proportion of masked ratings are selected as the high-
rating items. Similarly, given h, we also sort these items with
regard to their original ratings as the true high-rating item
set. Thus, we could evaluate the ranking attack with hit ratio
B, which is calculated as the ratio that items selected using
masked ratings are in the true high-rating item set. Fig. 2b
shows that, under different top proportion h, the ranking at-
tack could reveal the rating ranking privacy of parties. If the
selected top proportion is small, e.g., h = 1 and h = 2, the
attacks performed on most parties’ masked ratings obtain a
hit ratio less than 0.5. It means that more than half of the
selected items do not have high ratings. When the adversary
tunes h larger, the attack becomes more effective. However, a
large h is relatively meaningless because the adversary does
not want to choose all items to be high-rating in reality.

According to the experiment results of the above two at-
tack methods, we find that a considerable number of users get
their rating privacy well-protected with the help of personal-
ized masks. These users can be put in the secure group and
transfer their gradients in plain text. Therefore, the personal-
ized mask could further accelerate the training process of fed-
erated recommendation. Besides federated learning, the per-
sonalized masked ratings of users in the secure group could
also be centrally collected and used for training without pri-
vacy leakage. This operation is able to reduce the communi-
cation and computation costs once again.

4.3 Discussion on Model Effectiveness

In this section, we verify the effectiveness of FedMMF on
three real-world data sets. We implement three private models
to construct personalized masks with different properties: the
one-order mask, two-order mask, and high-order mask. The
performances of FedMMF with these three masks are shown
in Tab. 1. RMSE and MAE are both regression evaluation

metrics. Smaller value stands for better model efficacy. As we
can see, FedMMF models with different personalized masks
have no effectiveness loss compared with FedMF in all data
sets.

Moreover, FedMMF even outperforms FedMF. The effec-
tiveness improvements could be divided into two parts. The
first part benefits from the ensemble training scheme of Fed-
MMEF. The incorporation of personalized masks utilizes the
idea of ensemble learning to combine weak learners for a bet-
ter generalization ability. The second part takes advantage
of the side information utilized in the private model of Fed-
MMEF. In the recommendation scenario, feature interactions
are important information to capture. Another observation
is that, on all three data sets, two-order FedMMF and high-
order FedMMF dominate alternatively. It means we should
utilize cross features to construct personalized masks in the
recommendation scenarios. We also compare FedMMF mod-
els with corresponding local context and federated context
models, shown in Tab. 1. Comparing FedMMF with differ-
ent local context models and federated context models, we
could see that FedMMF also outperforms both of them. This
observation verifies the main contribution to the effectiveness
improvement is the incorporation of ensemble learning. On
the other hand of the shield, FedMMEF can also be regarded
as an excellent way to combine collaborative information and
feature information.

5 Conclusion

In this paper, we provide a new idea of personalized masks
to protect data privacy in federated learning, which neither
slows the training process down nor damages model perfor-
mance. Taking the recommendation scenario as an example,
we apply it in the FedMMEF algorithm. Combining with the
adaptive secure aggregation protocol, FedMMF shows supe-
riority theoretically and empirically. In our future work, we
would like to extend personalized masks to more general fed-
erated learning tasks besides recommender systems and try to
combine personalized masks with differential privacy theory.
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