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Abstract. As machine learning systems become more ubiquitous, methods for
understanding and interpreting these models become increasingly important. In
particular, practitioners are often interested both in what features the model relies
on and how the model relies on them – the feature’s impact on model predictions.
Prior work on feature impact including partial dependence plots (PDPs) and Indi-
vidual Conditional Expectation (ICE) plots has focused on a visual interpretation
of feature impact. We propose a natural extension to ICE plots with ICE feature
impact, a model-agnostic, performance-agnostic feature impact metric drawn out
from ICE plots that can be interpreted as a close analogy to linear regression
coefficients. Additionally, we introduce an in-distribution variant of ICE feature
impact to vary the influence of out-of-distribution points as well as heterogeneity
and non-linearity measures to characterize feature impact. Lastly, we demonstrate
ICE feature impact’s utility in several tasks using real-world data.

1 Introduction

As machine learning (ML) systems become more ubiquitous in human decision mak-
ing, transparency and interpretability have grown significantly in importance [14]. Some
models may not require user trust due to a low-risk nature, e.g. movie recommendation
systems. Other problems don’t require top performance and safely rely on highly in-
terpretable models that may not perform as well as black box models. However, when
a problem space combines a high risk nature with demands for superior performance,
earning the user’s trust in the model is essential.

We distinguish three phases to “trusting” a model: strong performance, model un-
derstanding, and prediction understanding (See Figure 1). To distinguish a feature’s
contribution to model performance from its contribution to model predictions, we call
the former “feature importance” and the latter “feature impact” [11].
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Performance
Does the model perform

well?

Examples: Brier Score,
Log-loss, AUROC

Understanding the
Performance

Does the model rely on the
right features?

Examples: Permutation
Importance, LOCO

Understanding the
Prediction

How does the model rely
on features?

Examples: LIME, SHAP,
ICE feature impact

Fig. 1: Three stages in model trust

There exist several visual methods to display feature impact, the relationship be-
tween features and predictions, most notably partial dependence plots (PDPs) [6] and
jndividual conditional expectation (ICE) plots [7]. PDPs aggregate the effects of a fea-
ture while ICE plots disaggregate divergent effects by plotting individual observations.

Visual tools are highly intuitive and can convey a lot of information in a single plot.
However, they have some weaknesses as well. Firstly, visual interpretation is imprecise
which makes comparison between features difficult. Secondly, ICE plots in particular
can only plot a subset of the observations in the dataset to avoid overcrowding, which
can hide outlier observations or overfit extrapolations from view. Thirdly, the cost of
visual inspection does not scale well to the number of features–visually inspecting the
plots for millions of features, for example, is infeasible.

In this paper, we address these issues and extend ICE plots by extracting feature
impact metrics from them (“ICE feature impact”). ICE feature impact is model- and
performance-agnostic, meaning it measures the impact of each feature on the predic-
tion only, without regarding the accuracy of that prediction. ICE feature impact also
addresses the issues with the visual approach discussed above: it is a precise metric,
allowing comparisons between different ICE plots; it takes into account every obser-
vation, including outliers, instead of only a subset; and it can be ranked to prioritize
inspection of ICE plots to only the most impactful features, allowing the usefulness of
ICE plots to scale with the number of features.

We also introduce an in-distribution version of feature impact with a hyperparame-
ter to reduce the influence of out-of-distribution points, and we supplement ICE feature
impact with measures of heterogeneity and non-linearity to add depth. Together, these
metrics provide a quantitative perspective for understanding feature impact complemen-
tary to the qualitative nature of inspecting ICE plots.

2 Related Work

First introduced by Friedman [6], partial dependence plots (PDPs) are a model and
performance agnostic method of illustrating the relationships between one or more in-
put variables and the predictions of a black-box model. PDPs estimate the partial de-
pendency by marginalizing over all other features – essentially permuting the at-issue
features to specific values across the observed range and then averaging the resulting
predictions across training observations.

Individual Conditional Expectation (ICE) [7] plots disaggregate the average feature
impact curve of PDPs into its component, individual observation-curves. This allows
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ICE plots to capture heterogeneous relationships that PDPs otherwise miss. We further
discuss ICE plots and provide a specific methodology in Section 3.1. Accumulated Lo-
cal Effects [1] extend PDPs by restricting the permutation of at-issue features within a
certain interval as opposed to allowing them to permute from the minimum and max-
imum possible values as PDPs and ICE plots do. This addresses a weakness in PDPs
and ICE plots that permuting the feature value can lead to unrealistic observations when
features are correlated and motivates in-distribution ICE feature impact.

Parr et al. [11] distinguishes the idea of “feature impact” from standard feature im-
portance metrics as follows: while feature importance metrics measure how important
a feature is to the model’s performance, feature impact metrics measure how variations
in feature values impact the prediction, irrespective of performance.

LIME [12] uses an interpretable surrogate model to approximate the feature impact
on a local scale around the prediction. Parr et al. [11] proposes a non-parametric feature
impact methodology that does not interrogate a fitted model. Instead, they extend the
concept of PDPs by calculating the empirical partial dependence of the prediction on the
at-issue feature based on the data and then approximating the area under the resulting
partial dependence curve with a Riemann’s Sum.

Shapley values [13] detail how to fairly determine the total contribution of each fea-
ture to the overall prediction–making it a feature impact metric–by taking into account
both a feature’s individual contribution and collaborative contribution together with all
possible subsets of features. Shapley values themselves are highly computationally ex-
pensive to calculate precisely, though they can be approximated with a Monte Carlo
approach [15], Kernel SHAP [10], or Tree SHAP [9]. Tree SHAP differs from other
approaches as it relies solely on the training data without interventionist means like
permuting the value of features.

3 Methodology

An implementation of ICE feature impact as described below is available in Github.4.

3.1 ICE Plot Replication

We establish terminology and notation for the remainder of the paper by detailing the
ICE replication methodology we use. To replicate ICE plots, we create “phantom obser-
vations” from each “real observation” where all not “at-issue features(s)” are constant,
but we permute the “at-issue feature(s)”. We then use the phantom observations to in-
terrogate the model.

The exact algorithm is as follows: for at-issue feature(s) xS , fitted model f̂ , and
feature matrix X ∈ RN×p, let there be nxS unique values of xS found in the data.

1. For each observation x(i), create nxS
observations with all features the same as

in x(i), except for xS. Replace xS with the nxS
unique values of feature p found

above. This results in nxS
new observations for each x(i).

4 https://github.com/mixerupper/mltools-fi_cate

https://github.com/mixerupper/mltools-fi_cate
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2. We call the resulting observations “phantom observations”, denoted x(i)[k] which
is the kth phantom observation for x(i) with k = 1, . . . , nxS

. For each observation
x(i), one of its phantom observations is exactly identical to x(i), and the others are
identical except for a permuted xS. Combine all n ·nxS

phantom observations into
a new feature matrix.

3. Use fitted model f̂ to predict ŷ for all phantom observations.
4. For each original observation, plot a line composed of the corresponding phantom

points with the at-issue feature on the x-axis and ŷ on the y-axis. This results in n
lines, with each line composed of nxS

phantom points.

Additionally, if n is large, we sample uniformly from each quantile of xS if xS is
continuous and each value of xS if xS is categorical to capture the whole distribution.

3.2 ICE Feature Impact

While ICE plots allow visual inspection of feature impact, it does not output any quan-
titative metrics for comparability. We elicit a numeric feature impact metric from ICE
plots in the form of ICE feature impact.

For the sequence of points that make up each observation-curve, we calculate the
absolute change in prediction divided by the change in feature (|dydx |) for each consecu-
tive point. This uses rise over run to quantify the impact of the feature on the prediction
value. Then, ICE feature impact is the mean of all the |dydx | terms over all phantom
points that make up an observation and all observations. To account for features of dif-
ferent scales, we multiply by the standard deviation of that feature. We will see that ICE
feature impact has an analogous interpretation to coefficients in a linear model.

The exact algorithm is as follows: for feature xS , let σxS denote the standard devia-
tion of xS , let n be the number of observations, nxS be the number of unique values of
xS , x(i) be the ith observation, x(i)[k] be the kth phantom observation corresponding
to x(i), x(i)

S be the value of xS in observation x(i), x(i)
S [k] be the value of xS in the kth

phantom observation corresponding to x(i), and ŷ be the fitted model. Thus, the ICE
feature impact is:

FI(xS) =
σxS

n · (nxS − 1)

n∑
i=1

nxS∑
k=2

∣∣∣∣dŷ(x(i)[k])
dx

(i)
S [k]

∣∣∣∣
≈ σxS
n · (nxS − 1)

n∑
i=1

nxS∑
k=2

∣∣∣∣ ŷ(x(i)[k])− ŷ(x(i)[k − 1])

x
(i)
S [k]− x(i)S [k − 1]

∣∣∣∣
(1)

The ICE feature impact of xS can be interpreted as the absolute change in the predicted
value of ŷ for each one-unit change in xS if xS was standardized to a standard devia-
tion of 1 and all other features remained constant. Note that ICE feature impact gives
the magnitude of impact, not the direction. Average direction of feature impact can be
determined by comparing the ICE feature impact with the value of Equation 1 without
an absolute value on the inner summation term.
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3.3 In-Distribution ICE Feature Impact

One of the drawbacks of ICE feature impact as introduced in Section 3.2 is that it
weights evenly across all phantom points, no matter their likelihood of occurrence in
the true feature distribution. This may be concerning if features are highly correlated,
and permuting the at-issue feature xS takes us out of the feature distribution, e.g., taking
the health data from a 9 year old and changing the age to 70 while leaving the other
features untouched would give us a phantom observation that has a low likelihood of
occurring in reality.

This is a missing data problem with the missing value being the likelihood of the
observation. The likelihood is 1 for all true observations and missing for all phantom
observations. Let us denote the likelihood of phantom observation x(i)[k] for at-issue
feature xS with LxS (x

(i)[k]). Then, given this likelihood, the in-distribution ICE fea-
ture impact of xS is:

IDFI(xS) ≈
σxS∑n

i=1

∑nxS

k=2 LxS

n∑
i=1

nxS∑
k=2

LxS (x
(i)[k])

∣∣∣∣ ŷ(x(i)[k])− ŷ(x(i)[k − 1])

x
(i)
S [k]− x(i)S [k − 1]

∣∣∣∣
(2)

To estimate LxS (x
(i)[k]), we model likelihood as exponentially decaying with respect

to the absolute distance of the at-issue feature’s permutation divided by the feature’s
standard deviation:

LxS (x
(i)[k]) = λ

|x(i)
S

[k]−x
(i)
S
|

σxS
(3)

where 0 < λ ≤ 1 is a hyperparameter that measures how quickly the weight decays as
the phantom feature value differs from the real feature value. Note that λ = 1 gets us
back to ICE feature impact without out-of-distribution considerations.

We can estimate σxS as the sample standard deviation of xS in the data or as an
arbitrarily sophisticated estimate of the standard deviation for the at-issue feature based
on the value of all other features for the observation. For example, [5] proposes es-
timating the conditional distribution of a feature based on all other features using a
pseudo-maximum likelihood problem estimated via a single self-attention architecture.

The in-distribution ICE feature impact weights phantom observations closer to the
real observation more heavily when measuring feature impact, giving us a perspective
on feature impact that is more “true to the data” [4].

4 Real Data

To examine ICE feature impact, we use UC Irvine’s cervical cancer risk factors dataset.5

The dataset contains medical information for 858 patients from Hospital Universitario
de Caracas. There are 32 features including age, number of pregnancies, and use of
IUD. The target variable is Biopsy, which is binary.

5 Cervical Cancer (Risk Factors) Data Set contains a detailed description of the dataset.

https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29
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4.1 Complementary to Feature Importance

First, we show that ICE feature impact presents an additional dimension to understand-
ing models beyond feature importance.

We train a random forest classifier [2] on the dataset.6 We then calculate the fol-
lowing metrics for each feature: ICE feature impact, Tree SHAP [9], Random Forest
feature importance [3], and permutation feature importance [2] and normalize them to
be positive and sum to 100. We take the correlation between ICE feature impact and
alternative metrics and find that the correlation is low (See Table 1). This indicates that
ICE feature impact differs substantially from alternatives instead of fulfilling the same
function.

Metric
Correlation w/

ICE FI
In-Distribution ICE FI (λ = 0.75) 0.99
Random Forest Feature Importance 0.36
Permutation Feature Importance 0.35
Tree SHAP Values 0.17

Table 1: Pearson correlation of feature importance and impact metrics with ICE fea-
ture impact. All metrics were first normalized to sum to 100. Tree SHAP values were
additionally first made positive to remove direction before normalizing to sum to 100.

Table 2 shows the features with the two most positive differences and the features
with the two most negative differences between their random forest feature importance
and ICE feature impact values.7 While Age and Number of Sexual Partners
are highly predictive features and are helpful in reducing impurity of classification, they
do not have a strong impact on the model’s predictions itself. On the opposite end of the
spectrum, STDs:molluscum contagiosum and STDs:pelvic inflammatory
disease have highly imbalanced feature distributions with the majority of values
equal to 0 and therefore are not as helpful for reducing impurity. However, when these
factors are present – specifically, when the value is missing and the mean is imputed –
they contribute strongly to the model prediction, explaining the higher feature impact.

4.2 Interpretability: Analogous to Linear Regression Coefficients

In the base case of analyzing a linear regression model, ICE feature impact values are
exactly the absolute value of the linear regression coefficients. We also calculated ICE
feature impact for the pseudo-linear models of Logistic Regression and linear SVMs.
Table 3 shows that the resulting model coefficients are strongly correlated with the
corresponding ICE feature impact values.

6 We use the sklearn package with parameters of 500 trees, a random state seed of 20, and the
default values for the remaining parameters. As this exercise is about model interpretability,
we did not tune the model to improve performance.

7 See Appendix C for the full feature impact table, Appendix A for the ICE plots for all features,
and Appendix B for the centered ICE plots (c-ICE) [7] for all features.
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Feature ICE FI
Native
Feature

Importance
Difference

STDs:molluscum contagiosum 9.8 0.1 9.6
STDs:pelvic inflammatory disease 8.9 0.1 8.8
Number of sexual partners 1.0 9.9 -8.9
Age 3.4 17.8 -14.3

Table 2: Feature impact table for features in cervical cancer dataset with two largest and
most negative difference between Random Forest feature importance and ICE Feature
Impact.

ICE Feature Impact
Model Base In-Dist
Linear Regression 1 1
Logistic 0.73 0.8
SVM 0.9 0.98

Table 3: Pearson correlation of ICE feature impact values with absolute value of coeffi-
cients of linear and pseudo-linear models.

These results show that ICE feature impact can be interpreted analogously to linear
regression coefficients with features standardized to a unit standard deviation.

4.3 Quantifying Heterogeneity and Non-Linearity

In linear models, knowing feature impact means knowing exactly where predictions
come from. In non-linear models, however, the relationship between features and the
model prediction can be more complex: in particular, the relationship can be hetero-
geneous – different across observations – or non-linear – different across the feature’s
support. We propose measures of heterogeneity and non-linearity to allow the practi-
tioner a more nuanced understanding of ICE feature impact.

Let heterogeneity be the degree to which the pattern of ICE curves varies across
observations, i.e. the feature impact is heterogeneous when its impact is higher on some
observations and lower on others. Then, following the notation described in Section 3.1,
the heterogeneity of feature xS is:

HE(xS) =
σxS
nxS

nxS∑
k=1

SDi∈{1,...,n}

(
ŷ(x(i)[k])− ŷ(x(i)[k − 1])

x
(i)
S [k]− x(i)S [k − 1]

)
(4)

where the standard deviation is taken for fixed k across all real observations. The lower
the heterogeneity metric, the more similar the shape of observation-curves are at each
point. For linear regressions and additive models like GAM [8], the heterogeneity metric
is zero since the effect of a feature on the prediction is the same across all observations.

Let non-linearity be the degree to which features have a non-linear relationship with
the model’s predictions, i.e. how much the effect of a feature varies across the support
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for a given observation. For features with low non-linearity, the corresponding ICE
feature impact can be interpreted as close to a linear regression coefficient, even if the
underlying model is non-linear. We quantify non-linearity as follows:

NL(xS) =
σxS
n

n∑
i=1

SDk∈{1,...,nxS
}

(
ŷ(x(i)[k])− ŷ(x(i)[k − 1])

x
(i)
S [k]− x(i)S [k − 1]

)
(5)

where the standard deviation is taken for fixed i across all corresponding phantom ob-
servations. For linear regressions, the non-linearity is equal to 0 as desired since the
effect of a feature is constant across the feature’s support.

Table 4 shows the heterogeneity and non-linearity of the features listed in Table
2.8 Note that the features with the largest positive differences between feature impact
and feature importance have higher heterogeneity but similar non-linearity compared
to the features with the largest negative differences. This is because ICE feature impact
captures heterogeneity through taking the absolute value of the feature impact dy

dx units
but does not discriminate between non-linear or linear relationships.

Feature Feature Impact Heterogeneity Non-Linearity

STDs:molluscum contagiosum 9.8 0.27 0.19
STDs:pelvic inflammatory disease 8.9 0.23 0.17
Number of sexual partners 1.0 0.05 0.04
Age 3.4 0.11 0.18

Table 4: ICE feature impact, heterogeneity, and non-linearity for features in cervical
cancer dataset with the two most positive and most negative differences between Ran-
dom Forest feature importance and ICE Feature Impact.

5 Discussion

Building upon efforts to interpret machine learning models, we extend ICE plots by
drawing out ICE feature impact, a measure of the relationship between features and
model predictions. ICE feature impact is uncorrelated with alternative feature impor-
tance metrics, highlighting features that are impactful to predictions but do not con-
tribute as strongly to model performance. It has a highly interpretable form and is anal-
ogous to linear regression coefficients.

We also propose in-distribution ICE feature impact to downweight out-of-distribution
observations and the heterogeneity and non-linearity measures that add dimensionality
to our characterization of ICE feature impact.

Altogether, ICE feature impact provides a different perspective from traditional fea-
ture importance methods, complements ICE plots, and serves as an alternative to SHAP
values in understanding where a model’s predictions come from.

8 See Appendix D for heterogeneity and non-linearity for all features.
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Appendix A ICE Plots for Cervical Cancer Data
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Fig. 2: ICE plots for all features in cervical cancer dataset, following the methodology
described in Section 3.1. Each green dot represents a different observation, and the
corresponding line shows how varying the observation’s at-issue feature value affects
the model’s prediction. Observation-lines are solid within 1

2 a standard deviation (of the
at-issue feature) and dotted outside that range.
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Appendix B c-ICE Plots for Cervical Cancer Data
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Fig. 3: Centered ICE (c-ICE) plots [7] for all features in cervical cancer dataset. c-ICE
plots are equivalent to ICE plots but with the starting ŷ value centered to zero such that
the lines represent the change in ŷ instead of its value.
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Appendix C Feature Impact Table for Cervical Cancer Data

Feature ICE
ICE ID

(λ = 0.75)
Random
Forest

Tree SHAP Permutation

Age 3.4 2.6 17.8 11.3 13.3
Number of sexual partners 1.0 1.1 9.9 6.3 9.9
First sexual intercourse 16.9 16.9 12.3 7.2 12.1
Num of pregnancies 1.3 1.4 10.0 0.0 13.1
Smokes 1.3 1.1 1.4 0.2 1.9
Smokes (years) 1.8 1.8 3.9 6.8 4.6
Smokes (packs/year) 7.0 6.6 3.7 1.9 4.4
Hormonal Contraceptives 0.8 0.6 2.9 10.8 5.1
Hormonal Contraceptives (ye... 9.0 7.8 15.6 7.8 15.9
IUD 2.2 2.0 2.2 3.4 3.0
IUD (years) 3.7 4.0 3.6 4.6 4.6
STDs 0.6 0.4 0.5 0.7 0.1
STDs (number) 0.6 0.6 1.1 1.2 1.0
STDs:condylomatosis 1.2 1.0 0.6 1.8 0.5
STDs:cervical condylomatosis 0.0 0.0 0.0 0.0 0.0
STDs:vaginal condylomatosis 3.8 4.1 0.3 0.8 0.0
STDs:vulvo-perineal condylo... 1.1 0.9 0.6 1.5 0.5
STDs:syphilis 2.1 2.2 0.4 1.1 0.0
STDs:pelvic inflammatory di... 8.9 9.9 0.1 1.3 0.0
STDs:genital herpes 6.8 7.4 0.9 2.4 0.5
STDs:molluscum contagiosum 9.8 10.8 0.1 1.0 0.0
STDs:AIDS 0.0 0.0 0.0 0.0 0.0
STDs:HIV 1.2 1.2 1.1 1.8 1.9
STDs:Hepatitis B 5.7 6.3 0.2 1.5 0.0
STDs:HPV 5.4 5.9 0.1 1.0 0.0
STDs: Number of diagnosis 0.2 0.2 0.7 4.7 0.0
STDs: Time since first diag... 0.3 0.3 2.0 1.2 1.5
STDs: Time since last diagn... 0.3 0.3 1.7 2.7 0.0
Dx:Cancer 1.0 0.7 1.7 3.5 2.1
Dx:CIN 0.6 0.5 1.2 3.9 1.1
Dx:HPV 0.8 0.6 1.6 4.0 1.6
Dx 1.2 0.9 1.7 3.7 1.1

Table 5: Feature impact table for all features in cervical cancer dataset. All feature
impact/importance metrics have been made positive and normalized to sum to 100. The
ordering of features is as ordered in the original dataset.
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Appendix D Heterogeneity and Non-Linearity of ICE Feature
Impact for Cervical Cancer Data

Feature
ICE Feature

Impact
ICE

Heterogeneity
ICE

Non-Linearity

Age 0.08 0.11 0.18
Number of sexual partners 0.02 0.05 0.04
First sexual intercourse 0.38 0.59 1.63
Num of pregnancies 0.03 0.05 0.07
Smokes 0.03 0.04 0.02
Smokes (years) 0.04 0.06 0.12
Smokes (packs/year) 0.16 0.32 0.60
Hormonal Contraceptives 0.02 0.04 0.01
Hormonal Contraceptives (ye... 0.20 0.34 0.47
IUD 0.05 0.07 0.04
IUD (years) 0.08 0.12 0.28
STDs 0.01 0.02 0.01
STDs (number) 0.01 0.02 0.01
STDs:condylomatosis 0.03 0.03 0.01
STDs:cervical condylomatosis 0.00 0.00 0.00
STDs:vaginal condylomatosis 0.08 0.11 0.07
STDs:vulvo-perineal condylo... 0.02 0.03 0.01
STDs:syphilis 0.05 0.07 0.04
STDs:pelvic inflammatory di... 0.20 0.23 0.17
STDs:genital herpes 0.15 0.18 0.13
STDs:molluscum contagiosum 0.22 0.27 0.19
STDs:AIDS 0.00 0.00 0.00
STDs:HIV 0.03 0.03 0.02
STDs:Hepatitis B 0.13 0.17 0.11
STDs:HPV 0.12 0.14 0.10
STDs: Number of diagnosis 0.00 0.00 0.00
STDs: Time since first diag... 0.01 0.01 0.02
STDs: Time since last diagn... 0.01 0.01 0.02
Dx:Cancer 0.02 0.01 0.00
Dx:CIN 0.01 0.01 0.00
Dx:HPV 0.02 0.01 0.00
Dx 0.03 0.02 0.00

Table 6: Heterogeneity and non-linearity dimensions for all features in cervical cancer
dataset. The raw ICE feature impact is presented without normalization to sum to 100.
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