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ABSTRACT 

 

The application of Generative Pre-trained Transformer (GPT-2) to learn text-archived game notation provides a model 

environment for exploring sparse reward gameplay. The transformer architecture proves amenable to training on 

solved text archives describing mazes, Rubik’s Cube, and Sudoku solvers.  The method benefits from fine-tuning the 

transformer architecture to visualize plausible strategies derived outside any guidance from human heuristics or 

domain expertise.  The large search space (>1019) for the games provides a puzzle environment in which the solution 

has few intermediate rewards and a final move that solves the challenge. 
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INTRODUCTION 

 

Why transformers? For natural language generation (NLG), the transformer architecture provides a scalable 

mechanism to encode long-range dependencies needed to output plausible text narratives.  Transformers 

(Vaswani, et al., 2017) have rapidly advanced to 

rival or overtake other deep learning architectures 

such as convolutional neural networks (CNN). 

Initially developed to handle long-term language 

dependencies, this approach over-weights 

important relations via the “attention” method 

rather than attempting to localize dependencies 

(CNN) or grow dense networks for all weights. 

While the resulting sparse network extends 

available long-term connections needed to relate 

distant parts-of-speech or sentence context, the net 

effect has grown to massive models now in the 

trillions of connection weights (Child, et al., 2019).  

This approach has since found application in other 

fields unrelated to the original language modeling, 

such as non-local effects needed for visual context 

problems. Among the early successes, the 

Generative Pretrained Transformer (GPT-2) from 

Open AI (Radford, et al., 2019) remains one of the 

most robust architectures for fine-tuning applications. In these cases, the original training set gets 

specialized to diverse domains outside of its initial text data (Woolf, 2020). As a result, previous work has 

applied GPT-2 to play chess (Noever, et al., 2020), Go (Ciolino, et al., 2020),  and other complex strategy 

games without knowing the explicit rules but instead learning the text patterns necessary to transfer learning 

from archival play. Since no move constraints get introduced to the transformer (e.g. legal vs. illegal 

moves), the trained model results in gameplay without human knowledge (Silver, 2017).  Because of its 

Figure 1. Example sparse reward puzzles in text notation 



origins in natural language modeling, GPT-2 serves as a viable mimic of human narratives (sometimes 

called a “stochastic parrot”), particularly for the specialized use case called here as “unnatural language” 

generation. Figure 1 highlights some example applications of learning text archives for puzzles including 

Rubik’s cube, Sudoku, and maze solvers. 

 

Why puzzles and games? The application of AI and machine learning approaches to gameplay offers a rich 

history ranging from Deep Blue in chess (1997) to AlphaZero (Silver, et al., 2017). One appealing aspect 

follows from the obvious scoring metrics associated with scoring humans vs. machines. In economics and 

game theory, a key distinction among the types of games amenable to AI implicitly favors perfect 

information games, such as chess, checkers, Go, etc. The board state is known equally to the human and 

machine players and gameplay progresses sequentially. The sequential play alternates its moves in a way 

different from simultaneous plays like Rock, Paper, Scissors, which are also perfect information but not 

alternating moves. Recent advances in Monte Carlo tree search (Silver, et al., 2017) have conquered human 

experts even in imperfect information games like poker, in which players can bluff while concealing their 

true game state until forced to reveal winners and losers in the final move of turning over cards or folding 

their hands. A third game category has recently attracted AI attention and might be informally classed as 

open-ended worlds like the video play in DOTA and StarCraft 2. Playing these games effectively as a tree 

search problem requires enormous computing resources and must handle the wide universe of available 

strategies (“where almost anything goes”). The present research examines a fourth possible category well 

known to the reinforcement learning community as games or puzzles that offer sparse rewards. These 

problems are generally characterized by large state spaces and a relatively small number of states which 

have an associated reward signal. Infrequent rewards often make gradient-based search and other methods 

that depend upon a smooth reward signal impractical. 

 

One notable example of a sparse rewards task is the 

Rubik's cube. The Rubik's cube is a puzzle with 6 rotating 

faces, each composed of 9 smaller squares ("cubies") 

which take one of 6 colors. The objective is to rotate the 

faces until each face contains 9 squares of the same color. 

The Rubik's cube is an extreme example of a sparse 

rewards task (Demaine, et al., 2017; Darbandi, et al, 

2020); it has a large state space consisting of 

approximately 4.9×1019 possible configurations, and only 

the goal state has an associated reward signal (McAleer et 

al., 2018). This causes a sudden stepwise gain in rewards 

when making the final solving move.  

 

A less extreme example of a sparse rewards task is the 

numerical puzzle game, Sudoku. The objective of Sudoku 

is to fill in missing cells of a 9×9 grid with the numbers 1-

9, subject to the conditions that no number may appear 

twice in the same row, column, or 3×3 block. Because of 

these conditions, Sudoku is also known as a constraint 

satisfaction game. Like the Rubik's Cube, Sudoku has an enormously large state space, as there are 

approximately 6.671×1021 valid Sudoku grids alone (Felgenhauer & Jarvis, 2006), and a reward signal is 

only achieved during the final step of the solving process.  

 

It is worth noting that traditional Monte Carlo tree search techniques have exhaustive computing needs 

compared to GPT-2. For example, AlphaGo uses 1920 CPUs and 280GPUs (or $3000 in electricity costs) 

for each game (Rajput, 2021). The research explores solving these sparse reward games without 

reinforcement learning or Monte Carlo tree search. Instead, we apply the long-range rewards (weights) 

Figure 2. Rubik's Cube String Notation and Syntax 

for Position and Colors 



found in current language transformers based on their attention strategies applied to text generators. The 

best-known examples of games with text generators largely focus on fine-tuning the GPT-2. Previous work 

has applied GPT-2 to perfect information games (e.g. chess, Go).  For Sudoku and Rubik’s Cube, 

deterministic (search) algorithms deliver sufficient quantities of good training data such that traditional 

deep learning techniques can solve the games using computer visions approaches and convolutional neural 

networks (Gaddam, et al., 2021; McAleer, et al., 2018). We propose to solve the games using text-based 

(ASCII) archives and fine-tune the transformer architecture to visualize another strategic solution to the 

sparse rewards challenges. 

METHODS 

 

String Notation for Rubik’s Cube 

Representations. For the Rubik's 

task, we generated a dataset 

consisting of 5,000 pairs of initial 

cube configurations and 

corresponding solutions. To 

generate the initial configurations, a 

scrambling formula was created by 

randomly generating a sequence of 

moves to perturb the cube from the 

completed state. These scrambling 

formulas were anywhere between 1 

and 5 moves in length, and an equal 

number of samples were generated for each possible scramble formula length. Once an initial configuration 

was determined, the cube state was represented by an encoding string following the format of Liu (2018). 

As illustrated in Figures 2-3, this encoding uses the cube string positions for an unfolded cube with ordered 

positions (9 digits) for the following faces: Up (U), Right (R), Front (F), Down (D), Back (B) and Left (L). 

The string order proves important (Kociemba, 2019) since a fully solved cube would have 9x(URFDBL) 

for the completed color faces. The position U1 can be any of the 6 standard colors (red, yellow, orange, 

blue, white, green). A starting state like “RBL…” means the right color (say, green) is in fixed position U1, 

the back color (say, red) is in position U2, etc. Finally, once all scrambling formulas were converted to 

encoding strings, duplicate cube states were removed from the dataset and the remaining samples were split 

into a training set containing 2404 samples and a test set containing 601 samples. 

 

After the initial Rubik's cube configurations and corresponding encodings were generated, a solution was 

determined using the Kociemba algorithm (Kociemba, 2019). The Rubik’s solution syntax introduces each 

move as space-separated letters with punctuation and numbering conventions describing the turn. A single 

letter alone means to turn that face in the URFDBL dictionary of choices clockwise by 90 degrees (quarter 

turns). A letter with an apostrophe means the opposite counterclockwise turn by 90 degrees. If the letter has 

a number 2, the face gets a half-turn (180 degrees).  An example initial state and solution of single moves 

is shown in Figure 3.  We visualize each step of the cube solution using the Visual Cube application (Rider, 

2017) and validate solutions using the PyCuber python library (Liaw, 2021). 

 

String Notation for Sudoku Representations. For Sudoku, we collected one million solved games (Park, 

2016), which consists of a similar split view 

of the initial and final state. To divide the start 

and finished puzzle, we insert a word prompt 

[WP] to demark the first digit of the 81 in the 

9x9 puzzle (Figure 4). A zero value represents 

a blank or open slot. The second demarcation Figure 4. Example Sudoku Starting and Final States 

Figure 3. Solution Cube Notation for Visualizing Moves 



[RESPONSE] serves as a delimiter for the puzzle solution. The visualization of a solved puzzle was 

customized in a console application that pushes each new digit onto the string for replacing the next 

available open gap (zero). The puzzle’s starting and ending delimiters (<|…|>) allow the generated text of 

a proposed solution to be parsed and truncated to simplify interpretation.  

 

String Notation for Maze Representations. For solving 

mazes, we generated 10,000 random mazes and 

embedded their ASCII text solutions between the start 

and stop delimiters. To generate mazes of 4x4 and 5x5 

(Rosettacode, 2021), we use (+) and (-) signs to outline 

the text grid boundaries, the use (|) pipe symbology to 

define walls. As shown in Figure 5, we encode both the 

unsolved and solved mazes in a single training text 

example for each maze. The training solutions follow 

the search methods outlined as breadth or depth-first 

techniques. (Sinck, 2021) Each example maze begins 

with the upper left corner as the starting position (**); 

the direction of maze navigation follows a text arrow 

notation (^^=up; >>=right; vv=down; <<=left).  As 

with the other cases, the training set represents a series of maze pairings (unsolved and solved) with one 

maze in a single row submitted to the transformer.   
 

RESULTS 

 

Findings for Cube Solvers.  On the Rubik's Cube 

data, the transformer was unable to solve the 

complete puzzle more than one in seven attempts. 

Out of the 601 generated responses for the test 

examples, 11 were invalid (~1.8%), 576 were 

incorrect (~95.8%), and only 14 were correct 

(~2.3%). The small proportion of invalid generated 

responses indicates that despite being trained 

initially on natural language, the transformer has 

adapted well to the "unnatural" language of Rubik's 

cube formulae; even when it was unable to solve the 

cube, the overwhelming majority of the time the transformer produced an output which corresponds to a 

valid Rubik's formula. Figure 6 shows the solution for single rows as an incomplete solution but 

progressively improved cube state. 

 

Given the short fine-tuning period (~2000 epochs) and the 

small number of training examples (~2400), it is significant 

that the transformer was able to solve the Rubik's puzzle at 

all. Interestingly, though the majority (9/14) of correct 

generated responses were only 1-3 moves in length, the 

remaining correct responses were long: one response was 52 

moves long, three were 53 moves long, and the longest was 

61 moves. Given the small sample size, it is difficult to 

generalize about the transformer's performance. Regardless, 

the existence of these solutions suggests the transformer may 

have learned certain solving patterns present in the Kociemba 

algorithm. 

Figure 6. Rubik’s Cube Transformer Solving for Single 

Rows 

Figure 5. Maze generator and transformer solutions 

Figure 7. Transformer (left) vs. Kociemba (right) 

algorithm 



 

A video comparing Rubik’s Cube solutions is found online (Noever, 2021). Figure 7 compares the 

Kociemba algorithm (right) to the transformer solution (left) at the same time step. The algorithm solution 

shows a quarter turn before reaching the end with all six aligned colored faces after 71 steps.  The 

transformer generates 64 steps before reaching the token limit (1024) for generated text outputs as an 

inherent GPT-2 limit. To illustrate the sparse rewards, neither the algorithmic nor transformer solution 

capitalizes on a partial reward, such as solving one color for a face or multiple faces in an intermediate step.  

The transformer did, however, occasionally solve for single rows and columns in instances where it was 

unable to solve the puzzle before reaching the token limit. An example of the Rubik’s Cube transformer 

solving for rows and columns is shown in Figure 6.  

 

Findings for Sudoku Solvers.  Figure 8 

shows the GPT-2 gameplay for 

Sudoku from a randomly selected 

initial state to a partial (but flawed) 

final solution. The orange diamonds 

show the repeated digits as errors in 

completing the square with unique 

numbers both in the interior square 

and the overall rows and columns. A 

validation algorithm that checks for 

repetitions [1-9] in every row, column, 

and sub-square could potentially serve 

as an overlay on generated text games, much in the same way that Chess game generators playing against 

humans filter out invalid moves.  Because GPT-2 models include the training text formatting in their 

transformer architecture, the Sudoku training set may benefit from the native grid or matrix rather than 

string input which masks the sub-grid orientation. The resulting transformer would generate complete 

puzzle grids rather than require additional visualizations as shown in Figure 8 for a console (command-

line) player. 
 

Findings for Maze Solvers.  Figures 5 and 9 show transformer 

solutions to the 5x5 (Fig. 5) and 4x4 (Fig. 9) maze sizes.  

Unlike the Sudoku case, the maze training set preserves 

formatting for its basic maze grid without removing all end-

of-line breaks as a single string. In this way, the maze 

resembles a narrative paragraph versus the Sudoku sentence 

format. The trained transformer outputs both a viable 

unsolved maze and its proposed solution as a pair bracketed 

by start and end delimiters. Since all outputs are generated 

unconditionally and without a prompt for a starting maze, the 

output appears as both a scenario generator (viable unsolved 

maze) and a solution generator (moves to complete the 

puzzle).  Given the token limit of 1024 for generated text, the 

proposed maze sizes stop at 6x6 grids if the formatting is 4 spaces per grid as shown in Figure 9 and if the 

unconditional output includes both the starting maze and its paired solution.  If a prompt or conditional 

model is run, the maze sizes naturally extend but the combinatorial moves limit the solution’s viability.  

DISCUSSION 

 

Many other games with sparse reward signals have received attention from the reinforcement learning 

community, including Sokoban, Montezuma's Revenge, and Mountain Car (McAleer et al., 2018; Moore, 

Figure 8. Sudoku Solution Stages using GPT-2 

Figure 9. Transformer solution to text mazes in 

4x4 size 



1990). Unlike these games, both Rubik’s Cube and Sudoku are well-suited to the application of text 

generators because they conveniently allow for the examination of sparse rewards problems from within 

the confines of games with sequential play and discrete representations of state. Additionally, for both 

games, deterministic (search) algorithms can provide sufficient quantities of training data such that 

traditional deep learning techniques, e.g. CNNs, can solve them.  Compared to denser reward games, the 

maze, Rubik’s, and Sudoku puzzles require considerable exploration across a flat fitness or optimization 

landscape.  In the case where a solution might take more computing resources to iterate exploratory steps, 

the attention mechanism behind GPT-2 offers a method to attack the contextual problem of knowing where 

the numbers or colored faces might relate to each other in the constrained volume of the cube or number 

squares. Figure 10 illustrates the Sudoku weights for layer 9 as an example of long-term attention and 

context between a starting number and its long-range dependencies. However, the transformer’s ability to 

solve beyond the 1024 token limit of generated solutions limits the exploration to easier game starting 

points only. No transformer output for either game achieved a finished state from an arbitrarily random 

(“hard scrambled”) state in the allotted number of steps.  Instead, the transformer trained on nearly 

completed states (e.g. perturbed from a finished state) showed promise in accomplishing its goal to solve 

the puzzles.  Just as with the chess and Go Transformers, the goal of generating plausible gameplay shows 

possible application but succeeds with supervision and filtering of illegal actions. The secondary goal of 

demonstrating rule-acquisition (plausible moves) suggests that explicit human knowledge of strategies or 

heuristics may not be needed specifically for opening or closing moves when the completion times fall 

within the attention limit of the transformer’s context.  

 

Well-known techniques in reinforcement learning emphasize 

turning a sparse reward game into a denser environment. These 

approaches feature human domain expertise to craft heuristics, 

such that the exploration space shrinks or partial rewards 

provide a stepping stone to reach the solution. A simple 

example would be solving a maze problem by recursive 

backtracking or applying the right-hand rule (Roberts, 2015). In 

the case of Rubik’s Cube solvers, many intermediate steps 

might qualify as partial rewards, such as the layered method, 

cross, or daisy creations (Youcandothecube.com, 2021). As a 

bookkeeping strategy, human Sudoku solvers favor keeping 

track of which numbers are still possible for each square, thus 

iteratively narrowing the search space.  The hard-coding of such 

heuristics however ranges outside the scope of the transformer 

architecture and its powerful capabilities to take raw text games 

as its only input without domain knowledge when fine-tuned to 

a new text source and format.  

 

One intriguing outcome of exploring transformers with sparse 

rewards is to suggest new approaches. The attention mechanism 

itself builds in overweighted connection strengths across 

longer-range context, a critical feature for language models.  

Ironically, one can posit that attention weights create a sparse 

reward landscape appropriate to generating interesting narrative 

text since a frequency-based word approach emphasizes 

common but less telling words (such as stop words “a”, “the”, 

etc.). In this way, attention-based models effectively balance 

the training dataset based on token interest and context rather than frequency.  For games, the reinforcement 

learning community similarly maps flat gradient landscapes to maximize the ratio of rewarding exploitation 

steps compared to fruitless exploration ones. A simple strategy in sparse rewards substitutes “curiosity-

Figure 10. Layer visualization of long-range 

dependence for a single Sudoku game 



driven” exploration, such that incremental rewards appear when going to points previously not visited. In 

Sudoku, one can imagine a similar exclusion priority or constraint geared towards not aimlessly substituting 

[1-9] digits when a row, column, or sub-square already has it.  This approach prioritizes a restricted action. 

In the linguistic origins of GPT-2, the same reward or weight structure might favor novel word choices to 

avoid repetitive phrases.  

 

The capability of transformers 

and other text generation 

methods to play games extends 

far beyond mazes, Rubik's 

Cube, and Sudoku. Previous 

research has highlighted their 

potential to generate plausible 

moves for other games which 

have historically served as 

benchmarks for game-playing 

algorithms, notably Chess 

(Noever et al., 2020) and Go 

(Ciolino et al., 2020). Other board games and puzzles offer additional angles from which to examine 

environments with sparse reward signals (Figure 11). Hex, a board game that has previously drawn attention 

from the AI community, is one such game. Like Rubik's and Sudoku, it is a perfect information game where 

the only obvious reward signal is triggered after the final, game-winning move. Unlike Rubik's and Sudoku, 

Hex is a competitive, 2-player game. It is also amenable to Smart Game Format (SGF), a common 

standardized notation for the textual representation of game states. Other candidate games and puzzles 

include TwixT, which is similar to Hex in both game layout and objective, and Tantrix, which offers sparse 

rewards in a competitive setting with more than 2 players. 

CONCLUSIONS 

 

Without encoding puzzle heuristics, the application of GPT-2 can generate viable moves in three sparse 

reward games: mazes, Rubik’s Cube and Sudoku. These examples offer a novel text-based method to learn 

plausible moves without human instruction, heuristics, or explicit domain-specific rulesets. These puzzles 

provide appealing visualization environments to track algorithmic progress incrementally and score 

winning strategies, identify novel solutions, and augment the traditional black-box understanding inherent 

in large-scale transformers.  Just as attention-based methods provide long-range context, future efforts for 

improving transformers in gameplay should emphasize larger token limits (>2048 in GPT-3) or condensed 

game notations for archives.  
 

 

ACKNOWLEDGEMENTS 

 

The authors would like to thank the PeopleTec Technical Fellows program and the Internship Program for 

encouragement and project assistance.  

 

REFERENCES  

 

Child, R., Gray, S., Radford, A., & Sutskever, I. (2019). Generating long sequences with sparse transformers. arXiv 

preprint arXiv:1904.10509. 

Ciolino, M. (2020) Google’s research Colaboratory, https://colab.research.google.com/drive/1-

Q6VePtF8YYQ6PPk-wZq0E9_CFEQp0kb?usp=sharing 

Ciolino, M., Noever, D. & Kalin, J. (2020). The Go Transformer: Natural Language Modeling for Game Play. arXiv 

preprint arXiv:2007.03500.  
Conrad (2017) Visual Cube, http://cube.rider.biz/visualcube.php 

Figure 11. Game & Puzzle Environments with Text Generation Play 

http://cube.rider.biz/visualcube.php


Darbandi, A., & Mirroshandel, S. A. (2020). A Novel Rubik’s Cube Problem Solver by Combining Group Theory 

and Genetic Algorithm. SN Computer Science, 1(1), 1-16. 

Demaine, E. D., Eisenstat, S., & Rudoy, M. (2017). Solving the Rubik's Cube Optimally is NP-complete. arXiv 

preprint arXiv:1706.06708.  

Felgenhauer, B., & Jarvis, F. (2006). Mathematics of sudoku I. Mathematical Spectrum, 39(1), 15-22. 

Gaddam, D. K. R., Ansari, M. D., & Vuppala, S. (2021). On Sudoku Problem Using Deep Learning and Image 

Processing Technique. In ICCCE 2020 (pp. 1405-1417). Springer, Singapore. 

Kociemba, H. (2019) Cube Explorer, http://kociemba.org/download.htm 

Kirubarajan, A., & Dugan, L. (2020) Learning to Trick Humans: Evaluation Criteria for Human-Written and 

Computer-Generated Text. https://kirubarajan.nyc3.digitaloceanspaces.com/learning_to_trick_humans.pdf 

Liaw, W., (2021) PyCuber: Rubik's Cube package in Python, https://github.com/adrianliaw/PyCuber  

Liu, E. (2018) “Rubik's Cube Robot”, https://raw.githubusercontent.com/ericliuche/rubiks-cube-

solver/master/javares.txt 

Liu, L., Liu, X., Gao, J., Chen, W., & Han, J. (2020). Understanding the difficulty of training transformers. arXiv 

preprint arXiv:2004.08249. 
McAleer, S., Agostinelli, F., Shmakov, A., & Baldi, P. (2018). Solving the Rubik's cube without human 

knowledge. arXiv preprint arXiv:1805.07470.  

Moore, A. W. (1990). Efficient memory-based learning for robot control. 

Noever, D., Ciolino, M., & Kalin, J. (2020). The Chess Transformer: Mastering Play using Generative Language 

Models. arXiv preprint arXiv:2008.04057.  

Noever, D. (2021) Cube Animation Solutions, https://deeperbrain.com/demo/.html 

Park, K., (2016), “1 million Sudoku games”, Kaggle.com, https://www.kaggle.com/bryanpark/sudoku 

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised 

multitask learners. OpenAI Blog, 1(8), 9.  https://github.com/openai/gpt-2  
Rajput, V. (2021) Deep Learning model compression, Medium, https://medium.com/codex/reducing-deep-learning-

size-16bed87cccffRider 

Roberts, E.  Recursive Backtracking, Stanford Computer Science, CS 106B, 

https://cs.stanford.edu/people/eroberts/courses/cs106b/handouts/16-RecursiveBacktracking.pdf  

Rosettacode.org, “Maze solving” task, Accessed (2021), see https://rosettacode.org/wiki/Maze_solving 

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, D. (2017). 

Mastering the game of go without human knowledge. Nature, 550(7676), 354-359.  
Sinck, A. (2016) ASCII Art Maze Solver, https://github.com/asinck/Ascii-Art-Maze-Solver 

Takano, K. (2021). Self-supervised Rubik's Cube Solver. arXiv preprint arXiv:2106.03157.  
Vamsi, K. S., Gangadharabhotla, S., & Sai, V. S. H. (2021, May). A Deep Learning approach to solve Sudoku 

puzzle. In 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1175-

1179). IEEE.  
van Voorst tot Voorst, F. C. (2021). Learn how to solve a Rubik’s Cube using a Tutoring System (Bachelor's thesis). 
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention 

is all you need. In Advances in neural information processing systems (pp. 5998-6008). 

Vig, J. (2019). OpenAI GPT-2: Understanding Language Generation through Visualization. Towards Data Science, 

via Medium, March, 5. 

Vig, J. (2019). A multiscale visualization of attention in the transformer model. arXiv preprint arXiv:1906.05714. 

https://github.com/jessevig/bertviz  
Wicht, B., & Hennebert, J. (2014, August). Camera-based Sudoku recognition with deep belief network. In 2014 6th 

International Conference of Soft Computing and Pattern Recognition (SoCPaR) (pp. 83-88). IEEE. 

Woolf, Max, (2020), GPT-2-Simple, a Python Package, https://github.com/minimaxir/gpt-2-simple 

Youcandothecube.com (accessed 2021), Rubiks Cube Solution, https://www.youcandothecube.com/videos/rubiks-

cube-video-solution 

 

https://cs.stanford.edu/people/eroberts/courses/cs106b/handouts/16-RecursiveBacktracking.pdf
https://rosettacode.org/wiki/Maze_solving
https://github.com/minimaxir/gpt-2-simple

