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Abstract

Hottopixx, proposed by Bittorf et al. at NIPS 2012, is an algorithm for solving nonnegative
matrix factorization (NMF) problems under the separability assumption. Separable NMFs have
important applications, such as topic extraction from documents and unmixing of hyperspectral
images. In such applications, the robustness of the algorithm to noise is the key to the success.
Hottopixx has been shown to be robust to noise, and its robustness can be further enhanced
through postprocessing. However, there is a drawback. Hottopixx and its postprocessing require
us to estimate the noise level involved in the matrix we want to factorize before running, since
they use it as part of the input data. The noise-level estimation is not an easy task. In this
paper, we overcome this drawback. We present a refinement of Hottopixx and its postprocessing
that runs without prior knowledge of the noise level. We show that the refinement has almost
the same robustness to noise as the original algorithm.

Keywords: nonnegative matrix factorization, separability, robustness to noise, linear program-
ming

1 Introduction

Let R
d×n
+ denote the set of all nonnegative matrices of size d × n. We are given V ∈ R

d×n
+ and

the factorization rank r. The nonnegative matrix factorization (NMF) problem asks us to find the
factors W ∈ R

d×r
+ and H ∈ R

r×n
+ of V minimizing the gap between V and the product WH.

NMFs have many applications in diverse fields and thus have drawn the attention of researchers
and practitioners. The problem is that the computation is intractable; it was shown to be NP-hard
by Vavasis [19].

Arora et al. [3] further investigated the complexity of the NMF problem. They proposed to use
an assumption, called separability, to remedy the issue. The notion of separability was originally
introduced by Donoho and Stodden in [6] as a way of discussing the uniqueness of NMFs. Arora
et al. showed that, if we place the separability assumption on the input matrix V , then the NMF
problem turns out to be tractable; we can find the factors W and H without much effort such
that V = WH. Let us say that a matrix is separable if it satisfies the separability assumption.
The application range of separable NMFs is restricted in comparison to NMFs, but they have still

∗Department of Mathematical and Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka, Hamamatsu,

432-8561, Japan. mizutani.t@shizuoka.ac.jp

1

http://arxiv.org/abs/2109.02863v2


important applications, such as topic extraction from documents [4, 2] and unmixing of hyperspec-
tral images [15, 16]. Other applications can be found in [7, 12]. So far, several algorithms have
been developed for solving separable NMF problems. Separable matrices arising from applications
should be perturbed by noise. Hence, it is desirable that an algorithm is robust against noise; even
if noise is added to a separable matrix, the algorithm should be able to find the factors whose
product well approximates the noisy separable matrix.

Bittorf et al. [5] proposed an algorithm, referred to as Hottopixx, for separable NMF problems.
Their development is based on the observation that a certain feature of a separable matrix can
be captured using linear programming (LP), and an optimal solution of the LP serves as a guide
for solving the separable NMF problem. They showed that Hottopixx is robust to noise. Their
result needs somewhat strong assumption. Roughly speaking, they assume that the columns of the
separable matrix do not overlap. The assumption is not reasonable when dealing with applications
such as topic extraction from documents and unmixing of hyperspectral images. Gillis [9] pointed
out this issue and suggested a resolution. He developed postprocessing for Hottopixx and showed
that with it Hottopixx is robust to noise without the assumption Bittorf et al. [5] put.

There is a drawback with Hottopixx and its postprocessing. They require three input data: a
noisy separable matrix, the factorization rank, and the noise level. In the applications we mentioned
above, we often encounter the situation in which the factorization rank can be estimated in advance.
Meanwhile, it is unlikely that the noise level can be estimated in advance; we thus need to estimate
it and its estimation is not an easy task. For that reason, most of the algorithms for solving
separable NMF problems, such as VCA [18], SPA [15], SNPA [10] and ER [17], are designed to
receive two input data: a noisy separable matrix and the factorization rank. Several drawbacks
of Hottopixx are listed by Gillis and Luce in [13] and the drawback we mentioned above is one of
them.

The main contribution of this paper is to overcome the drawback. We present a refinement of
Hottopixx and its postprocessing that takes a noisy separable matrix and the factorization rank as
input, but does not need prior knowledge of the noise level. We show that the refinement has almost
the same robustness to noise as the original algorithm. The results are summarized in Theorems 1
and 2 of Section 3. In addition, we demonstrate in experiments the effectiveness of our refinement.

This paper is organized as follows. In Section 2, we formulate the separable NMF problem and
explain the assumption and parameters used in our analysis. Section 3 presents the main results
and compares them with the results of previous studies. Sections 4 and 5 describe the proposed
algorithms and examine their robustness to noise; the refinement of Hottopixx is in Section 4 and
the refinement of postprocessing is in Section 5. Section 6 describes experiments.

1.1 Notation and Symbols

We write 0 for a vector of all zeros, 1 for a vector of all ones, ei for the ith unit vector, and I for
the identity matrix. The symbol 0 is also used for a matrix of all zeros; in particular, 0m×n for an
m× n matrix of all zeros.

The notation a(i) denotes the ith element of a ∈ R
n. Let A ∈ R

m×n. The rows, columns and
elements are denoted as follows: A(i, :) for the ith row, A(:, j) or aj for the jth column, and A(i, j)
for the (i, j)th element. Let I ⊂ {1, . . . m} and J ⊂ {1, . . . , n}. The notation A(I, :) denotes the
submatrix obtained by eliminating rows A(i, :) for all indices i in the complement of I, and A(:, J)
that by eliminating columns A(:, j) for all indices j in the complement of J .

The notation ‖ · ‖p denotes the Lp norm of a vector or a matrix, ‖ · ‖F the Frobenius norm of

2



a matrix, tr(·) the trace of a square matrix, and diag(·) a vector composed of diagonal elements of
a square matrix. i.e., diag(B) = [B(1, 1), . . . ,B(n, n)]⊤ for B ∈ R

n×n. For positive integers r and
n, the symbol R denotes the set of consecutive integers from 1 to r, and N that from 1 to n. For
S ⊂ N , we denote by Sc the complement of S. For a, b ∈ R with a < b, the notation (a, b) denotes
the open interval {x ∈ R : a < x < b}, and [a, b] the closed interval {x ∈ R : a ≤ x ≤ b}.

2 Problem and Preliminaries

Let V ∈ R
d×n
+ have an exact NMF V = WH for W ∈ R

d×r
+ and H ∈ R

r×n
+ . Separability assumes

that it can be further written as

V = WH for W ∈ R
d×r
+ and H = [I, H̄ ]Π ∈ R

r×n
+ (1)

where I is an r × r identity matrix, H̄ is an r × (n − r) nonnegative matrix, and Π is an n × n
permutation matrix. When a nonnegative matrix is written in the form shown in (1), we say that
it is r-separable or simply separable. Separability means that all columns of W appear in those of
V ; that is, there is a map φ : R → N such that wj = vφ(j) for each j = 1, . . . , r. We call the matrix
[vφ(1), . . . ,vφ(r)], which is equivalent to W , the basis of V : in particular, vφ(j) is the basis column
and φ(j) the basis index. We call r the factorization rank of V . We formulate the separable NMF
problem as follows:

Problem 1. Given a separable matrix V and factorization rank r, find the basis of V .

Separable matrices arising from applications would contain noise. Noisy separability assumes
that N ∈ R

d×n is added to a separable matrix V ∈ R
d×n
+ such that

A = V +N .

We call N the noise added to the separable matrix V . If a matrix is in the form above, we say
that it is noisy separable. When dealing with applications, it is desirable that, even if a separable
matrix contains noise, an algorithm for solving separable NMF problems can still find a near-basis.
Given a noisy separable matrix A = V +N , we say that the algorithm is robust to noise if it can
find the column index set J such that A(:, J) is close to the basis of V .

Our analysis put the following assumption on a matrix A.

Assumption 1. A = V +N ∈ R
d×n, where V ∈ R

d×n
+ is r-separable of the form V = WH =

W [I, H̄ ]Π shown in (1) and N ∈ R
d×n is noise. Moreover,

(a) every column of V ,W and H has unit L1 norm, and

(b) the noise N satisfies ‖N‖1 ≤ ǫ for some real number ǫ satisfying 0 ≤ ǫ < 1.

We call ǫ the noise level involved in A. As described in [3, 8], we can assume without loss of
generality that part (a) holds. Our analysis uses parameters κ, ω and β, which were introduced by
Gillis [9] for the analysis of Hottopixx. Let A = V +N ∈ R

d×n where V ∈ R
d×n
+ is r-separable of

the form V = WH = W [I, H̄ ]Π shown in (1) and N ∈ R
d×n is noise. The parameters κ and ω

are defined in terms of W by

κ = min
1≤j≤r

min
z≥0

‖wj −W (:, R \ {j})z‖1,

ω = min
1≤j1 6=j2≤r

‖wj1 −wj2‖1.
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They satisfy the relation

κ ≤ ω. (2)

It is easy to verify that it holds. Let j1, j2 ∈ R with j1 6= j2 satisfy ω = ‖wj1 −wj2‖1. Then, there
exists an integer ℓ ∈ R such that W (:, R \ {j1})eℓ = wj2 . Hence,

κ ≤ ‖wj1 −W (:, R \ {j1})eℓ‖1 = ‖wj1 −wj2‖1 = ω.

Let Assumption 1(a) hold. Then, we can bound κ and ω as

0 ≤ κ ≤ 1, (3)

0 ≤ ω ≤ 2. (4)

The lower bounds come from the definitions of κ and ω. For the upper bounds, we find that
κ ≤ ‖wj‖1 = 1 for any j ∈ R, and ω ≤ ‖wj1 − wj2‖1 ≤ ‖wj1‖1 + ‖wj2‖1 = 2 for any different
j1, j2 ∈ R. The parameter β is defined in terms of the submatrix H̄ of H by

β = max
1≤i≤r, 1≤j≤n−r

H̄(i, j).

Let Assumption 1(a) hold. Then, β satisfies 0 ≤ β ≤ 1. In particular, if β = 1, there are columns
of H̄ such that one element is 1 and the others are 0. This means that there are duplicate basis
columns.

3 Main Results

Here, we present the main results in the form of Theorems 1 and 2. We refine Hottopixx of Bittorf
et al. [5]. Our refinement uses the optimization model P, which is shown in Section 4.1. Algorithm
1 of the section describes the details of the refinement. Our first result, which states the robustness
of Algorithm 1 to noise, is as follows:

Theorem 1. Let A satisfy Assumption 1. Assume κ > 0. Run the refinement of Hottopixx, i.e.,
Algorithm 1, on the input (A, r). If

ǫ ≤ κ(1 − β)

9(r + 1)
,

then, after suitably rearranging the columns of W , the output Wout satisfies ‖W −Wout‖1 ≤ ǫ.

If the noise level ǫ is positive and the basis columns overlap, i.e., β = 1, the theorem is invalid
and does not say anything about the robustness of Algorithm 1 to noise. To cope with this issue,
we develop postprocessing that ensures the algorithm’s robustness to noise even in such a case.
Postprocessing for that purpose was proposed by Gillis [9], and here, we refine it. A detailed
description of the refinement is given in Algorithm 2 of Section 5.1. Our second result, which states
the robustness of Algorithm 2 to noise, is as follows:
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Theorem 2. Let A satisfy Assumption 1. Run the refinement of Hottopixx with postprocessing,
i.e., Algorithm 2, on the input (A, r). If

ǫ <
κω

578(r + 1)
,

then, after suitably rearranging the columns of W , the output Wout satisfies

‖W −Wout‖1 ≤
136(r + 1)

κ
ǫ.

In particular, if

ǫ <
κ2

289(r + 1)2
,

then, after suitably rearranging the columns of W , the output Wout satisfies

‖W −Wout‖1 ≤ 8
√
ǫ.

Theorem 2 tells us that there is a range of noise intensity that Algorithm 2 is robust to even
if there are duplicate basis columns. From the relation κ ≤ ω shown in (2), we can see that

κ2

289(r+1)2
≤ κω

578(r+1) holds, and κ2

289(r+1)2
is 2

r+1 times smaller than κω
578(r+1) . The theorem tells us

that, if ǫ satisfies ǫ ≤ κω
578(r+1) , the error of the output Wout relative to the basis W can be bounded

by using ǫ, r, κ; in particular, if ǫ is small and satisfies ǫ ≤ κ2

289(r+1)2
, the error bound depends on

only ǫ. Note that it remains an open question how tight the bounds shown in Theorems 1 and 2
are. This is a topic for further research.

Now, let us review the previous work on Hottopixx and compare our results with the previous
ones. Arora et al. [3] proposed the first algorithm with provable guarantees for solving separable
NMF problems. Motivated by that work, Bittorf et al. [5] developed Hottopixx. Let A = V +N

where V ∈ R
d×n
+ is r-separable of the form V = WH shown in (1) and N ∈ R

d×n is noise
satisfying ‖N‖1 ≤ ǫ for some nonnegative real number ǫ. Hottopixx is based on the optimization
model Q and require (A, r, ǫ) as its input. The details of the algorithm and Q are given in Section
4.1. Bittorf et al. showed that Hottopixx is robust to noise. However, it was unclear whether one
can ensure its robustness in the case that there are duplicate basis columns.

Gillis [9] and Gillis and Luce [13] pursued a line of research that examined the robustness of
Hottopixx. Tables 1 and 2 summarize their results as well as ours. The first column lists the
input data of the algorithms; the second one lists the optimization model whose details are given
in Section 4.1; the third one lists the assumptions imposed on the analysis; and the fourth and fifth
ones list the robustness results obtained by the analysis, i.e., the bound on the noise level and the
error of the output relative to the basis.

Gillis [9] investigated the robustness of Hottopixx. He started by analyzing the case where there
are no duplicate basis columns. The analysis suggested that the use of postprocessing makes it
possible to enhance its robustness. He then developed postprocessing and showed that Hottopixx
with the postprocessing is robust to noise even when there are duplicate basis columns. The results
on Hottopixx (Theorem 2.3 of [9]) are summarized in the second row of Table 1, and those on
Hottopixx with the postprocessing (Theorem 3.5 of [9]) are in the second row of Table 2.

Gillis and Luce [13] developed a refinement of Hottopixx. Their refinement is based on the
optimization model R, and it requires (A, ǫ) as input. The details of the algorithm and R are given
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Table 1: Comparison of our result (Theorem 1) with those of Gillis (Theorem 2.3 of [9]) and Gillis
and Luce (Theorem 2 of [13]) for algorithms without postprocessing. The algorithm of Gillis and
Luce uses a parameter ρ that is set to a positive real number.

Input Model Assumption Noise level Error

Our result A, r P Assumption 1, κ > 0 κ(1−β)
9(r+1) ǫ

Gillis A, r, ǫ Q Assumption 1, κ > 0 κ(1−β)
9(r+1) ǫ

Gillis and Luce A, ǫ R Assumption 1, κ > 0 κ(1−β)min{1,ρ}
5(ρ+2) ǫ

Table 2: Comparison of our result (Theorem 2) with those of Gillis (Theorem 3.5 of [9]) and Gillis
and Luce (Theorem 7 of [13]) for algorithms with postprocessing.

Input Model Assumption Noise level Error

Our result A, r P Assumption 1 κω
578(r+1)

136(r+1)
κ

ǫ

Gillis A, r, ǫ Q Assumption 1 κω
99(r+1)

49(r+1)
κ

ǫ+2ǫ

Gillis and Luce A, r, ǫ R Assumption 1 κω
99(r+1)

49(r+1)
κ

ǫ+2ǫ

in Section 4.1. They showed that the refinement is robust to noise. The results (Theorem 2 of [13])
are summarized in the third row of Table 1. Here, ρ is a parameter that is set to a positive real
number. The advantage of the refinement over Hottopixx is that it does not require prior knowledge
of the factorization rank r of the matrix A we want to factorize, and the robustness result does
not depend on r. They also incorporated the postprocessing of Gillis [9] into the refinement, and
showed that the same result as Theorem 3.5 of [9] holds for the refinement with the postprocessing.
The results (Theorem 7 of [13]) are summarized in the third row of Table 2.

Let us compare our results with those of Gillis [9] and Gillis and Luce [13]. We can see from
Tables 1 and 2 that Algorithm 1 is as robust as Hottopixx, and Algorithm 2 is almost as robust as
Hottopixx and the refinement of Gillis and Luce with the postprocessing of Gillis. The assumptions
of our analysis are the same as theirs. There is a difference in the input data: (A, r) for our
algorithms and (A, r, ǫ) or (A, ǫ) for the existing algorithms. We often encounter a situation in
which the factorization rank r is available in advance in applications such as topic extraction from
documents and unmixing of hyperspectral images. Hence, it is reasonable to assume that a noisy
separable matrix A and the factorization rank r will be given as input. As mentioned in Section 1,
most of the algorithms for solving separable NMF problems are designed to take (A, r) as input.
The advantage of our algorithms over the existing ones is they run on (A, r) that does not include
prior knowledge of the noise level ǫ and yet have almost the same robustness to noise as the existing
ones.

4 Refinement of Hottopixx

4.1 Algorithm

Our refinement of Hottopixx is described in Algorithm 1. For the input A and r, step 2 constructs

6



Algorithm 1 Refinement of Hottopixx

Input: A ∈ R
d×n and a positive integer r.

Output: Wout ∈ R
d×r.

1. If there are duplicate columns in A, keep one of them and remove all the rest.

2. Compute the optimal solution Xopt of the problem P(A, r). Set p = diag(Xopt).

3. Let Wout = A(:, J) for the index set J corresponding to the r largest elements of p, and return
Wout.

and solves the optimization problem with variable X ∈ R
n×n,

P(A, r) : Minimize ‖A−AX‖1
subject to tr(X) = r,

X(i, i) ≤ 1 for all i ∈ N,

X(i, j) ≤ X(i, i) for all i, j ∈ N,

X(i, j) ≥ 0 for all i, j ∈ N.

Throughout this paper, we use Xopt to denote the optimal solution and θ to denote the optimal
value ‖A−AXopt‖1. By introducing new variables Y ∈ R

d×n and z ∈ R, the problem above can be
reduced to an LP problem, since the minimization of ‖A−AX‖1 is equivalent to the minimization
of z under the constraints: −Y ≤ A−AX ≤ Y and

∑d
i=1 Y (i, j) ≤ z for all j ∈ N . We use P′ to

denote the LP problem. It should be noted that P′ has n2+ dn+1 variables and 2n2+2dn+n+1
constraints. Hence, the size of P′ may be rather large. Step 1 performs the preprocessing on the
input matrix. Although Hottopixx does not contain this step, Algorithm 1 must have it. See
Remark 1 at the end of this section for the reason.

Here, let us recall Hottopixx of Bittorf et al. [5] and the refinement of Gillis and Luce [13].
Bittorf et al. looked at a certain feature of separable matrices and developed Hottopixx on the
basis of that observation. Let A satisfy Assumption 1. Then, it can be written as A = V + N ,
where V ∈ R

d×n
+ is r-separable of the form V = WH = W [I, H̄ ]Π shown in (1) and N ∈ R

d×n

is noise. Using an n × n permutation matrix Π and the r × (d − r) nonnegative matrix H̄, we
construct the matrix

X0 = Π−1

[
I H̄

0(n−r)×r 0(n−r)×(n−r)

]

Π ∈ R
n×n (5)

where I is an identity matrix of size r. We make the following observations:

• The basis of V can be identified by using X0, since the diagonal entries of X0 are 0 or 1 and
the positions with 1 correspond to the basis indices of V .

• X0 satisfies

‖A−AX0‖1 ≤ 2ǫ. (6)
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The second observation comes from the fact that we have

V X0 = W [I, H̄ ]ΠΠ−1

[
I H̄

0 0

]

Π = W [I, H̄ ]Π = V ,

which gives

‖A−AX0‖1 = ‖V +N − (V +N)X0‖1 = ‖N −NX0‖1
≤ ‖N‖1 + ‖N‖1‖X0‖1
≤ 2ǫ (by Assumption 1).

To compute X0 approximately, Bittorf et al. proposed to solve an optimization problem with
variable X ∈ R

n×n,

Q(A, r, ǫ) : Minimize f⊤diag(X)

subject to ‖A−AX‖1 ≤ 2ǫ,

tr(X) = r,

X(i, i) ≤ 1 for all i ∈ N,

X(i, j) ≤ X(i, i) for all i, j ∈ N,

X(i, j) ≥ 0 for all i, j ∈ N.

Here, f is a parameter set by the user: it can be chosen to be any n-dimensional vector with
distinct elements. The problem Q can be reduced to an LP. Hottopixx is the same as performing
steps 2 and 3 of Algorithm 1 with a replacement of P(A, r) in step 2 by Q(A, r, ǫ). It thus requires
(A, r, ǫ) as input.

Gillis and Luce [13] refined Hottopixx. They proposed to solve an optimization problem with
variable X ∈ R

n×n,

R(A, ǫ) : Minimize g⊤diag(X)

subject to ‖A−AX‖1 ≤ ρǫ,

X(i, i) ≤ 1 for all i ∈ N,

X(i, j) ≤ X(i, i) for all i, j ∈ N,

X(i, j) ≥ 0 for all i, j ∈ N.

Here, g and ρ are parameters set by the user: g can be chosen to be any n-dimensional vector
with distinct positive elements and ρ a positive value. As in the case of Q, the problem R can be
reduced to an LP. Their algorithm computes the optimal solution of R and constructs an index set
corresponding to diagonal entries larger than 1− min{1,ρ}

2 . Hence, it takes as input (A, ǫ) and does
not require r as input.

Remark 1. If Algorithm 1 does not contain step 1, it may fail to find a basis from separable
matrices with duplicate basis columns. For instance, consider

V =

[
1 0 1 1 0
0 1 0 0 1

]

.
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This is 2-separable with β = 1 since it can be written as V = WH by letting W = I and H = V .
Suppose that the algorithm receives (A, r) by letting A = V and r = 2 as input. Consider the two
matrices,

X1 =







1 0 1 1 0
0 1 0 0 1
0 0 0 0 0
0 0 0 0 0







and X2 =









1/3 0 1/3 1/3 0
0 1/2 0 0 1/2

1/3 0 1/3 1/3 0
1/3 0 1/3 1/3 0

0 1/2 0 0 1/2









.

Both X1 and X2 are optimal solutions of problem P(A, r), since they satisfy all the constraints
and ‖A−AX1‖1 = ‖A−AX2‖1 = 0. If Algorithm 1 skips step 1 and finds X2 in step 2, then it
constructs J = {2, 5} in step 3. We have Wout 6= W , since Wout = A(:, J) = V (:, J) and W = I.

4.2 Analysis

The optimal value θ of problem P is related to the noise level ǫ involved in separable matrices.
Actually, from the observation Bittorf et al. made in [5], we can easily see that θ ≤ 2ǫ holds.

Lemma 1. Let A satisfy Assumption 1. Then, the optimal value θ of problem P(A, r) satisfies
θ ≤ 2ǫ.

Proof. Since A satisfies Assumption 1, it is given by A = V +N where V ∈ R
d×n
+ is r-separable

of the form V = WH = W [I, H̄ ]Π shown in (1) and N ∈ R
d×n is noise. Using the permutation

matrix Π and the nonnegative matrix H̄ , we construct the matrix X0 that is shown in (5), i.e.,

X0 = Π−1

[
I H̄

0 0

]

Π ∈ R
n×n.

Since Assumption 1(a) holds, we can check that X0 is a feasible solution of P(A, r). Hence, the
objective function value at X0 satisfies θ ≤ ‖A −AX0‖1. In addition, as shown in (6), we have
‖A−AX0‖1 ≤ 2ǫ. Consequently, θ ≤ 2ǫ holds.

Let A satisfy Assumption 1. Let I be a set of basis indices of V . Gillis showed in Lemma
2.1 of [9] that a feasible solution X of problem Q has the following properties: the L1 norm of
each column of X is less than about 1, and V X serves as a good approximation to V . Using the
results, Gillis showed in Lemma 2.2 of [9] that the diagonal elements of X indexed by I take higher
values than the others. Hence, we can construct I by checking the values of the diagonal elements
of X. Lemma 1 implies that the optimal solution of problem P is feasible for problem Q. Hence,
the same results as in Lemmas 2.1 and 2.2 of [9] hold for the optimal solution of problem P. Here,
we formally describe these results as Lemmas 2 and 3.

Lemma 2. Let A satisfy Assumption 1. Then, the optimal solution Xopt ∈ R
n×n of problem

P(A, r) satisfies

‖Xopt(:, i)‖1 ≤ 1 +
4ǫ

1− ǫ
and ‖vi − V Xopt(:, i)‖1 ≤ 4ǫ

1− ǫ

for i ∈ N .
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The proof is almost the same as the one of Lemma 2.1 in [9]. We have included it in Appendix
A to make the discussion self-contained.

Lemma 3. Let A satisfy Assumption 1. Assume κ > 0 and β < 1. Let I be a set of basis indices
of V . Let p = diag(Xopt) for the optimal solution Xopt of problem P(A, r). Then, the elements of
p indexed by I satisfy

p(i) ≥ 1− 8ǫ

κ(1 − β)(1 − ǫ)

for every i ∈ I.

We have included the proof in Appendix B. Our proof follows the one of Lemma 2.2 in [9],
although additional considerations are made; see Remark 2. The key idea of the proof is as follows.
Since A satisfies Assumption 1, it can be written as A = V + N where V is r-separable of the
form V = WH = W [I, H̄ ]Π shown in (1) and there is a map φ : R → N such that wj = vφ(j)
for each j ∈ R. For j ∈ R and i = φ(j) ∈ N , let

η = H(j, :)Xopt(:, i).

We can see that η is rewritten by using Xopt(i, i), which is equivalent to p(i), due to H(j, i) = 1,
and evaluate the lower and upper bounds on η. The result of the lemma follows from the bounds.

Now, we can prove Theorem 1. It follows from Lemma 3.

(Proof of Theorem 1). Let us consider the case of β = 1. Here, we only have to show that, if A is
separable with an overlap of basis columns, then the algorithm finds a set of basis indices. Sepa-
rability means that duplicate basis columns appear in the columns of A. Hence, after conducting
step 1, the resulting matrix is separable with no overlapping basis columns. This reduces to the
case of β < 1.

Let us move on to the case of β < 1. Step 2 solves problem P(A, r) and sets p = diag(Xopt)
for the optimal solution Xopt. Let I be a set of basis indices of V . Lemma 3 tells us that

p(i) ≥ 1− 8ǫ

κ(1 − β)(1 − ǫ)
︸ ︷︷ ︸

(A)

holds for every i ∈ I. Since

ǫ ≤ κ(1 − β)

9(r + 1)
≤ 1

18
,

we have 1− ǫ ≥ 17/18 > 8/9. In light of this, the term (A) is bounded as follows:

(A) <
9ǫ

κ(1− β)
≤ 1

r + 1
.

We thus obtain

p(i) >
r

r + 1
for i ∈ I. (7)
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The first constraint of problem P(A, r) requires Xopt to satisfy tr(Xopt) = r ⇔ ∑

i∈N p(i) = r.
Hence,

r =
∑

i∈N

p(i) =
∑

i∈I

p(i) +
∑

i∈N\I

p(i).

Combining it with inequality (7) gives

p(i) ≤ r

r + 1
for i ∈ N \ I. (8)

Since I has r elements, inequalities (7) and (8) ensure that the index set corresponding to the r
largest elements of p coincides with I. Hence, the index set J constructed in step 3 coincides with
I, which is the set of basis indices of V . Consequently, after suitably rearranging the columns of
W , the output Wout = A(:, J) satisfies ‖W −Wout‖1 ≤ ǫ.

5 Refinement of Hottopixx with Postprocessing

5.1 Algorithm

We explore the case where there are duplicate basis columns in the input matrix of Algorithm 1.
As shown in Section 4.2, the algorithm’s guarantee of robustness to noise is founded upon Lemma
3. However, the lemma does not hold any more, because β = 1 in this case. To address this issue,
we develop and incorporate postprocessing in the algorithm.

Let us outline our postprocessing first and give the details at the end of this section. In what
follows, we will assume that we are given A satisfying Assumption 1. We use the term cluster to
refer to the set of column indices of A. Although Lemma 3 does not hold in the case where there
are duplicate basis columns, the optimal solution of problem P still provides us with clues to finding
clusters from which we can obtain near-basis columns. For a cluster S ⊂ N and p ∈ R

n
+, define the

score of cluster S by

score(S,p) =
∑

u∈S

p(u),

and we call p a point list.
Let µ > 0 be a parameter and define

Tj = {u ∈ N : ‖au −wj‖1 ≤ 2µ} (9)

for each j ∈ R. Here, au is the uth column of A and wj is the jth column of W . We call T1, . . . , Tr

anchors with parameter µ. Let p = diag(Xopt) for the optimal solution Xopt of problem P, and
choose the parameter µ of Tj , depending on the noise level ǫ involved in A. We show in Corollary
1 that the anchors T1, . . . , Tr have high scores, i.e.,

score(Tj ,p) >
r

r + 1

for every j ∈ R. Lemma 3.3 of [9] by Gillis implies that the same result holds for a feasible solution
of problem Q.

11



If we find all the anchors, then near-basis columns can be obtained by choosing one element
from each anchor. However, even if we use the point list obtained from the optimal solution of P,
it is not an easy task to find anchors exactly. We thus construct a collection F of clusters that
contains all the anchors, and observe the structure of F . Our postprocessing algorithm is designed
on the basis of this observation. To describe F , we introduce Ω, which is a collection of clusters,
that will serve as the foundation of F . Sort columns a1, . . . ,an of A by their L1 distance to ai in
ascending order so that

‖ai − au1
‖1 ≤ ‖ai − au2

‖1 ≤ · · · ≤ ‖ai − aun−1
‖1

where {i, u1, . . . , un−1} = N . Then, construct

Ωi = {{i}, {i, u1}, {i, u1, u2}, . . . , {i, u1, u2, . . . , un−1}}

and let

Ω =
⋃

i∈N

Ωi.

For a cluster S ∈ Ωi, define the diameter of S in Ωi by

diam(S) = max
u∈S

‖ai − au‖1.

For a point list p ∈ R
n
+ and parameter µ used for constructing the anchors T1, . . . , Tr, let

Fi(p) =

{

S ∈ Ωi : diam(S) ≤ 3µ, score(S,p) >
r

r + 1

}

(10)

and

F(p) =
⋃

i∈N

Fi(p).

In particular, if p is set as p = diag(Xopt) for the optimal solution Xopt of problem P, we use the
abbreviation Fi for Fi(p) and the abbreviation F for F(p). That is, for p = diag(Xopt),

Fi = Fi(p) and F = F(p).

As mentioned above, we have to choose µ depending on the noise level ǫ to ensure that the
anchors can have high scores. Hence, it is impossible to construct F(p). But, it is possible to
compute some of the clusters in F(p). Consider a collection Gi(p) of clusters obtained by removing
the condition diam(S) ≤ 3µ in Fi(p):

Gi(p) =

{

S ∈ Ωi : score(S,p) >
r

r + 1

}

. (11)

Let

G(p) =
⋃

i∈N

Gi(p).
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F = F(p) F(q)

S

Figure 1: Illustration of F = F(p) and F(q) where p is a point list obtained from the optimal
solution of problem P, and q is a point list obtained by updating p such that q(u) = 0 if u belongs
to the red-colored cluster S; otherwise, q(u) = p(u): clusters (set of points surrounded by an
oval), anchors (set of points surrounded by an oval filled with gray color), the components F̄i of F
(collection of clusters surrounded by a dotted oval), and basis columns (star).

Unlike F(p), we can construct G(p). Let Ŝ = argminS∈G(p) diam(S). Since F(p) ⊂ G(p), we have

diam(Ŝ) = min
S∈G(p)

diam(S) ≤ min
S∈F(p)

diam(S) ≤ 3µ.

Hence, Ŝ belongs to F(p). We can get it through G(p).
Let us look at F , which is an abbreviation of F(p) with the point list p obtained from the

optimal solution of problem P. We show in Lemma 7 that any cluster in F always has a common
element with some anchor. This means that clusters in F are localized around each anchor, and
anchors are the cores of F . Hence, using the components F̄1, . . . , F̄r of F , given as

F̄j = {S ∈ F : max
u∈S

‖au −wj‖1 ≤ 8µ}, (12)

we can write F as

F = F̄1 ∪ · · · ∪ F̄r.

If anchors are far from each other; in other words, ω is large, then the components F̄1, . . . , F̄r are
disjoint from each other. The left of Figure 1 illustrates F .

According to the observations made so far, it turns out that we can find a cluster belonging to
one of F̄1, . . . , F̄r. A cluster of F is obtained by using G(p), and it belongs to one of F̄1, . . . , F̄r

because F can be written as F = F̄1 ∪ · · · ∪ F̄r. Let us denote the obtained cluster by S1, and
assume that S1 belongs to F̄1 in order to simplify the subsequent description. By updating the
point list p, we can find a cluster belonging to one of the remaining components F̄2, . . . , F̄r. Let q
be a point list made by updating p as

q(u) =

{
0 if u ∈ S1,
p(u) otherwise.
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Algorithm 2 Refinement of Hottopixx with postprocessing

Input: A ∈ R
d×n and a positive integer r.

Output: Wout ∈ R
d×r.

1. Compute the optimal solution Xopt ∈ R
n×n of problem P(A, r).

2. Set p1 = diag(Xopt), J = ∅ and ℓ = 1. Perform the following procedure.

2-1. Find Sℓ such that

Sℓ = arg min
S∈G(pℓ)

diam(S).

2-2. Choose one element from Sℓ and add it to J . Increase ℓ by 1.

2-3. If ℓ = r, then return Wout = A(:, J) and terminate; otherwise, construct pℓ ∈ R
n
+ as

pℓ(u) =

{
0 if u ∈ S1 ∪ · · · ∪ Sℓ−1,
p1(u) otherwise,

and go to step 2-1.

We show in Lemma 10 that F(q) can be written as

F(q) = F̄2 ∪ · · · ∪ F̄r.

The right of Figure 1 illustrates F(q). A cluster, denoted by S2, of F(q) is obtained by using G(q),
and it belongs to one of F̄2, . . . , F̄r. By repeating the procedure, we can find r clusters S1, . . . , Sr

such that Sj ∈ F̄j for each j ∈ R by rearranging the indices of F̄1, . . . , F̄r. The obtained clusters
provide near-basis columns. We choose one element from each cluster and construct the set J .
Rearranging the columns of W , we find that it satisfies

‖W −A(:, J)‖1 ≤ 8µ.

This leads to Theorem 2.
Algorithm 2 is a formal description of our algorithm. It takes as input (A, r). Step 2 is the

postprocessing. The cost of step 2 is dominated by step 2-1. The cost of step 2-1 is in turn
dominated by the computation of the L1 distance between any two columns of A ∈ R

d×n, which
takes O(n2d) flops. We below summarize the definition and role of Tj ,F(p),G(p) and F̄j, which
are used for analyzing Algorithm 2 in Section 5.2.

• Tj is a cluster, called anchor, which is defined as in (9).

• F(p) is a collection of clusters constructed by using a point list p. This is formed as F(p) =
∪i∈NFi(p) where Fi(p) is defined as in (10). If p is a point list obtained from the optimal
solution of problem P, we abbreviate F(p) and Fi(p) as F and Fi, respectively.

• G(p) is a collection of clusters constructed by using a point list p. This is formed as G(p) =
∪i∈NGi(p) where Gi(p) is defined as in (11), which is obtained by discarding some condition
imposed on Fi(p).

14



• F̄j is the component of F , defined as in (12). We show in Lemma 8 that F is written as
F = ∪j∈RF̄j.

5.2 Analysis

5.2.1 Scores of Anchors

We show that anchors have high scores by using the point list obtained by solving problem P.

Lemma 4. Let A satisfy Assumption 1. Assume κ > 0. Let µ satisfy µ 6= 0 and ǫ ≤ µ. Set
p = diag(Xopt) for the optimal solution Xopt of problem P(A, r). Then, anchors T1, . . . , Tr with
parameter µ satisfy

score(Tj ,p) ≥ 1− 16ǫ

κµ(1− ǫ)
.

for every j ∈ R.

We can prove this in a similar way as Lemma 3; the proof is in Appendix B. From Lemma 4,
we immediately obtain Corollary 1.

Corollary 1. Let A satisfy Assumption 1. Set p = diag(Xopt) for the optimal solution Xopt of
problem P(A, r). Consider two cases as follows:

• Let ǫ satisfy ǫ < κω
578(r+1) . The value of µ is set as µ = 17(r+1)ǫ

κ
+ ξ by choosing an arbitrary

real number ξ from the open interval (0, κ
35 ).

• Let ǫ satisfy ǫ < κ2

289(r+1)2
. The value of µ is set as µ =

√
ǫ+ ξ by choosing an arbitrary real

number ξ from the open interval (0, κ
35 ).

The following hold in both cases.

(a) 0 ≤ ǫ < 1.

(b) 0 < µ < ω
17 .

(c) ǫ ≤ µ.

(d) score(Tj ,p) >
r

r+1 for every j ∈ R.

We can easily check that the corollary holds. The proof is given in Appendix C. Part (a) just
tells us that the bounds imposed on ǫ in the two cases do not violate Assumption 1(b). The role
of ξ is to prevent the value of µ from being zero; hence, we are allowed to choose an arbitrary real
number from the open interval (0, κ

35).

5.2.2 Structure of F
We prove the observations about F that we made in Section 5.1.

Lemma 5. Let F(q) 6= ∅ for some q ∈ R
n
+. Then, G(q) 6= ∅. Moreover, F(q) contains Ŝ =

argminS∈G(q) diam(S).
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Proof. Since Fi(q) ⊂ Gi(q) ⊂ G(q) and F(q) =
⋃

i∈N Fi(q), any element of F(q) belongs to G(q).
Hence, F(q) ⊂ G(q) holds. Consequently, F(q) 6= ∅ implies G(q) 6= ∅.

Since Ŝ belongs to G(q) = ⋃

i∈N Gi(q), we have Ŝ ∈ Ωi∗ for some i∗ ∈ N and score(Ŝ, q) > r
r+1 .

From the relation F(q) ⊂ G(q), we have

diam(Ŝ) = min
S∈G(q)

diam(S) ≤ min
S∈F(q)

diam(S) ≤ 3µ.

Consequently, Ŝ ∈ Fi∗(q), which implies Ŝ ∈ F(q).

Lemma 6. Frame the hypotheses of Corollary 1. The following hold:

(a) Anchor Tj is not empty.

(b) All anchors T1, . . . , Tr belong to F .

(c) Anchor Tj belongs to the component F̄j of F .

Proof. Separability means that there is a map φ : R → N such that wj = vφ(j) for each j ∈ R. We
use the map φ in the proof of parts (a) and (b).

(a) From Corollary 1(c), we have

‖aφ(j) −wj‖1 = ‖vφ(j) + nφ(j) −wj‖1 = ‖nφ(j)‖1 ≤ ǫ ≤ µ.

Hence, Tj contains φ(j), which means that Tj is not empty.
(b) We show that Tj belongs to Fφ(j) for each j ∈ R. Since φ(j) ∈ Tj, as shown in part (a), we

have Tj ∈ Ωφ(j). By Corollary 1(d), the score of Tj by p satisfies score(Tj ,p) >
r

r+1 . The diameter
of Tj in Ωφ(j) satisfies diam(Tj) ≤ 3µ, since any u ∈ Tj satisfies

‖au − aφ(j)‖1 = ‖au − vφ(j) − nφ(j)‖1 = ‖au −wj − nφ(j)‖1 ≤ ‖au −wj‖1 + ‖nφ(j)‖1 ≤ 2µ + ǫ

≤ 3µ.

The last inequality uses Corollary 1(c). Hence, Tj ∈ Fφ(j) for each j ∈ R. In addition, the definition
of F implies Fφ(j) ⊂ F . Consequently, T1, . . . , Tr belong to F .

(c) We have already shown Tj ∈ F for each j ∈ R in part (b). The definition of Tj implies that,
for any u ∈ Tj , we have ‖au −wj‖1 ≤ 2µ ≤ 8µ. Hence, Tj belongs to F̄j .

Parts (a) and (c) tell us that the components F̄1, . . . , F̄r of F are not empty. We will use this
observation in the proof of Theorem 2.

Lemma 7. Frame the hypotheses of Corollary 1. For any S ∈ F , there is some j ∈ R such that
S ∩ Tj 6= ∅.

Proof. We start by showing that any two different anchors do not have a common element. Let
x, y ∈ R and x 6= y. No u ∈ Tx belongs to Ty, since

‖au −wy‖1 = ‖(wx −wy) + (au −wx)‖1
≥ ‖wx −wy‖1 − ‖au −wx‖1
≥ ω − 2µ (by the definition of ω)

> 15µ (by Corollary 1(b)).
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Hence, Tx∩Ty = ∅ holds for any different x and y in R. We will prove the lemma by contradiction.
Assume that there is some S ∈ F such that S∩Tj = ∅ for any j ∈ R. Since Tx∩Ty = ∅ for x, y ∈ R
with x 6= y, any two different clusters among S, T1, . . . , Tr do not have a common element. Hence,
we have

score(S,p) +
∑

j∈R

score(Tj ,p) = score(S ∪ T1 ∪ · · · ∪ Tr,p) ≤ score(N,p) = r.

The last equality follows from the fact that score(N,p) = tr(Xopt) = r holds since the first
constraint of problem P requires Xopt to satisfy tr(Xopt) = r. By Corollary 1(d), the score of Tj

by p satisfies score(Tj ,p) >
r

r+1 for each j ∈ R. Therefore, we get score(S,p) ≤ r
r+1 and reach a

contradiction to S ∈ F , which means score(S,p) > r
r+1 . The assumption is false. That is, for any

S ∈ F , there is some j ∈ R such that S ∩ Tj 6= ∅.

Lemma 8. Frame the hypotheses of Corollary 1. The following hold:

(a) F , i.e., the abbreviation of F(p), is represented as

F =
⋃

j∈R

F̄j

by using the components F̄j of F .

(b) Let x, y ∈ R and x 6= y. We have Sx ∩ Sy = ∅ for any (Sx, Sy) ∈ F̄x × F̄y.

Proof. (a) First, we prove the inclusion “⊃”. Let S ∈ ∪j∈RF̄j . Then, there is a j∗ ∈ R such that
S ∈ F̄j∗ . The definition of F̄j∗ implies S ∈ F . Hence, the inclusion “⊃” holds.

Next, we prove the inclusion “⊂”. Let S ∈ F . Recall that F is defined by F = ∪i∈NFi. Hence,
there is an i∗ ∈ N such that S ∈ Fi∗ . Lemma 7 ensures that there is a j∗ ∈ R such that S∩Tj∗ 6= ∅.
Let v ∈ S ∩ Tj∗ . Then, for any u ∈ S,

‖au −wj∗‖1 = ‖(au − av) + (av −wj∗)‖1 ≤ ‖au − av‖1 + ‖av −wj∗‖1
≤ ‖au − av‖1 + 2µ (by v ∈ Tj∗)

= ‖(au − ai∗) + (ai∗ − av)‖1 + 2µ

≤ ‖au − ai∗‖1 + ‖ai∗ − av‖1 + 2µ

≤ 8µ. (by u, v ∈ S and S ∈ Fi∗)

Accordingly, we have S ∈ F̄j∗ for j∗ ∈ R, which implies S ∈ ∪j∈RF̄j . Hence, the inclusion “⊂”
holds. Consequently, F =

⋃

j∈R F̄j as claimed.

(b) Let x, y ∈ R and x 6= y. Let Sx ∈ F̄x and Sy ∈ F̄y. We have, for any u ∈ Sx,

‖au −wy‖1 = ‖(wx −wy) + (au −wx)‖1
≥ ‖wx −wy‖1 − ‖au −wx‖1
≥ ω − 8µ (by the definition of ω and Sx ∈ F̄x)

> 9µ (by Corollary 1(b)).

Hence, u /∈ Sy. This means Sx ∩ Sy = ∅.
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Here, we prove Lemma 9 for establishing Lemma 10. In Lemmas 9 and 10, we use the following
notation: ℓ1, . . . , ℓr denote the r integers in R; k is any positive integer satisfying k < r; and K is
the set of consecutive integers from 1 to k.

Lemma 9. Frame the hypotheses of Corollary 1. We have the relation

⋃

j∈K

F̄ℓj = F \
⋃

j∈R\K

F̄ℓj .

Proof. Lemma 8(b) implies F̄x ∩ F̄y = ∅ for x, y ∈ R with x 6= y. We use this relation in the proof.
To simplify the description, we denote A =

⋃

j∈K F̄ℓj and B =
⋃

j∈R\K F̄ℓj .

First, we prove the inclusion “⊂”. Let S ∈ A. Then, S ∈ F̄ℓj∗
for some j∗ ∈ K. This implies

S ∈ F by the definition of F̄ℓj∗
. In addition, as shown above, we have F̄ℓj∗

∩ F̄ℓj = ∅ for every
j ∈ R \K. Hence, S /∈ ⋃

j∈R\K F̄ℓj . Consequently, the inclusion “⊂” holds.
Next, we prove the inclusion “⊃”. It holds if F \ B = ∅. In what follows, we thus assume

F \ B 6= ∅. We use contradiction. Since the assumption means that there exists S ∈ F \ B, we
choose such S. Let us assume contradiction; S /∈ A. Then, S ∈ F ∩ Ac ∩ Bc. Meanwhile,

F ∩ Ac ∩ Bc = F ∩ (A ∪ B)c = F ∩




⋃

j∈R

F̄ℓj





c

= F ∩ Fc = ∅

holds by De Morgan’s laws and Lemma 8(a). This contradicts the fact that S exists. Hence, the
inclusion “⊃” holds. Consequently,

⋃

j∈K F̄ℓj = F \⋃j∈R\K F̄ℓj as claimed.

Lemma 10. Frame the hypotheses of Corollary 1. Let S1, . . . , Sk be clusters such that Sj ∈ F̄ℓj

for each j ∈ K. Suppose that we are given S1, . . . , Sk and the point list p. Construct a point list
q ∈ R

n
+:

q(u) =

{
0 if u ∈ S1 ∪ · · · ∪ Sk,
p(u) otherwise.

Then, the following hold:

(a) Let S ∈ F . Then,

S ∈
⋃

j∈R\K

F̄ℓj ⇔ score(S, q) >
r

r + 1
.

(b) F(q) is represented as

F(q) =
⋃

j∈R\K

F̄ℓj .

Proof. (a) First, we prove the direction “⇒”. Let S ∈ ⋃

j∈R\K F̄ℓj . Then, S belongs to F̄ℓj∗
for

some j∗ ∈ R\K. Meanwhile, Sj belongs to F̄ℓj for j ∈ K. Lemma 8(b) then tells us that S∩Sj = ∅
for every j ∈ K. Hence, from the construction of q, we have q(u) = p(u) for every u ∈ S. In
addition, since S ∈ F̄ℓj∗

implies S ∈ F by the definition of F̄ℓj∗
, it takes score(S,p) > r

r+1 .
Consequently, we obtain score(S, q) = score(S,p) > r

r+1 .
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Next, we prove the direction “⇐” by showing that the contrapositive is true. In light of Lemma
9, the contrapositive statement is

S ∈
⋃

j∈K

F̄ℓj ⇒ score(S, q) ≤ r

r + 1
. (13)

Let S ∈ ⋃

j∈K F̄ℓj . Then, S belongs to F̄ℓj∗
for some j∗ ∈ K. From the construction of q, we have

q(u) = 0 for every u ∈ Sj∗. Hence,

score(S, q) =
∑

u∈S

q(u) =
∑

u∈S̄

q(u). (14)

for S̄ = S \ Sj∗. Let Sk+1, . . . , Sr be clusters such that Sj ∈ F̄ℓj for each j ∈ R \K. Since Sj ∈ F̄ℓj

for j ∈ R and S̄ = S \ Sj∗ where S, Sj∗ ∈ F̄ℓj∗
, Lemma 8(b) tells us that the following statements

hold:

S̄ ∩ Sj = ∅ for every j ∈ R. (15)

Sx ∩ Sy = ∅ for every different x, y ∈ R. (16)

Statement (15) implies that no element of S̄ belongs to S1 ∪ · · · ∪ Sk. Hence,

∑

u∈S̄

q(u) =
∑

u∈S̄

p(u) = score(S̄,p). (17)

It follows from equalities (14) and (17) that the relation score(S, q) = score(S̄,p) holds. From
statements (15) and (16), we have

score(S̄,p) +
∑

j∈R

score(Sj ,p) = score(S̄ ∪ S1 ∪ · · · ∪ Sr,p) ≤ score(N,p) = r.

Here, score(Sj,p) >
r

r+1 since Sj ∈ F̄ℓj implies Sj ∈ F . Accordingly, the inequality above yields
score(S̄,p) ≤ r

r+1 . Combining it with the relation score(S, q) = score(S̄,p), we obtain score(S, q) ≤
r

r+1 . Consequently, statement (13) holds.
(b) First, we prove the inclusion “⊃”. Let S ∈ ⋃

j∈R\K F̄ℓj . Then, S belongs to F̄ℓj∗
for some

j∗ ∈ R \ K. It thus follows from part (a) that score(S, q) > r
r+1 . In addition, S ∈ F̄ℓj∗

implies
S ∈ F by the definition of F̄ℓj∗

. From F = ∪i∈NFi, we have S ∈ Fi∗ for some i∗ ∈ N . Thus,
S ∈ Ωi∗ and diam(S) ≤ 3µ by the definition of Fi∗ . Consequently, we obtain S ∈ Fi∗(q), which
implies S ∈ F(q) since F(q) = ∪i∈NFi(q).

Next, we prove the inclusion “⊂”. Let S ∈ F(q). Then, S belongs to Fi∗(q) for some i∗ ∈ N ,
since F(q) = ∪i∈NFi(q). It follows from the definition of Fi∗(q) that S ∈ Ωi∗ ,diam(S) ≤ 3µ, and
score(S, q) > r

r+1 . Since S satisfies score(S, q) > r
r+1 , part (a) ensures that the inclusion “⊂” holds

if S ∈ F . Thus, the remainder of the proof is to show S ∈ F . The construction of a point list q

tells us that p(i) ≥ q(i) for every i ∈ N . Hence,

score(S,p) ≥ score(S, q) >
r

r + 1
.

holds. Consequently, we obtain S ∈ Fi∗(p), which implies S ∈ F since F = F(p) = ∪i∈NFi(p).
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5.2.3 Robustness to Noise

We are now ready to prove Theorem 2.

(Proof of Theorem 2). Let S1, . . . , Sr be clusters generated by Algorithm 2. We claim that there
is a permutation π : R → R such that Sℓ ∈ F̄π(ℓ) for each ℓ ∈ R. We use induction on ℓ. Set a
parameter µ as µ = λ + ξ by choosing an arbitrary real number ξ from the open interval (0, κ

35).
The value of λ is set according to the noise level described in the theorem:

• λ = 17(r+1)ǫ
κ

in the former case where ǫ < κω
578(r+1) .

• λ =
√
ǫ in the latter case where ǫ < κ2

289(r+1)2
.

Base case: Step 1 of the algorithm computes the optimal solution Xopt of problem P(A, r)
and step 2 sets p1 = diag(Xopt). Thus, Lemmas 6 and 8 hold. Lemma 8(a) tells us that F(p1)
is represented as F(p1) =

⋃

j∈R F̄j . It follows from Lemmas 6(a) and 6(c) that the components

F̄1 . . . , F̄r are not empty. This means that F(p1) is not empty. We can thus use Lemma 5, which
tells us that F(p1) contains S1 = argminS∈G(p1) diam(S). Accordingly, there is a j ∈ R such that
S1 ∈ F̄j .

Induction step: Let ℓ1, . . . , ℓr denote the r integers in R. Let k be any positive integer satisfying
k < r, and K be the set of consecutive integers from 1 to k. Suppose that Sj ∈ F̄ℓj holds for each
j ∈ K. Lemma 10 holds; part (b) of the lemma tells us that F(pk+1) is represented as F(pk+1) =⋃

j∈R\K F̄ℓj . As mentioned above, F̄k+1 . . . , F̄r are not empty. Hence, F(pk+1) is not empty. We
can thus use Lemma 5, which tells us that F(pk+1) contains Sk+1 = argminS∈G(pk+1) diam(S).
Accordingly, there is a j ∈ R \ K such that Sk+1 ∈ F̄ℓj . Consequently, there is a permutation
π : R → R such that Sℓ ∈ F̄π(ℓ) for each ℓ ∈ R.

In light of the definition of F̄j, this result implies that the output Wout = A(:, J) of the
algorithm satisfies

‖W −Wout‖1 ≤ 8µ = 8(λ+ ξ)

by rearranging the columns of W . Since the inequality holds for any small positive number ξ, it
turns out that

‖W −Wout‖1 ≤ 8λ

holds. This gives the desired results.

6 Experiments

We conducted experiments to see the practical performance of our algorithms. Gillis and Luce
[13] observed in their experiments that the postprocessing of Gillis [9] does not always enhance
the robustness of their refinement of Hottopixx. For that reason, they proposed to incorporate a
hybrid postprocessing into their refinement. A detailed description was given in Algorithm 6 of
[13]. They implemented it and showed its superiority to other algorithms. We incorporated the
algorithmic framework of hybrid postprocessing into Algorithm 2, as described in Algorithm 3, and
implemented it on MATLAB. The purpose of our experiments was to demonstrate its performance.
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Algorithm 3 Refinement of Hottopixx with hybrid postprocessing

Input: A ∈ R
d×n and a positive integer r.

Output: Set J of r elements from N .

1. Perform step 1 of Algorithm 2. Let J1 be the index set corresponding to the r largest elements
of diag(Xopt).

2. Perform step 2 of Algorithm 2 where step 2-2 chooses

u = argmax
u∈Sℓ

pℓ(u).

Let J2 = J for the index set J obtained at the termination of step 2.

3. Compute

J = arg min
J∈{J1,J2}

error(J) where error(J) = min
X≥0

‖A−A(:, J)X‖2F

and return J .

We compared four algorithms as follows: RHHP (Algorithm 3), LP-rho1 (Algorithm 6 of [13]),
Hottopixx (Algorithm 1 of [13]) and SPA (Algorithm 1 with f(x) = ‖x‖22 of [15]). SPA was
originally proposed in [1] in the context of chemometrics, and is now considered a popular algorithm
for solving separable NMF problems. For the implementation of LP-rho1, Hottopixx and SPA,
we used the MATLAB functions LPsepNMF cplex, hottopixx cplex and FastSepNMF whose code
is available at the website of the first author of [13]. For solving LP problems, the functions
hottopixx cplex and LPsepNMF cplex employed CPLEX. Following them, we employed it in the
implementation of RHHP.

We tested the algorithms on four synthetic datasets whose construction is the same as in [13, 10].
Each dataset contained noisy separable matrices A = WH +N ∈ R

30×200 where the factorization
rank is 10 and the set of basis indices is {1, . . . , 10}. The components W ∈ R

30×10
+ ,H ∈ R

10×200
+

and N ∈ R
30×200 were generated as follows.

• W : Using the following procedures (A) and (B), two types of matrices were generated.

(A) Normal: First, generate W ∈ R
30×10 whose elements are drawn from a uniform distri-

bution on the interval [0, 1]. Then, normalize the columns to have unit L1 norm.

(B) Ill-conditioned: First, generate W ∈ R
30×10 as in the first step of procedure above.

Second, compute the reduced SVD W = FΣG⊤ where Σ is a diagonal matrix of size
10, F ∈ R

30×10, and G ∈ R
10×10. Third, choose a positive integer c and replace W

by FSG⊤ using a diagonal matrix S of size 10 whose ith diagonal element is α(i−1)

for α ∈ R satisfying α9 = 10−c. Finally, replace all negative elements by 0 and then
normalize the columns to have unit L1 norm.

• H: It is formed asH = [I, H̄ ] where the submatrix composed of 10 columns from the first one
is an identity matrix of size 10, and the columns of the remaining submatrix of size 10× 190
are from a Dirichlet distribution whose 10 parameters are uniformly from the interval [0, 1].

21



Table 3: Average values of κ, ω, σmax/σmin and β over 50 matrices W and H in datasets 1-4.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Type of W Normal Ill-conditioned Ill-conditioned Ill-conditioned
with c = 3 with c = 4 with c = 5

κ 3.27× 10−1 3.67 × 10−2 1.16 × 10−2 3.43× 10−3

ω 4.70× 10−1 1.47 × 10−1 8.62 × 10−2 5.15× 10−2

σmax/σmin 1.09 × 101 3.07 × 102 3.38 × 103 5.36 × 104

β 8.03× 10−1 8.03 × 10−1 8.03 × 10−1 8.03× 10−1

Hence, H is nonnegative and every column has unit L1 norm. Moreover, if one constructs
V = WH, our parameter choice of a Dirichlet distribution encourages the columns of V to
lie around the boundary of the convex hull of the columns of W .

• N : First, choose a positive real number δ serving as a noise intensity, and generate N ∈
R
30×200 whose elements are from a standard normal distribution. Then, normalize it such

that the L1 norm is equal to δ. Hence, the resulting matrix N satisfies ‖N‖1 = δ.

To generate noisy separable matrices in dataset 1, we chose 20 equally spaced points δ in log space
between 10−2 and 1, and then constructed N satisfying ‖N‖1 = δ for each δ. We used the matrices
W generated by procedure (A). For those in datasets 2-4, we chose 20 equally spaced points δ in log
space between 10−2 and 0.5, and then constructed N satisfying ‖N‖1 = δ. We used ill-conditioned
matrices W generated by procedure (B) with the choice of c as follows: c = 3 for dataset 2, c = 4
for dataset 3, and c = 5 for dataset 4. In the construction of datasets 1-4, we generated 50 separable
matrices V = WH, and then formed noisy separable matrices A = V +N by adding 20 matrices
N to each V ; hence, each dataset contained 1,000 matrices in total. Table 3 displays the average
values of κ, ω, σmax/σmin and β over 50 matrices W and H in datasets 1-4. Here, σmax/σmin is
the ratio of the largest singular value of W divided by the smallest one. Recall that κ and ω are
defined in terms of W and β in terms of the submatrix H̄ of H.

The performance of the algorithm was evaluated by using the index recovery rate, defined by
|J∪{1, . . . , 10}|/10 for an index set J output by it. LP-rho1 and Hottopixx required us to designate
a noise level ǫ as input. For a matrix A = WH + N in the datasets, we set ǫ = ‖N‖1, which
is equal to δ, and then ran the algorithms. The experiments were conducted on Intel Xeon CPU
E5-1620 with 64 GB memory running MATLAB.

Figure 2 and Table 4 summarize the experimental results: the figure displays the average of
index recovery rates determined by the four algorithms; and the table lists the maximum values of
δ for 100% and 80% recovery of basis indices by them. Regarding the index recovery rates of the
algorithms, we can see the following:

• RHHP, LP-rho1, and SPA are better than Hottopixx for every dataset.

• For dataset 1, SPA is slightly better than RHHP and LP-rho1, since the maximum value of
δ for 80% recovery determined by SPA exceeds those determined by RHHP and LP-rho1.
RHHP is almost the same as LP-rho1.
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Figure 2: Average of index recovery rates by four algorithms for datasets 1-4.

Table 4: Maximum values of δ for 100% and 80% recovery of basis indices. The symbol “-” in 100%
recovery (resp. 80% recovery) means that the average of the index recovery rates at δ = 0.01 is less
than 1 (resp. 0.8). The bold-faced values indicate the maximum value in each column.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

100% 80% 100% 80% 100% 80% 100% 80%

RHHP 0.089 0.298 0.015 0.118 - 0.052 - 0.019

LP-rho1 0.089 0.298 0.010 0.096 - 0.042 - 0.015
Hottopixx - 0.043 - 0.010 - - - -
SPA 0.089 0.379 - 0.052 - 0.015 - -
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• For datasets 2-4, RHHP and LP-rho1 are better than SPA. RHHP is slightly better than
LP-rho1, since the maximum values of δ for 80% recovery determined by RHHP exceed those
determined by LP-rho1.

The experimental results imply that, without taking a noise level as input, RHHP is as robust to
noise as LP-rho1.

7 Concluding Remarks

We refined Hottopixx of Bittorf et al. [5] and the postprocessing of Gillis [9] and showed that our
refinement has almost the same robustness to noise as the original one. To enable Hottopixx to
run without prior knowledge of the noise level, we replaced the problem Q with P. This is a simple
idea, and it is easy to see that Lemma 1 holds. From the lemma, we can immediately see that the
refinement is similar in robustness to Hottopixx. However, it is not obvious how the postprocessing
of Gillis can be refined so that the algorithm runs without prior knowledge of the noise level. We
constructed a collection F of clusters containing anchors T1, . . . , Tr and examined the structure of
F . On the basis of this examination, we developed a refinement of the postprocessing and analyzed
its robustness to noise.

We close this paper with remarks on directions for future research. There is a computational
issue in Algorithms 1 and 2. The bottleneck is in solving problem P. As shown in Section 4.1, this
can be transformed into an equivalent LP problem P′ with O(n2) variables and O(n2) constraints
where n is the number of columns of the input matrix and we assume that it is greater than the
number d of rows. Since the size of P′ grows quadratically with n, solving P′ is computationally
challenging when n is large. We thus need to develop efficient algorithms. Bittorf et al. [5] and
Gillis and Luce [14] used first-order methods and developed algorithms for solving their optimization
models Q and R. The use of first-order methods would be promising for solving P′ efficiently.

Regarding the bounds given in Theorems 1 and 2, it remains to investigate the tightness of
them. Recently, Gillis [11] studied an ideal algorithm for solving separable NMF problems. Since
the computational cost grows exponentially with the problem size, it is not realistic to apply the
algorithm to large problems. They showed that it achieves the best possible bound on the error
relative to the basis. There is a gap between our error bound shown for Algorithm 2 in Theorem
2 and the optimal one. It would be interesting to see whether we can reduce the gap.

Appendix A Proof of Lemma 2

(Proof of Lemma 2). We prove the first inequality. By Lemma 1,

2ǫ ≥ θ = ‖AXopt −A‖1 ≥ ‖AXopt(:, i) − ai‖1
≥ ‖AXopt(:, i)‖1 − ‖ai‖1
≥ ‖V Xopt(:, i) +NXopt(:, i)‖1 − ‖ai‖1
≥ ‖V Xopt(:, i)‖1

︸ ︷︷ ︸

(A)

−‖NXopt(:, i)‖1
︸ ︷︷ ︸

(B)

−‖ai‖1
︸ ︷︷ ︸

(C)

.

The term (A) can be rewritten as

(A) = 1⊤V Xopt(:, i) = 1⊤Xopt(:, i) = ‖Xopt(:, i)‖1
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since 1⊤V = 1 by Assumption 1(a) and V ,Xopt ≥ 0. By using Assumptions 1(a) and 1(b), we
bound the terms (B) and (C) as follows:

(B) ≤ ‖N‖1‖Xopt(:, i)‖1 ≤ ǫ‖Xopt(:, i)‖1,
(C) = ‖vi + ni‖1 ≤ ‖vi‖1 + ‖ni‖1 ≤ 1 + ǫ.

Hence, we obtain 1 + 3ǫ ≥ (1− ǫ)‖Xopt(:, i)‖1, which gives the first inequality of this lemma, since
0 ≤ ǫ < 1 by Assumption 1(b).

Next, we prove the second inequality. By Lemma 1,

2ǫ ≥ θ = ‖A−AXopt‖1 ≥ ‖ai −AXopt(:, i)‖1
= ‖vi + ni − V Xopt(:, i) −NXopt(:, i)‖1
= ‖vi − V Xopt(:, i) + ni −NXopt(:, i)‖1
≥ ‖vi − V Xopt(:, i)‖1 − ‖ni −NXopt(:, i)‖1
≥ ‖vi − V Xopt(:, i)‖1 − (‖ni‖1 + ‖NXopt(:, i)‖1)

︸ ︷︷ ︸

(A)

.

By using Assumption 1(b) and the first inequality of this lemma, we bound the term (A) as follows:

(A) ≤ ‖ni‖1 + ‖N‖1‖Xopt(:, i)‖1 ≤ 2ǫ(1 + ǫ)

1− ǫ
.

We then obtain the second inequality of this lemma.

Appendix B Proof of Lemmas 3 and 4

We use the following lemma to prove Lemmas 3 and 4.

Lemma 11. Let A satisfy Assumption 1. Let φ : R → N be a map such that wj = vφ(j) for each
j ∈ R. Then, for j ∈ R and i = φ(j) ∈ N , we have

‖(1− η + ǫ̃)wj −W (:, R \ {j})z‖1 ≤ 2ǫ̃ and 1− η + ǫ̃ ≥ 0

by letting

η = H(j, :)Xopt(:, i), z = H(R \ {j}, :)Xopt(:, i) and ǫ̃ =
4ǫ

1− ǫ

where Xopt is the optimal solution of problem P(A, r).

Proof. Let j ∈ R and i = φ(j) ∈ N . Lemma 2 tells us that

ǫ̃ ≥ ‖vi − V Xopt(:, i)‖1 = ‖vi −WHXopt(:, i)‖1
= ‖vφ(j) −WHXopt(:, i)‖1
= ‖wj −WHXopt(:, i)

︸ ︷︷ ︸

(A)

‖1.
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Since

WH = w1H(1, :) + · · ·+wrH(r, :) = wjH(j, :) +W (:, R \ {j})H(R \ {j}, :)

the term (A) is rewritten as

(A) = η ·wj +W (:, R \ {j})z.

by letting

η = H(j, :)Xopt(:, i) ∈ R and z = H(R \ {j}, :)Xopt(:, i) ∈ R
r−1.

Accordingly,

ǫ̃ ≥ ‖(1 − η)wj −W (:, R \ {j})z‖1
= ‖(1 − η + ǫ̃)wj −W (:, R \ {j})z − ǫ̃wj‖1
≥ ‖(1 − η + ǫ̃)wj −W (:, R \ {j})z‖1 − ǫ̃‖wj‖1
= ‖(1 − η + ǫ̃)wj −W (:, R \ {j})z‖1 − ǫ̃ (by Assumption 1(a)).

Note that ‖ǫ̃wj‖1 = ǫ̃‖wj‖1 holds since ǫ̃ = 4ǫ
1−ǫ

≥ 0 by Assumption 1(b). We thus obtain
‖(1 − η + ǫ̃)wj −W (:, R \ {j})z‖1 ≤ 2ǫ̃ for η and z defined above. Moreover, considering that all
elements of H are less than or equal to 1 since Assumption 1(a) holds and H ≥ 0, we have

η = H(j, :)Xopt(:, i) ≤ 1⊤Xopt(:, i)

= ‖Xopt(:, i)‖1 (by Xopt ≥ 0)

≤ 1 + ǫ̃ (by Lemma 2).

This gives 1− η + ǫ̃ ≥ 0.

We are now able to prove Lemma 3.

(Proof of Lemma 3). Since we put Assumption 1 on A, it can be written as A = V +N ∈ R
d×n

for V ∈ R
d×n
+ and N ∈ R

d×n. Since V is r-separable of the form V = WH = W [I, H̄ ]Π shown
in (1), there is a map φ : R → N such that wj = vφ(j) for each j ∈ R. Hence, the basis index I of
V is given as I = {φ(1), . . . , φ(j)}. Let i = φ(j) for j ∈ R. Lemma 11 tells us that

‖(1− η + ǫ̃)wj −W (:, R \ {j})z‖1 ≤ 2ǫ̃ and 1− η + ǫ̃ ≥ 0

hold for

η = H(j, :)Xopt(:, i), z = H(R \ {j}, :)Xopt(:, i) and ǫ̃ =
4ǫ

1− ǫ
.

First, consider the case where 1− η + ǫ̃ > 0. We find that

2ǫ̃ ≥ ‖(1− η + ǫ̃)wj −W (:, R \ {j})z‖1
= (1− η + ǫ̃)‖wj −W (:, R \ {j})z′‖1 (by letting z′ = z/(1 − η + ǫ̃))

≥ (1− η + ǫ̃)κ (by the definition of κ).
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Note that z′ ≥ 0 since z = H(R \ {j}, :)Xopt(:, i) ≥ 0 and 1− η + ǫ̃ > 0. Accordingly, we obtain a
lower bound on η,

η ≥ 1 +
(κ− 2)ǫ̃

κ
. (18)

We can upper bound η using p(i). Since wj = vφ(j) and i = φ(j), we have H(:, i) = ej , and thus
H(j, i) = 1. In light of this, we rewrite η as

η = H(j, :)Xopt(:, i) = Xopt(i, i) +H(j,N \ {i})Xopt(N \ {i}, i)
= p(i) +H(j,N \ {i})Xopt(N \ {i}, i)

︸ ︷︷ ︸

(A)

and bound the term (A) as follows:

(A) ≤ β · 1⊤Xopt(N \ {i}, i) (by the definition of β)

= β(‖Xopt(:, i)‖1 −Xopt(i, i)) (by Xopt ≥ 0)

≤ β(1 + ǫ̃− p(i)) (by Lemma 2).

We thus obtain an upper bound on η,

η ≤ (1− β)p(i) + β(1 + ǫ̃). (19)

The bounds (18) and (19) yield

1 +
(κ− 2)ǫ̃

κ
≤ (1− β)p(i) + β(1 + ǫ̃) ⇔ p(i) ≥ 1 + ǫ̃− 2ǫ̃

κ(1 − β)
.

Assumption 1(b) implies ǫ̃ = 4ǫ/(1−ǫ) ≥ 0. Recall that i = φ(j) for j ∈ R and I = {φ(1), . . . , φ(r)}.
Hence, from the inequality above, we obtain p(i) ≥ 1− 8ǫ

κ(1−β)(1−ǫ) for every i ∈ I.

Next, consider the case where 1− η + ǫ̃ = 0. By inequality (19), we have

1 + ǫ̃ = η ≤ (1− β)p(i) + β(1 + ǫ̃),

which gives p(i) ≥ 1 + ǫ̃. Here, ǫ̃ ≥ 0 and 8ǫ
κ(1−β)(1−ǫ) ≥ 0 by Assumption 1(b), κ > 0 and β < 1.

We thus obtain p(i) ≥ 1− 8ǫ
κ(1−β)(1−ǫ) for every i ∈ I.

Remark 2. In the proof above, to find a lower bound on η, we have used the observation that
1− η + ǫ̃ is positive or zero, which is not taken into account in the proof of Lemma 2.2 of [9].

Let us move on to prove Lemma 4. To do so, we prove the following lemma.

Lemma 12. Let A satisfy Assumption 1. Let Tj be an anchor with parameter µ satisfying ǫ ≤ µ.
Then, for j ∈ R, we have

max
u∈T c

j

H(j, u) < 1− µ

2
.
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Proof. For any u ∈ T c
j ,

2µ < ‖wj − au‖1 = ‖wj −WH(:, u) − nu‖1
≤ ‖wj −WH(:, u)‖1 + ‖nu‖1
≤ ‖wj −WH(:, u)‖1 + ǫ

≤ ‖wj −WH(:, u)‖1 + µ.

Hence, ‖wj −WH(:, u)‖1 > µ holds. Furthermore,

µ < ‖wj −WH(:, u)‖1
= ‖wj −wjH(j, u) −W (:, R \ {j})H(R \ {j}, u)‖1
≤ (1−H(j, u))‖wj‖1 + ‖W (:, R \ {j}‖1‖H(R \ {j}, u)‖1
= 1−H(j, u) + ‖H(R \ {j}, u)‖1 (by Assumption 1(a))

= 1− 2H(j, u) + ‖H(:, u)‖1 (by H ≥ 0)

= 2− 2H(j, u) (by Assumption 1(a)).

Note that ‖(1−H(j, u))wj‖1 = (1−H(j, u))‖wj‖1 holds since 1−H(j, u) ≥ 0 by Assumption 1(a)
and H ≥ 0. It follows from the inequality above that maxu∈T c

j
H(j, u) < 1− µ

2 holds.

In light of this, we can prove Lemma 4 in a similar way as Lemma 3. The proof is almost the
same, except the evaluation of the upper bound on η.

(Proof of Lemma 4). We use Lemma 11. Let φ : R → N be a map such that wj = vφ(j) for each
j ∈ R. The lemma tells us that, for j ∈ R and i = φ(j) ∈ N , we have

‖(1− η + ǫ̃)wj −W (:, R \ {j})z‖1 ≤ 2ǫ̃ and 1− η + ǫ̃ ≥ 0

where η, z and ǫ̃ are as shown in the lemma.
First, consider the case where 1 − η + ǫ̃ > 0. As in the proof of Lemma 3, we have 2ǫ̃ ≥

‖(1− η+ ǫ̃)wj −W (:, R \{j})z‖1 ≥ (1− η+ ǫ̃)κ, which gives a lower bound on η, as shown in (18).
We can upper bound η using score(Tj ,p). Write η as

η = H(j, :)Xopt(:, i) = H(j, Tj)Xopt(Tj , i)
︸ ︷︷ ︸

(A)

+H(j, T c
j )Xopt(T

c
j , i)

︸ ︷︷ ︸

(B)

.

The term (A) is bounded as follows:

(A) ≤ 1⊤Xopt(Tj , i) (by Assumption 1(a) and H ≥ 0)

= ‖Xopt(Tj , i)‖1 (by Xopt ≥ 0).

The term (B) is bounded as follows:

(B) <
(

1− µ

2

)

1⊤Xopt(T
c
j , i) (by Lemma 12)

=
(

1− µ

2

)

‖Xopt(T
c
j , i)‖1 (by Xopt ≥ 0)

=
(

1− µ

2

)

(‖Xopt(:, i)‖1 − ‖Xopt(Tj , i)‖1)

≤
(

1− µ

2

)

(1 + ǫ̃− ‖Xopt(Tj , i)‖1) (by Lemma 2).
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We then find that

η < ‖Xopt(Tj , i)‖1 +
(

1− µ

2

)

(1 + ǫ̃− ‖Xopt(Tj , i)‖1) =
µ

2
‖Xopt(Tj , i)‖1 +

(

1− µ

2

)

(1 + ǫ̃).

Here,

‖Xopt(Tj , i)‖1 =
∑

u∈Tj

Xopt(u, i) ≤
∑

u∈Tj

Xopt(u, u) = score(Tj ,p).

since Xopt(u, i) ≤ Xopt(u, u) and Xopt ≥ 0 by the third and fourth constraints of problem P.
Accordingly, we obtain

η <
µ

2
score(Tj ,p) +

(

1− µ

2

)

(1 + ǫ̃). (20)

The bounds (18) and (20) yield

1 +
(κ− 2)ǫ̃

κ
≤ µ

2
score(Tj ,p) +

(

1− µ

2

)

(1 + ǫ̃) ⇔ score(Tj ,p) ≥ 1 + ǫ̃− 4ǫ̃

κµ
.

Here, ǫ̃ ≥ 0. We thus obtain score(Tj ,p) ≥ 1− 16ǫ
κµ(1−ǫ) for every j ∈ R.

Next, consider the case where 1− η + ǫ̃ = 0. By inequality (20), we have

1 + ǫ̃ = η <
µ

2
score(Tj ,p) +

(

1− µ

2

)

(1 + ǫ̃),

which gives score(Tj ,p) > 1 + ǫ̃. Here, ǫ̃ ≥ 0 and 16ǫ
κµ(1−ǫ) ≥ 0. We thus obtain score(Tj ,p) ≥

1− 16ǫ
κµ(1−ǫ) for every j ∈ R.

Appendix C Proof of Corollary 1

(Proof of Corollary 1). Since Assumption 1(a) holds, we have the bounds 0 ≤ κ ≤ 1 and 0 ≤ ω ≤ 2
shown in (3) and (4). Also, since Assumption 1(b) holds, we have ǫ ≥ 0. Hence, the bounds
imposed on ǫ in the two cases imply κ > 0. Accordingly, κ and ω satisfy 0 < κ ≤ 1 and 0 ≤ ω ≤ 2.
In addition, they satisfy the relation κ ≤ ω shown in (2).

Former case (a) We only have to prove ǫ < 1 since ǫ ≥ 0 by Assumption 1(b). The bounds
κ ≤ 1 and ω ≤ 2 imply

ǫ <
ωκ

578(r + 1)
≤ 1

578
. (21)

Hence, ǫ satisfies ǫ < 1. (b) Since r, κ, ξ > 0 and ǫ ≥ 0, we have

µ =
17(r + 1)ǫ

κ
+ ξ > 0.

By using the bound on ǫ, we can put a bound on µ:

µ =
17(r + 1)ǫ

κ
+ ξ <

ω

34
+ ξ.
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Since ξ < κ/35 and κ ≤ ω, we have

µ <
ω

34
+

κ

35
≤ ω

17
.

Hence, 0 < µ < ω/17 holds. (c) Since ξ > 0 and κ ≤ 1, we have

µ =
17(r + 1)ǫ

κ
+ ξ >

17(r + 1)ǫ

κ
≥ 34ǫ.

Thus, ǫ ≤ µ holds. (d) The corollary satisfies the hypotheses of Lemma 4. This is because
Assumption 1(b) is not violated by the bound on ǫ that we put in part (a); κ > 0 holds, as
explained at the beginning of the proof; and µ 6= 0 and ǫ ≤ µ hold, as shown in parts (b) and (c).
Accordingly,

score(Tj ,p) ≥ 1− 16ǫ

κµ(1− ǫ)

holds for every j ∈ R. If ǫ = 0, then, score(Tj ,p) ≥ 1 > r/(r + 1). We thus assume ǫ > 0. The
bound on ǫ in (21) implies ǫ < 1/17 and we have

ǫ <
1

17
⇔ 16

1− ǫ
< 17.

Write the value of µ as µ = λ+ ξ by letting λ = 17(r + 1)ǫ/κ. We find that

score(Tj ,p) ≥ 1− 16ǫ

κµ(1− ǫ)
> 1− 17ǫ

κµ
> 1− 17ǫ

κλ
=

r

r + 1

where the third inequality uses µ = λ+ ξ and λ, ξ > 0, and the equality uses λ = 17(r + 1)ǫ/κ.

Latter case (a) As mentioned in the former case, we only have to prove ǫ < 1. From the
bound κ ≤ 1 and 289 = 172, we obtain a bound on ǫ,

ǫ <
κ2

172(r + 1)2
≤

(
1

34

)2

. (22)

Hence, ǫ satisfies ǫ < 1. (b) Since ξ > 0 and ǫ ≥ 0, we have µ =
√
ǫ + ξ > 0. Here, ξ satisfies

ξ < κ/35 < κ/34, and we have κ ≤ ω. Hence, using the bound on ǫ, we obtain a bound on µ,

µ =
√
ǫ+ ξ <

κ

17(r + 1)
+ ξ <

κ

17
≤ ω

17
.

Hence, 0 < µ < ω/17 holds. (c) Two functions f1(x) = x and f2(x) =
√
x satisfy f1(x) ≤ f2(x)

for 0 ≤ x ≤ 1. Since ξ satisfies ξ > 0 and ǫ satisfies 0 ≤ ǫ < 1 as shown in part (a), we have
ǫ ≤ µ =

√
ǫ+ ξ. (d) The bound on ǫ in (22) implies ǫ < 1/17. We can thus prove this part in the

same way as part (d) of the former case.
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