
FedZKT: Zero-Shot Knowledge Transfer towards
Resource-Constrained Federated Learning with

Heterogeneous On-Device Models
Lan Zhang

Department of Electrical and Computer
Engineering, Michigan Technological University

Houghton, MI USA
lanzhang@mtu.edu

Dapeng Wu
Department of Electrical and Computer

Engineering, University of Florida
Gainesville, FL USA

dpwu@ufl.edu

Xiaoyong Yuan
College of Computing

Michigan Technological University
Houghton, MI USA

xyyuan@mtu.edu

Abstract—Federated learning enables multiple distributed de-
vices to collaboratively learn a shared prediction model without
centralizing their on-device data. Most of the current algorithms
require comparable individual efforts for local training with the
same structure and size of on-device models, which, however,
impedes participation from resource-constrained devices. Given
the widespread yet heterogeneous devices nowadays, in this paper,
we propose an innovative federated learning framework with
heterogeneous on-device models through Zero-shot Knowledge
Transfer, named by FedZKT. Specifically, FedZKT allows devices
to independently determine the on-device models upon their
local resources. To achieve knowledge transfer across these
heterogeneous on-device models, a zero-shot distillation approach
is designed without any prerequisites for private on-device data,
which is contrary to certain prior research based on a public
dataset or a pre-trained data generator. Moreover, this compute-
intensive distillation task is assigned to the server to allow the
participation of resource-constrained devices, where a generator
is adversarially learned with the ensemble of collected on-device
models. The distilled central knowledge is then sent back in the
form of the corresponding on-device model parameters, which
can be easily absorbed on the device side. Extensive experimental
studies demonstrate the effectiveness and robustness of FedZKT
towards on-device knowledge agnostic, on-device model hetero-
geneity, and other challenging federated learning scenarios, such
as heterogeneous on-device data and straggler effects.

Index Terms—Federated Learning, Model Heterogeneity, Re-
source Constraint, Data-Free, Knowledge Transfer

I. INTRODUCTION

The demand for on-device training is recently increasing,
as evinced by the surge of interest in federated learning [1].
Federated learning leverages on-device training at multiple
distributed devices to obtain a knowledge-abundant global
model without centralizing private on-device data [1], [2].
Classical federated learning algorithms, represented by Fe-
dAvg [2], require on-device training with the same model
structure and size to perform the element-wise central average,
which, however, impedes collaboration across heterogeneous
hardware platforms. For instance, both wearable devices and
smartphones are popular eHealth devices to monitor infec-
tious diseases [3]. However, a typical wearable device is

usually equipped with microcontroller units (MCU), whose
on-chip memory is three orders of magnitude smaller than a
smartphone due to the limited resource budget, especially the
memory (SRAM) and storage (Flash) [4]. Hence, a wearable
device can hardly run the same on-device model designed for
a smartphone [5], resulting in the ineffectiveness of imple-
menting classical federated learning. Given the widespread yet
heterogeneous devices nowadays, it is vital to enable extensive
participation in federated learning, especially with resource-
constrained devices.

One promising solution is to allow federated learning with
heterogeneous on-device models, which recently has attracted
great attention. Diao et al. proposed HeteroFL to adaptively
allocate a subset of global model parameters to an on-device
model [6]. Inherently, HeteroFL assumes the architecture of
a small model can be a subnetwork of a large one, which,
however, is not always practical. For example, it is hard to
find the architecture of MobileNet [7], i.e., a popular on-device
model, as a subnetwork of other models, such as ShuffleNet [8]
and ResNet [9]. Instead, some recent research enabled devices
to design their on-device models independently based on fed-
erated distillation techniques [10]–[13]. Specifically, the logit
information of on-device models is shared in FedMD [10],
Cronus [11], and FedH2L [12] to achieve federated learning
for personalization, security, and decentralization, respectively,
and on-device model parameters are shared in FedDF [13] for
robust model fusion. Although successful, all above algorithms
rely on certain prerequisites of on-device knowledge, which
leverage either a public dataset or a pre-trained data generator
to extract and transfer knowledge. Consequently, the construc-
tion of such data-dependency requires careful deliberation and
even prior knowledge of the private on-device data, making
it infeasible in many applications in practice. Moreover, the
impact of the quality of such prerequisites remains unclear on
federated learning performance.

To tackle the above limitations of existing research, in this
paper, we propose a Zero-shot Knowledge Transfer framework
named by FedZKT for resource-constrained federated learning
with heterogeneous on-device models in a data-free manner.

ar
X

iv
:2

10
9.

03
77

5v
2

 [
cs

.L
G

]
 5

 A
pr

 2
02

2

Specifically, in FedZKT, devices can design on-device models
based on their heterogeneous local resources independently.
To enable knowledge transfer across these on-device models,
a zero-shot federated distillation approach is proposed without
any prerequisite for private on-device data, which is contrary
to the aforementioned prior research. This compute-intensive
distillation task is assigned to the server to reduce the workload
at devices, where the server constructs a generator to be adver-
sarially trained with the ensemble of the collected on-device
models. The distilled central knowledge is then sent back in
the form of the corresponding on-device model parameters,
which can be easily absorbed on the device side. In other
words, FedZKT enables extensive participation, especially
from the ubiquitous resource-constrained devices, who can
easily contribute to federated learning by following the classi-
cal federated learning procedures with locally designed com-
pact models. Overall, FedZKT consolidates several advantages
into a single framework: independent on-device model de-
sign, extensive participation from resource-constrained and/or
heterogeneous devices, and data-free knowledge transfer. Our
main contributions are as follows:
• This paper introduces an innovative framework, FedZKT,

for resource-constrained federated learning in a data-
free manner, which performs zero-shot knowledge trans-
fer across heterogeneous on-device models. Several key
modules are designed to implement the lightweight and
compute-intensive learning tasks on the device and server
sides, respectively, which perfectly fits the unbalanced
resources on both sides.

• Contrary to certain prior research based on either a public
dataset or a pre-trained data generator, FedZKT pro-
vides an on-device knowledge agnostic approach without
data-dependency concerns, where the server adversarially
learns a generative model with the global model based on
the ensemble of collected on-device models. A new loss
function, softmax l1 (SL) loss, is proposed to facilitate
the zero-shot federated knowledge distillation.

• Extensive experimental results demonstrate the effective-
ness of FedZKT on four popular datasets, with higher
accuracy and better generalization performance compared
to the state-of-the-art. FedZKT also performs robustness
to challenging federated learning scenarios, such as non-
iid data distribution and straggler effects.

II. RELATED WORK

A. Heterogeneous Federated Learning.

Classical federated learning algorithms, represented by Fe-
dAvg [2], average the collected on-device model parameters
to obtain a global model. Since the training mainly happens
on the device side, the overall learning performance largely
depends on participating devices. It has been shown that the
statistical heterogeneity across devices, i.e., non-iid on-device
data, can lead to slow and unstable convergence [14], [15].
Such performance degradation has also been found when
on-device resources, such as the local computing power or

network connectivity, are heterogeneous [16]. Recent research
has developed solutions to either address the “straggler effect”
introduced by some poorly performed devices [2], [16]–[18] or
reduce the local model size at all devices [19], [20]. However,
most of these designs are still under the learning paradigm of
FedAvg with homogeneous on-device models, i.e., all devices
need to run on-device models with the same structure and size.
B. Federated Distillation.

To allow federated learning with heterogeneous on-device
models, federated distillation has attracted significant attention
recently. Enlighten by the well-known knowledge distillation
idea that transfers knowledge from a single or multiple teacher
models to an empty student model [21]–[24], federated dis-
tillation learns a global model based on the collected on-
device models. Since the data is stored locally and cannot
be shared in federated settings, most federated distillation
design is data-dependent. Specifically, by leveraging a pre-
known public or surrogate dataset, federated distillation has
been studied to handle heterogeneous on-device models for
personalization [10], security [11], decentralization [12], and
robustness [13], respectively. In addition, federated distillation
has been used to improve federated learning performance,
such as communication efficiency [25]–[29] and on-device
privacy [11], [30], or address the aforementioned data het-
erogeneity challenges [31], [32]. However, the prerequisite
of the data-dependency is not always available for federated
distillation due to the unknown or confidential data distribution
of on-device models. Moreover, the absence of a qualified
public or surrogate dataset can return a poor approximation of
teacher models in knowledge distillation [33], whose impact
on federated learning still remains unclear. In this paper, we
target a data-free federated distillation design without the data-
dependency prerequisite for the resource-constrained federated
learning with heterogeneous on-device models.

C. Data-Free Knowledge Distillation.
Recent efforts have been made on data-free knowledge dis-

tillation via zero-shot learning techniques [33]–[36]. Typically,
a generative model is learned to synthesize the queries that the
student makes to the teacher. Although this idea has been well
studied in classical knowledge distillation, such as for model
compression [34], little attention has been paid to distillation
in federated settings. To the best of our knowledge, the data-
free distillation design in FeDGen [37] is the closest setting to
this work. Specifically, FeDGen targets the slow convergence
issue due to data heterogeneity in federated learning, while this
paper aims to enable resource-constrained federated learning
with heterogeneous on-device models. In FeDGen, a generator
is used on the device side to augment local knowledge for
data-free distillation. Instead of distributing the generator to
devices, this paper learns and keeps the generator at the server.
Only the updated on-device model parameters will be sent
back to devices, which can be easily absorbed locally. In this
way, the compute-intensive data-free distillation task is as-
signed to the powerful server to enable extensive participation
especially from resource-constrained devices.

Fig. 1: Overview of FedZKT: zero-shot knowledge transfer
for federated learning with heterogeneous on-device mod-
els. Most compute-intensive workloads of FedZKT are done
at the server. Participating devices only need to update the
on-device models based on their local data.

III. FEDZKT: FEDERATED LEARNING VIA ZERO-SHOT
KNOWLEDGE TRANSFER

This section presents the proposed FedZKT. We first de-
scribe the problem statement, followed by FedZKT design.
Several key modules of FedZKT are detailed at both the server
and device sides.

A. Problem Statement

As shown in Figure 1, we consider a federated learning task,
e.g., a supervised classification task, across K heterogeneous
devices in set K. Each device k ∈ K can independently
design its on-device model fk parameterized by wk to “best”
fit its own resources in computation, communication, storage,
and power. In this case, the on-device models {fk}k∈K may
have distinct model architectures. In addition, we assume
each device owns a confidential dataset Dk that cannot be
shared, and the server has no prior knowledge about the data
at the device side, such as the data distribution. The server
is assumed to be powerful, who coordinates all participating
devices and aggregates their on-device knowledge. Hence, the
main goal of the server is to extract distributed on-device
knowledge from heterogeneous on-device models {fk}k∈K to
obtain a knowledge-abundant global model F . Meanwhile,
the well-trained on-device models {fk}k∈K will eventually
contain the distilled knowledge from all peer devices.

B. FedZKT Design

To meet the unbalanced computing capabilities between the
server and participating devices, the compute-intensive knowl-
edge distillation task is assigned to the server. The procedures
of the overall FedZKT are introduced in Algorithm 1. In the

Algorithm 1 FedZKT
INPUT: global model parameters w, on-device model param-
eters {wk}k∈K, generative model parameters θ, total commu-
nication rounds T , local training epochs Tl, distillation epochs
nD.

1: Initialize all models with random weights1.
2: for each communication round t = 1, 2, · · · , T do
3: Kt ← server selects a random subset devices from K

as active devices

4: // On-Device Update
5: for each device k ∈ Kt in parallel do
6: ŵk ← DeviceUpdate(wk, Dk, Tl, nD)
7: Upload ŵk to the server.
8: end for

9: // Server Update
10: {wk}k∈K, w, θ ← ServerUpdate({ŵk}k∈K, w, θ).
11: for each device k ∈ K in parallel do
12: Transfer wk to Device k.
13: end for
14: end for
RETURN: w, {wk}k∈K

Algorithm 2 FedZKT: DeviceUpdate
INPUT: on-device model fk’s parameters wk, local dataset
Dk, local epochs Tl

1: for t ∈ {1, 2, ..., Tl} do
2: Lk ←

∑
{x,y}∈Dk

LCE(fk(x;wk), y)
3: wk ← wk − η ∂Lk

∂wk

4: end for
RETURN: wk

following, we will elaborate design principles of several key
modules of FedZKT.

1) Zero-Shot Knowledge Distillation: As aforementioned,
the goal of knowledge distillation at the server is to obtain the
global model F(·;w) parameterized by ω, which is expected
to match the ensemble of on-device models {fk}k∈K that are
trained respectively on distributed local knowledge domains
{Dk}k∈K. Since {Dk}k∈K are private and cannot be shared in
federated settings, one intuitive idea is to leverage a synthetic
dataset DS to mimic the local knowledge in order to minimize
the loss of disagreement between the teacher and the students.
Thus, based on ensemble learning, we have

min
w
Ex∼DS [L(F(x;w), fens(x))], (1)

where fens denotes the ensemble of on-device models, i.e.,
fens(x) =

1
|K|

∑
k fk(x;wk), and L denotes the loss function

to measure the disagreement between the global model F
and fens. More discussions about L will be given in the next
module.

1This work uses Glorot initialization [38]. The same initialization is not
required for on-device models.

Algorithm 3 FedZKT: ServerUpdate
INPUT: global model F’s parameters w, on-device model fk’s
parameters {wk}k∈K, generator G’s parameters θ, distillation
epochs nD.

1: // Transfer knowledge from on-device to the global model
2: for n ∈ {1, 2, ..., nD} do
3: // Generator Update
4: z ∼ N (0, I)
5: x← G(z; θ)
6: LG ← −L(F(x;w), 1

|K|
∑
k∈K fk(x;wk))

7: θ ← θ − ηG ∂LG

∂θ

8: // Global Model Update
9: z ∼ N (0, I)

10: x← G(z; θ)
11: LS ← L(F(x;w), 1

|K|
∑
k∈K fk(x;wk))

12: w ← w − ηS ∂LS

∂w
13: end for

14: // Transfer knowledge from global to on-device models
15: for n ∈ {1, 2, ..., nD} do
16: z ∼ N (0, I)
17: x← G(z; θ)
18: for each device k ∈ K do
19: Lk ← L(F(x;w), fk(x;wk))
20: wk ← wk − ηS ∂Lk

∂ŵk

21: end for
22: end for
RETURN: {wk}k∈K, w, θ

Since DS is expected to synthesize the private local knowl-
edge in a data-free manner, instead of assuming a pre-known
DS , we introduce a generative model G to distill local knowl-
edge in a zero-shot manner. Enlighten by the well-known
idea of Generative Adversarial Networks (GAN) [33], G is
responsible to provide difficult inputs for the training of F ,
which maximizes the disagreement between the current global
and on-device models. Meanwhile the generated inputs also
need to perform well in (1) to enable knowledge matching
between the global and on-device models. Hence, the goals
of G and F are to maximize and minimize the disagreement
between F and {fk}k∈K, respectively, where the adversarial
game can be given by

min
F

max
G

Ez∼N (0,1)[L(F(G(z)), fens(G(z)))], (2)

where z is the noise following Gaussian distribution N (0, 1).
Therefore, the server will alternatively train the generative
model G and global model F in (2). It should be mentioned
that most prior knowledge distillation approaches perform well
when extracting a small student model from a large teacher
model, while some recent research [33], [35] has shown that
high distillation accuracy can be achieved even when the
teacher model has a smaller and different architecture than
the student’s. Along this line, this work is further motivated

to transfer knowledge between the powerful global model and
the heterogeneous and potentially compact on-device models.

2) Loss Function Design: This module discusses the loss
function L in (2) that measures the disagreement between the
global model F and the on-device model ensemble fens, which
is used to train F and the generative model G simultaneously.
The loss function design is key to the distillation performance
since the gradients computed through F and fens can easily
impede the convergence of the optimizer, such as leading to
gradient vanishing [34] when the wrong loss function is used.

Most prior research of knowledge distillation measures the
model disagreement between the teacher and the student by
Kullback–Leibler (KL) divergence [23], [24]. Hence, the KL
divergence between the outputs of the global model F and the
ensemble of on-device models fens after the softmax function
becomes a candidate for the loss function, where the KL-
divergence loss function can be given by

LKL(x) =
∑
F(x) log F(x)

fens(x)
. (3)

However, the KL-divergence loss tends to suffer from gradient
vanishing [34] with respect to input data x when the student
model F converges to the teacher model fens. The problem
becomes even more serious in zero-shot distillation settings,
since the gradient vanishing will further affect the training of
the generative model G.

In view of this, recent zero-shot distillation research [33],
[34] introduces `1 norm loss, which compares the logit outputs
(model outputs before the softmax layer) between the teacher
and student models:

L`1(x) = ||u(x)−
1

|K|
∑
k

vk(x)||1, (4)

where u and vk denote the logit outputs of the global model
(student) and the kth on-device model (teacher), respectively.
However, given the diverse on-device model parameters in our
heterogeneous federated learning, the `1 norm loss may lead
to the unstable training due to the large gradients. Specifically,
federated learning requires aggregating distributed knowledge
from participating devices. However, averaging the logit values
over on-device models increases the gradients, making the
whole learning process unstable.

To address the above challenges for zero-shot distillation in
federated learning, we propose a new loss function named by
Softmax `1 (SL) loss, which applies the softmax output to the
`1 norm loss:

LSL(x) = ||F(x)− fens(x)||1. (5)

The SL loss is designed to overcome the drawbacks of using
KL-divergence loss and `1 norm loss. Two hypotheses for this
design are provided below. Specifically, Hypothesis 1 suggests
that the SL loss can reduce the gradient vanishing effect
than the KL-divergence loss for better convergence in zero-
shot distillation; Hypothesis 2 suggests that the SL loss can
make the training more stable compared to the `1 norm loss.
Details are given in the Appendix for justification. In addition,

0 10 20 30 40 50
Communication Rounds

10−3

10−2
N

or
m

of
G

ra
di

en
ts

s`1 loss
KL-Divergence loss
`1 norm loss

Fig. 2: Norm of gradients w.r.t input data (MNIST, IID).
The gradients for the KL-divergence loss tend to vanish, while
the gradients for the `1 norm loss are much larger and unstable
during the learning process. The proposed SL loss overcomes
both problems in the federated learning.

Figure 2 shows the norm of gradients for KL-divergence, `1
norm, and the proposed SL norm losses, respectively, where
the gradients for the KL-divergence loss tend to vanish, while
the gradients for the `1 norm loss are much larger and unstable
during the learning process. More empirical evaluation results
are given in Section IV-C1.

Hypothesis 1. When the global model F converges to the
ensemble of on-device models fens, the gradients of KL
divergence loss with respect to the input data x are smaller
than those of the SL loss:

||∇xLKL(x)|| ≤
F→fens

||∇xLSL(x)||. (6)

Hypothesis 2. When the global model F converges to the
ensemble of on-device models fens, the gradients of the `1
norm loss with respect to the input data x are greater than
those of the SL loss:

||∇xL`1(x)|| ≥
F→fens

||∇xLSL(x)||. (7)

3) Bidirectional Knowledge Transfer: The above two mod-
ules enable the knowledge transfer from devices to the server.
After that, the aggregated central knowledge needs to transfer
back for the next learning iteration. One intuitive approach is
to broadcast the updated global model F , based on which,
device k can use its data Dk to distill an updated on-
device model, minwk

Ex∼Dk
[L(F(x), fk(x;wk))], similar to

our discussion in the above module based on (1). However,
since our design aims to enable resource-constrained federated
learning, to utmostly reduce the workload at devices, we run
the compute-intensive distillation task to transfer knowledge
from the global model to on-device models at the server. Since
the above module learns the generator G to produce difficult
data that maximizes the disagreement between global and on-
device models, we will reuse this well-learned generator G
to provide input data to distill the updated on-device model
{f ′k}k∈K. Hence, the objective function for knowledge transfer

from the global model F to the on-device model f ′k, k ∈ K
can be given by

min
f ′
k

Ez∼N (0,1)[L(F(G(z)), f ′k(G(z)))]. (8)

Different from the distillation of module III-B1 designed for
a zero-shot setting, we adopt the KL-divergence loss LKL

here for distillation with a pre-trained data generator G. The
updated on-device model f ′k will be sent back to device k,
which obtains the central knowledge learned by global model
F . This completes the one-round bidirectional knowledge
transfer. Since the computation of (2) and (8) is performed at
the server, FedZKT follows the same on-device learning mode
as classical federated learning [2], while allowing participation
with independently designed compact on-device models.

4) `2 Regularization for Non-IID Data Distribution: In
addition to tackling the model architecture heterogeneity,
FedZKT is expected to handle data heterogeneity in federated
learning. To do so, we limit the update of on-device models
when training on their local datasets in Algorithm 2. Specifi-
cally, the `2 regularization is added to the loss function of the
on-device update, which is given by

min
wt

k

∑
{x,y}∈Dk

LCE(fk(x;wtk), y) + ||wtk − wt−1k ||22, (9)

where LCE is the cross-entropy loss for classification tasks,
and wt−1k is the parameter set transferred from the server in
the last iteration t− 1. The `2 regularization has been used to
tackle the non-iid data distribution with homogeneous model
architectures in FedProx [39]. Compared with FedProx, due to
model heterogeneity, FedZKT uses the received local model
parameter set wt−1k rather than the global model parameter set
wt−1. Empirical evaluation in Section IV-C4 further demon-
strates the improvement of adding `2 regularization for non-iid
data distributions.

IV. EXPERIMENTAL VALIDATION

This section conducts extensive experiments to evaluate the
proposed FedZKT. We first introduce the experimental setup,
followed by the experimental results and ablation studies.

A. Experimental Setup

1) Dataset: The experiments are conducted on four widely
used image datasets: MNIST [40], KMNIST [41], FASHION-
MNIST [42] (FASHION in short in this paper), and CIFAR-
10 [43].

2) On-Device Model Heterogeneity: Five different neural
network architectures are considered for each dataset. For
small datasets, i.e., MNIST, KMNIST, and FASHION, we
deploy a CNN model, a Fully-Connected Model, and three
LeNet-like models with different channel sizes and numbers
of layers. For CIFAR-10 dataset, we deploy two ShuffleNetV2
models [8], two MobileNetV2 models [7], and a LeNet-like
model. Specifically, to support resource-constrained federated
learning, ShuffleNetV2 and MobileNetV2 are adopted, which

are popular neural architectures designed towards low-end de-
vices. LeNet is a simple neural network architecture consisting
of two convolutional layers and three fully connected layers.
We use different channel sizes for each ShuffleNetV2 and
MobileNetV2 model, so as to increase the heterogeneity of
on-device models in the evaluation.

3) Federated Learning Settings: The experiments are con-
ducted with multiple devices K ∈ {5, 10, 15, 20} (by default
k=10). For the small datasets, i.e., MNIST, KMNIST, FASH-
ION, we conduct 50 communication rounds (T = 50); in each
round, each device trains the on-device models for 5 epochs.
For the CIFAR-10 dataset, we conduct 100 communication
rounds (T = 100); in each round, each device trains the on-
device model for 10 epochs. We use the stochastic gradient
descent (SGD) for both the on-device and global training,
where the learning rate is set to be 0.01. Besides, we train
the server model and the generator for 200 iterations for the
small datasets (nG = ns = 200) and 500 iterations for the
CIFAR-10 dataset (nG = ns = 500). The generator is trained
using Adam optimizer with a batch size of 256 and a learning
rate of 0.001. The learning rates for both the server model and
the generator are reduced by 0.3 at the half and 3/4 of the total
iterations. The batch size for all model training is 256.

4) Data Heterogeneity: The experiments will be conducted
on both iid and non-iid on-device data distributions. In the iid
setting, on-device data is randomly drawn from the dataset.
In the non-iid setting, two scenarios of label distribution skew
are adopted based on the common experimental settings in
recent federated learning research [44], [45]: 1) quantity-
based label imbalance, where each device owns data consisting
of a specific number of classes; 2) distribution-based label
imbalance, where each device owns a proportion of the labels
following a Dirichlet distribution. We sample pk = {pkj} from
DirN (β), where pkj denotes the proportion of data in class
k owned by device j, and β is a concentration parameter of
the Dirichlet distribution. A small value of β suggests a more
imbalanced distribution of labels.

5) Baseline Approach: As aforementioned in Section II-B
and II-C, existing federated learning designs to support het-
erogeneous on-device models are data-dependent, i.e., based
on either a public dataset or a pre-trained generator, while the
proposed FedZKT is based on a data-free manner. Hence, the
baseline approach for FedZKT adopts the most representative
data-dependent algorithm, FedMD [10]. Similar to FedZKT,
FedMD allows devices to independently design their on-device
models, which provides extensive experimental results for on-
device model heterogeneity but requiring a public dataset. To
learn from MNIST, FASHION, and KMNIST, we select public
datasets as FASHION, MNIST, and FASHION, respectively.
To explore the impact of data dependency during knowledge
transfer, we select two different public datasets, i.e., CIFAR-
100 and SVHN, to learn CIFAR-10.

B. Experimental Results

1) IID Data Distribution: We first report the average accu-
racy of the global model eventually learned by the proposed

On-Device Dataset FedMD FedZKT

Public
Dataset

Average
Accuracy

Average
Accuracy

MNIST FASHION 96.69% 97.76%
FASHION MNIST 85.83% 84.42%
KMNIST FASHION 84.02% 86.43%
CIFAR-10 CIFAR-100 67.34% 78.02%
CIFAR-10 SVHN 20.38%

TABLE I: Performance of FedZKT and FedMD under IID
on-device data distribution.

0 20 40 60 80 100
Communication Rounds

10

20

30

40

50

60

70

80

A
ve

ra
ge

A
cc

ur
ac

y
(%

)

FedMD
FedZKT

Fig. 3: Learning curves of FedZKT and FedMD (CIFAR-10,
IID).

FedZKT and the baseline approach FedMD under the iid on-
device data distribution. As illustrated in Table I, FedZKT
achieves higher accuracy than FedMD in most cases, which
indicates the effectiveness of FedZKT. Besides, we observe
that the performance of FedMD depends on the selection of the
public dataset. Specifically, FedMD uses two different public
datasets, CIFAR-100 and SVHN, to train on the CIFAR-10
dataset, respectively. When the public dataset (CIFAR-100)
has similar distribution as the on-device dataset (CIFAR-10),
FedMD achieves a higher accuracy; while when the public
dataset (SVHN) is quite different from the on-device dataset
(CIFAR-10), the performance of FedMD drops significantly.
Thus, it is critical for FedMD to select a proper public dataset
at the server, which unfortunately is extremely challenging in
practice since the server may have no access to the private on-
device dataset. Instead, FedZKT provides a data-free approach
with even higher accuracy performance.

We then evaluate learning curves of FedZKT and FedMD
on CIFAR-10 dataset under the iid on-device data distribution,
where FedMD uses CIFAR-100 dataset as the public dataset.
As shown in Figure 3, FedMD performs better than FedZKT
at the beginning of learning. Since the distribution of the
public dataset (CIFAR-100) is close to that of the on-device
dataset (CIFAR-10), FedMD can quickly absorb knowledge by
using the public dataset at the beginning. However, we observe
that with the increase of learning rounds, FedZKT eventually
outperforms FedMD. This is because FedZKT can iteratively
learn from on-device models to improve the generator and thus
produces more representative samples, while FedMD can only

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of Classes Per Client

20

30

40

50

60

70

80
A

cc
ur

ac
y

(%
)

FedMD
FedZKT

(a) MNIST

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of Classes Per Client

25

30

35

40

45

50

55

60

A
cc

ur
ac

y
(%

)

FedMD
FedZKT

(b) FASHION

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of Classes Per Client

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

FedMD
FedZKT

(c) KMNIST

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of Classes Per Client

20

30

40

50

60

A
cc

ur
ac

y
(%

)

FedMD
FedZKT

(d) CIFAR-10

0 1 2 3 4 5
β

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

FedMD
FedZKT

(e) MNIST

0 1 2 3 4 5
β

45

50

55

60

65

70

75

80

85

A
cc

ur
ac

y
(%

)

FedMD
FedZKT

(f) FASHION

0 1 2 3 4 5
β

40

50

60

70

80

A
cc

ur
ac

y
(%

)

FedMD
FedZKT

(g) KMNIST

0 1 2 3 4 5
β

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

FedMD
FedZKT

(h) CIFAR-10

Fig. 4: Performance of FedZKT and FedMD under non-IID on-device data distribution: Quantity-based label imbalance (a)-(d),
Distribution-based label imbalance (e)-(h).

Non-IID scenario KL-divergence `1 norm SL loss

C = 5 48.23% 14.60% 63.89%
β = 0.5 66.17% 16.34% 69.39%

TABLE II: Effect of loss functions for zero-shot knowledge
distillation in FedZKT (CIFAR-10, Non-IID).

use existing samples from the public dataset that cannot be
improved during learning, which further indicates the benefits
of our data-free design.

2) Non-IID Data Distribution: The accuracy performance
of FedZKT and FedMD is also evaluated under the non-iid on-
device data distribution. As aforementioned in Section IV-A4,
two data skew scenarios are considered for the non-iid setting:
in the quantity-based label imbalance scenario, the values of
the number of classes per device are set to be c ∈ {2, 3, 4, 5};
in the distribution-based label imbalance scenario, four values
of the concentration parameter β ∈ {0.1, 0.5, 1, 5} are con-
sidered. Figure 4 illustrates the accuracy performance under
the above two non-iid data scenarios. We observe that FedZKT
outperforms FedMD in almost all non-iid environments, which
indicates the robustness of FedZKT in handling non-iid on-
device data scenarios.

C. Ablation Studies

This section performs ablation studies to evaluate the impact
of the key modules/considerations for FedZKT under challeng-
ing federated learning environments.

1) Effects of Loss Function Design: We first evaluate the
loss function design for zero-shot federated knowledge distilla-
tion in Section III-B2. We consider the more challenging non-
iid on-device data scenarios: the distribution-based label im-
balance with β = 0.5 and the quantity-based label imbalance

with c = 5. As illustrated in Table II, the proposed SL loss
achieves better accuracy performance than the KL-divergence
loss and the `1 norm loss in the two non-iid scenarios. In
addition, our results show that `1 norm loss is not suitable for
zero-shot federated distillation under non-iid settings due to
the unstable learning performance, although it can avoid the
gradient vanishing in zero-shot distillation.

2) Effects of On-Device Model Architectures: One key
consideration of FedZKT is to enable each devices, especially
the resource-constrained one, to independently design the on-
device model. Hence, Figure 5 evaluates the impact of the on-
device model architecture on the learning curve of each device.
Specifically, we consider ten devices under the same model
architecture configuration as Table III. Detailed model settings
are provided in the Appendix. Since Device 5 and Device
10 use Model E, i.e., a simple LeNet-like neural network,
their on-device learning performance is lower than those using
the ShuffleNetV2 and MobileNetV2 models. In addition, we
present the lower bound and upper bound performance of on-
device training in Table III, where the lower bound considers
the on-device model is trained on its own data only; the
upper bound assumes the on-device model can access others’
local data. By comparing Table III with the eventual accuracy
performance in Figure 5, we observe that the performance
of FedZKT is very close to the upper-bound values, which
indicates the effectiveness of FedZKT in handling federated
learning with heterogeneous on-device models.

3) Effects of Stragglers: Straggler effect has been one major
concern in federated learning, where one or several devices
cannot timely participate in training due to the unstable on-
device conditions, such as the poor networking and the low
battery conditions. Hence, we evaluate the effect of stragglers

0 20 40 60 80 100
Communication Rounds

10

20

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

Device 1
Device 2
Device 3
Device 4
Device 5

Device 6
Device 7
Device 8
Device 9
Device 10

Fig. 5: Effect of on-device model architecture: learning curves
of devices in FedZKT with different models (CIFAR-10, IID).

Model Architecture Upper Bound Lower Bound

Device 1: Model A 84.18% 50.17%
Device 2: Model B 86.98% 54.08%
Device 3: Model C 88.63% 58.56%
Device 4: Model D 87.36% 57.84%
Device 5: Model E 70.77% 58.90%
Device 6: Model A 84.39% 50.13%
Device 7: Model B 85.99% 51.07%
Device 8: Model C 88.34% 62.15%
Device 9: Model D 88.87% 59.88%
Device 10: Model E 70.65% 54.81%

TABLE III: Effect of on-device model architecture: lower and
upper bound of on-device performance (CIFAR-10, IID).

0 10 20 30 40 50
Communication Rounds

65

70

75

80

85

90

95

A
ve

ra
ge

A
cc

ur
ac

y
(%

)

p = 0.2
p = 0.4
p = 0.6
p = 0.8
p = 1.0

(a) MNIST, IID.

0 20 40 60 80 100
Communication Rounds

10

20

30

40

50

60

70

80

A
ve

ra
ge

A
cc

ur
ac

y
(%

)

p = 0.2
p = 0.4
p = 0.6
p = 0.8
p = 1.0

(b) CIFAR-10, IID.

Fig. 6: Effect of stragglers: average accuracy of FedZKT when
p portion of devices are trained in each round.

in FedZKT. Specifically, in each communication round, we
randomly select a portion p of devices as the active ones who
participate in federated learning, p ∈ {0.2, 0.4, 0.6, 0.8, 1.0},
and the rest devices are inactive that cannot contribute to
the learning round. The learning procedures follow the Algo-
rithm 1 but do not update the parameters for inactive devices.
As shown in Figure 6, the performance of FedZKT is stable
during the training in most cases. The unstable training only
occurs when a very small portion of devices, i.e., p = 0.2,
participates, slowing down the process of training. As long
as the majority of devices can participate in the training, the
stragglers do not have a significant impact on FedZKT.

4) Effects of `2 Regularization: Experiments are conducted
to evaluate the performance of the `2 regularization for on-

Non-IID scenario no regularization `2 regularization

C = 5 56.58% 63.89%
β = 0.5 66.17% 69.39%

TABLE IV: Effect of `2 regularization in FedZKT (CIFAR-10,
Non-IID).

0 10 20 30 40 50
Communication Rounds

88

90

92

94

96

98

A
ve

ra
ge

A
cc

ur
ac

y
(%

)

5 Devices
10 Devices
15 Devices
20 Devices

(a) MNIST, IID.

0 20 40 60 80 100
Communication Rounds

10

20

30

40

50

60

70

80

A
ve

ra
ge

A
cc

ur
ac

y
(%

)

5 Devices
10 Devices
15 Devices
20 Devices

(b) CIFAR-10, IID.

Fig. 7: Effects of device number: average accuracy of K on-
devices models participated in FedZKT (K ∈ {5, 10, 15, 20}).

device training against the non-iid data distribution in FedZKT
(Section III-B4). As illustrated in Table IV, the performance
of using `2 regularization is better than that without the
regularization in both quantity-based (C = 5) and distribution-
based (β = 0.5) label imbalance non-iid scenarios, which
demonstrates the effectiveness of the `2 regularization.

5) Effects of Device Number: We finally evaluate the effect
of device number K on FedZKT, where K ∈ {5, 10, 15, 20}.
Figure 7 illustrates the learning curves of FedZKT for MINIST
and CIFAR-10 datasets under iid conditions. We observe that
the number of devices does not affect the overall training too
much. Although a smaller number of devices, e.g., K = 5,
produce higher average accuracy, FedZKT achieves good
performance with more devices as well. As observed from
the experiments, the effect of device numbers on FedZKT is
subtle, i.e., around ±2% in terms of the average accuracy.

V. CONCLUSIONS

This paper proposed an innovative federated learning frame-
work for resource-constrained and heterogeneous devices via
zero-shot knowledge transfer, named by FedZKT. FedZKT
allows devices, especially the resource-constrained ones, to
determine their on-device models independently. Unlike cer-
tain prior research relied on the prerequisite for private on-
device knowledge, FedZKT enables knowledge transfer across
heterogeneous on-device models in a data-free manner, where
a new loss function, SL loss, is proposed to facilitate the
zero-shot federated knowledge distillation. Moreover, to meet
the unbalanced resources between the server and device sides,
FedZKT assigns the compute-intensive distillation task to the
server. The distilled central knowledge is then sent back in
the form of on-device model parameters, which can be easily
absorbed at devices. Extensive experiments demonstrate the
effectiveness and the robustness of FedZKT towards on-device
knowledge agnostic (data-free), on-device model heterogene-

ity, and other challenging federated learning scenarios, such
as heterogeneous on-device data and straggler effects.

ACKNOWLEDGMENT

The authors thank all the anonymous reviewers for their
insightful feedback. This work was supported by the National
Science Foundation under Grant No. 2106754

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[3] X. Chen, G. Zhu, L. Zhang, Y. Fang, L. Guo, and X. Chen, “Age-
stratified covid-19 spread analysis and vaccination: A multitype random
network approach,” IEEE Transactions on Network Science and Engi-
neering, 2021.

[4] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han, “Mcunet: Tiny
deep learning on iot devices,” arXiv preprint arXiv:2007.10319, 2020.

[5] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

[6] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and commu-
nication efficient federated learning for heterogeneous clients,” arXiv
preprint arXiv:2010.01264, 2020.

[7] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[8] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 116–131.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[10] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model
distillation,” arXiv preprint arXiv:1910.03581, 2019.

[11] H. Chang, V. Shejwalkar, R. Shokri, and A. Houmansadr, “Cronus: Ro-
bust and heterogeneous collaborative learning with black-box knowledge
transfer,” arXiv preprint arXiv:1912.11279, 2019.

[12] Y. Li, W. Zhou, H. Wang, H. Mi, and T. M. Hospedales, “Fedh2l:
Federated learning with model and statistical heterogeneity,” arXiv
preprint arXiv:2101.11296, 2021.

[13] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distilla-
tion for robust model fusion in federated learning,” arXiv preprint
arXiv:2006.07242, 2020.

[14] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[15] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[16] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[17] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learn-
ing via momentum gradient descent,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 8, pp. 1754–1766, 2020.

[18] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). IEEE, 2019, pp.
1–7.

[19] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[20] C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer:
Federated learning of large cnns at the edge,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

[21] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006, pp. 535–541.

[22] L. J. Ba and R. Caruana, “Do deep nets really need to be deep?” arXiv
preprint arXiv:1312.6184, 2013.

[23] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[24] J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 4794–4802.

[25] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated dis-
tillation and augmentation under non-iid private data,” arXiv preprint
arXiv:1811.11479, 2018.

[26] N. Guha, A. Talwalkar, and V. Smith, “One-shot federated learning,”
arXiv preprint arXiv:1902.11175, 2019.

[27] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Ya-
mamoto, “Distillation-based semi-supervised federated learning for
communication-efficient collaborative training with non-iid private data,”
arXiv preprint arXiv:2008.06180, 2020.

[28] F. Sattler, A. Marban, R. Rischke, and W. Samek, “Communication-
efficient federated distillation,” arXiv preprint arXiv:2012.00632, 2020.

[29] H. Seo, J. Park, S. Oh, M. Bennis, and S.-L. Kim, “Federated knowledge
distillation,” arXiv preprint arXiv:2011.02367, 2020.

[30] L. Sun and L. Lyu, “Federated model distillation with noise-free
differential privacy,” arXiv preprint arXiv:2009.05537, 2020.

[31] H.-Y. Chen and W.-L. Chao, “Feddistill: Making bayesian model ensem-
ble applicable to federated learning,” arXiv e-prints, pp. arXiv–2009,
2020.

[32] F. Sattler, T. Korjakow, R. Rischke, and W. Samek, “Fedaux: Lever-
aging unlabeled auxiliary data in federated learning,” arXiv preprint
arXiv:2102.02514, 2021.

[33] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, “Data-free model
extraction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 4771–4780.

[34] G. Fang, J. Song, C. Shen, X. Wang, D. Chen, and M. Song, “Data-free
adversarial distillation,” arXiv preprint arXiv:1912.11006, 2019.

[35] P. Micaelli and A. Storkey, “Zero-shot knowledge transfer via adversarial
belief matching,” arXiv preprint arXiv:1905.09768, 2019.

[36] Y. Choi, J. Choi, M. El-Khamy, and J. Lee, “Data-free network quanti-
zation with adversarial knowledge distillation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2020, pp. 710–711.

[37] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for
heterogeneous federated learning,” arXiv preprint arXiv:2105.10056,
2021.

[38] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[39] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” arXiv preprint
arXiv:1812.06127, 2018.

[40] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[41] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto,
and D. Ha, “Deep learning for classical japanese literature,” 2018.

[42] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” 2017.

[43] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[44] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the ob-
jective inconsistency problem in heterogeneous federated optimization,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[45] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data
silos: An experimental study,” arXiv preprint arXiv:2102.02079, 2021.

APPENDIX: LOSS FUNCTION DESIGN

This section justifies the two hypotheses proposed for the
loss function design of zero-shot knowledge distillation in
section III-B2. The goal of this design is to select the loss
function in (2), which measures the disagreement between the
global model F and the ensemble of on-device models fens,
i.e., fens(x) = 1

|K|
∑
k fk(x;wk), in a zero-shot approach.

Given the input data x, we define the outputs of F after
the softmax layer as U = F(x), and the logit outputs of the
on-device model fk, k ∈ K as Vk = fk(x). In addition, define
the logit output before the softmax layer as u and vk for F
and fk, k ∈ K, respectively. Thus, we have U = softmax(u)
and Vk = softmax(vk). Based on the above definitions, in the
following, we first provide the norm of gradients for `1 norm
loss, KL-divergence loss, and SL loss, respectively, followed
by the hypotheses justification.

A. Norm of gradients for `1 norm loss

Given the `1 norm loss in our setting can be defined by

L`1 = ||u− 1

|K|
∑
k

vk||1,

we have the gradients of the `1 norm loss with respect to input
data x by

∇xL`1 =
∑
i

sign(ui − 1

|K|
∑
j

vij)(
∂ui

∂x
−
∂(1
|K|

∑
k v

i
k)

∂x
),

=
∑
i

sign(ui − 1

|K|
∑
j

vij)
1

|K|
∑
k

(
∂ui

∂x
− ∂vik

∂x
),

=
1

|K|
∑
i

∑
k

sign(ui − 1

|K|
∑
j

vij)(
∂ui

∂x
− ∂vik

∂x
),

where i denotes the dimension of output. Hence, the norm of
gradients of `1 norm loss can be given by

||∇xL`1 || =
1

|K|
||
∑
i

∑
k

sign(ui − 1

|K|
∑

vik)(
∂ui

∂x
− ∂vik

∂x
)||. (10)

B. Norm of gradients for KL-divergence loss

Given the KL-divergence loss in our setting defined by

LKL =
∑
i

U i log
U i

1
|K|

∑
k V

i
k

,

we have the gradients of KL-divergence loss with respect to
input x, which can be given by

∇xLKL =∑
i

∂U i

∂x
log

U i

1
|K|

∑
k V

i
k

−
∂(1
|K|

∑
k V

i
k)

∂x

U i

1
|K|

∑
k V

i
k

.
(11)

When U converges to the ensemble of Vk, we have

U(x) =
1

|K|
∑
k

Vk(x)(1 + δ(x)), (12)

where δ(x)→0 when F → fens. Thus, the gradients of KL-
divergence loss in Eq. 12 can be given by

∇xLKL ≈
∑
i

∂U i

∂x
δi −

∂(1
|K|

∑
k V

i
k)

∂x
(1 + δi) (13)

(since log(1 + δ) →
δ→0

δ)

=
∑
i

δi(
∂U i

∂x
−
∂(1
|K|

∑
k V

i
k)

∂x
) (14)

(∀k,
∑
i

∂V ik
∂x

= 0, since
∑
i

V ik = 1),

=
1

|K|
∑
i

∑
k

δi(
∂U i

∂x
− ∂V ik

∂x
) (15)

Thus, the norm of the gradients of KL-divergence loss can
be given by

||∇xLKL|| ≈
1

|K|
||
∑
i

∑
k

δi(
∂U i

∂x
− ∂V ik

∂x
)||. (16)

C. Norm of gradients for SL Loss

The proposed SL loss is defined by

LSL = ||U − 1

|K|
∑
k

Vk||1.

Similarly to the `1 norm loss, the gradients of SL loss with
respect to input x can be given by

∇xLSL =

1

|K|
∑
i

∑
k

sign(U i − 1

|K|
∑
j

V ij)(
∂U i

∂x
− ∂V ik

∂x
).

(17)

Thus, the norm of gradients of the SL loss can be given by

||∇xLSL|| =
1

|K|
||
∑
i

∑
k

sign(U i − 1

|K|
∑
j

V ij)(
∂U i

∂x
− ∂V ik

∂x
)||. (18)

D. Justification of Two Hypotheses

Based on the above norm of gradients, this section justifies
the Hypothesis 1 and Hypothesis 2. We first introduce the two
Lemmas provided in [33].

Lemma 1. [Lemma 2 in [33]] If S(x) ∈ (0, 1)K is the softmax
output of a differentiable function (e.g., a neural network) on
an input x, s is the corresponding logits vector, and J is the
Jacobian matrix∂S∂s , then for any vector z, we have:

∀z, ||Jz|| ≤ ||z||. (19)

Lemma 2. [Lemma 3 in [33]] Let U(x) and V (x) be
the softmax output of two differential functions (e.g., neural
networks) on input x, with respective logits u(x) and v(x).
When U converges to V then ∂U

∂u converges to ∂V
∂v .

Based on the above two Lemmas, we then reformulate the
derived norm of gradients of the three loss functions, and

Model A Model B Model C Model D Model E
Arch Parameter Arch Parameter Arch Parameter Arch Parameter Arch

ShuffleNetV2 net size 0.5 ShuffleNetV2 net size 1.0 MobileNetV2 width multiplier 0.8 MobileNetV2 width multiplier 0.6 LeNet

TABLE V: Model Architecture for the CIFAR-10 dataset.

finally derive the following two hypotheses. Their proofs are
given below.

Hypothesis 3. When the global model F converges to the
ensemble of on-device models fens, the gradients of KL
divergence loss with respect to the input data x are smaller
than those of the SL loss:

||∇xLKL(x)|| ≤
F→fens

||∇xLSL(x)||. (20)

Hypothesis 4. When the global model F converges to the
ensemble of on-device models fens, the gradients of the `1
norm loss with respect to the input data x are greater than
those of the SL loss:

||∇xL`1(x)|| ≥
F→fens

||∇xLSL(x)||. (21)

Proof. Each term in the norm of gradients of `1 norm loss in
Eq. 10 can be given by

∀i, k ||sign(ui− 1

|K|
∑
j

vij)(
∂ui

∂x
− ∂v

i
k

∂x
)|| = ||∂u

i

∂x
− ∂v

i
k

∂x
||.

(22)
For the SL loss, when the global model converges to the

ensemble of the on-device models, each term in the norm of
gradients in Eq. 18 can be given by

∀i, k ||sign(U i − 1

|K|
∑
j

V ij)(
∂U i

∂x
− ∂V ik

∂x
)|| (23)

= ||∂U
i

∂x
− ∂V ik

∂x
|| (24)

= ||∂U
i

∂u

∂ui

∂x
− ∂V ik

∂v

∂vik
∂x
||,

≈ ||∂U
i

∂u
(
∂ui

∂x
− ∂vik

∂x
)|| (Lemma 2),

≤ ||∂u
i

∂x
− ∂vik

∂x
|| (Lemma 1), (25)

where the last two derivations follow the Lemma 2 and Lemma
1, respectively. Thus, by summing up the terms over i and k,
we can expect the gradients of the SL loss is smaller than the
`1 norm loss. This completes the justification for Hypothesis 2.
However, to rigorously proof this, we need further assumptions
on the data distribution and models.

For the KL-divergence loss, when the global model con-
verges to the ensemble of the on-device models, each term in
the norm of gradients in Eq. 13 can be given by

∀i, k ||δi(
∂U i

∂x
− ∂V ik

∂x
)||. (26)

Thus, by comparing Eq. 24 and Eq. 26, we can expect the
gradients of KL-divergence loss is smaller than that of the SL
loss This completes the justification for Hypothesis 1.

APPENDIX: ON-DEVICE MODEL ARCHITECTURES

To make the experimental validation concise and easy to
follow, we detail the setting of on-device model architectures
in Section IV-C2 here.

For the ten devices trained with the CIFAR-10 dataset, we
use ShuffleNetV2 and MobileNetV2 with different numbers
of filters and a LeNet-like model architectures to meet diverse
device capacity for on-device models2. Table V presents the
detailed model architectures. We use SGD with a learning rate
0.01 and a weight decay of 0.0005. The batch size and the
total training epoch are set to be 256 and 100, respectively.

2We implement the models based on https://github.com/kuangliu/
pytorch-cifar.

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

	I Introduction
	II Related Work
	II-A Heterogeneous Federated Learning.
	II-B Federated Distillation.
	II-C Data-Free Knowledge Distillation.

	III FedZKT: Federated Learning via Zero-shot Knowledge Transfer
	III-A Problem Statement
	III-B FedZKT Design
	III-B1 Zero-Shot Knowledge Distillation
	III-B2 Loss Function Design
	III-B3 Bidirectional Knowledge Transfer
	III-B4 2 Regularization for Non-IID Data Distribution

	IV Experimental Validation
	IV-A Experimental Setup
	IV-A1 Dataset
	IV-A2 On-Device Model Heterogeneity
	IV-A3 Federated Learning Settings
	IV-A4 Data Heterogeneity
	IV-A5 Baseline Approach

	IV-B Experimental Results
	IV-B1 IID Data Distribution
	IV-B2 Non-IID Data Distribution

	IV-C Ablation Studies
	IV-C1 Effects of Loss Function Design
	IV-C2 Effects of On-Device Model Architectures
	IV-C3 Effects of Stragglers
	IV-C4 Effects of 2 Regularization
	IV-C5 Effects of Device Number

	V Conclusions
	References
	V-A Norm of gradients for 1 norm loss
	V-B Norm of gradients for KL-divergence loss
	V-C Norm of gradients for SL Loss
	V-D Justification of Two Hypotheses

