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Abstract

This paper focuses on the Layered Packet Erasure Broadcast Channel (LPE-BC) with Channel Output Feedback

(COF) available at the transmitter. The LPE-BC is a high-SNR approximation of the fading Gaussian BC recently

proposed by Tse and Yates, who characterized the capacity region for any number of users and any number of layers

when there is no COF. This paper provides a comparative overview of this channel model along the following lines:

First, inner and outer bounds to the capacity region (set of achievable rates with backlogged arrivals) are presented:

a) a new outer bound based on the idea of the physically degraded broadcast channel, and b) an inner bound of the

LPE-BC with COF for the case of two users and any number of layers. Next, an inner bound on the stability region

(set of exogenous arrival rates for which packet arrival queues are stable) for the same model is derived. The capacity

region inner bound generalizes past results for the two-user erasure BC, which is a special case of the LPE-BC with

COF with only one layer. The novelty lies in the use of inter-user and inter-layer network coding retransmissions

(for those packets that have only been received by the unintended user), where each random linear combination

may involve packets intended for any user originally sent on any of the layers. For the case of K = 2 users and

Q ≥ 1 layers, the inner bounds to the capacity region and the stability region coincide; both strategically employ

the novel retransmission protocol. For the case of Q = 2 layers, sufficient conditions are derived by Fourier-Motzkin

elimination for the inner bound on the stability region to coincide with the capacity outer bound, thus showing that

in those cases the capacity and stability regions coincide.

Index Terms

Broadcast channel with feedback, capacity region, inner bound, outer bound, stability region, network coding.

I. INTRODUCTION

The Broadcast Channel (BC) has been extensively employed as a model for downlink communication systems.

A class of channels that has received significant attention is erasure channels, where at each channel use a packet

is sent, and the packet is either received or erased at each receiver. The erasure channel is used as a model for
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lossy packet networks. Another class of channel particularly important in wireless communications is the Additive

White Gaussian Noise fading BC (AWGN-BC), where the channel between the single transmitter or base-station

sending signal X , and multiple users is modeled as Yi = hiX +Ni for user i, where Ni is the AWGN, and hi is

the fading parameter, or Channel State Information (CSI). With Channel Output Feedback (COF), the signal at the

receivers is fed back to the transmitter. When the transmitter has independent messages to send to different subsets

of users, the capacity region captures some of the tension seen in BCs: a single signal must be encoded such that

when correlated versions of this signal are received at the users, each can extract their own intended message(s).

The Layered Packet Erasure Broadcast Channel (LPE-BC) model proposed in [1] approximates the AWGN-BC

without Channel State Information at the Transmitter (CSIT) in the high SNR regime and also generalizes the

(single-layer) Binary Erasure Channel (BEC-BC). In the LPE-BC, the base-station at each channel use sends a

vector of inputs (or layers of packets). At each time, each receiver receives a random number of layers, and missing

layers are said to be “erased”. Erasures are correlated because when a layer is erased, all the layers with larger

indices are also erased.

A. Past Work

Capacity results. The capacity region characterizes the largest set of simultaneously achievable message rates

that can be reliably transmitted [2]. The capacity region assumes that all users, or nodes, have messages, or packets,

to send at all times. That is, the packet arrival queues are infinitely backlogged. While the capacity regions of the

general BC remains unknown, it is known for the degraded BC, the BC with degraded message sets, the AWGN-BC

without fading, and the AWGN-BC with fading known at the transmitter and the receivers [3]. The capacity region

of the BEC-BC without COF is known for any number of users (because the channel is stochasticaly degraded) [3].

For the BEC-BC, the presence of COF allows the transmitter to know if a packet was erased or not at each receiver.

COF information allows the sender to re-send certain packets, and may do so in a network-coded fashion (by

sending linear combinations of packets intended for different users). In [4], the capacity region for 3-user BEC-BC

with COF, as well as two types of symmetric K-user Packet Erasure Broadcast Channels (PEBCs) and spatially

independent PEBCs with one-sided fairness constraints with COF, were derived. Similar results to [4] were also

obtained in [5]. The authors in [1] determined the capacity region of the LPE-BC exactly and bounded that of the

AWGN-BC to within a constant gap of approximately 6 bits per channel use, regardless of the fading distribution.

The capacity of the AWGN-BC with COF is unknown, but it may be enlarged by feedback even in the non-fading

regime [6], [7], in sharp contrast to memoryless point-to-point channels. However, feedback cannot enlarge the

capacity of physically degraded BCs [8]. A partial characterization of the capacity region of the two-user Gaussian

fading BC was provided in [9]. The work in [10] studied the achievable throughput of a multi-antenna Gaussian

BC.

Stability results. The stability region assumes that packets arrive stochastically, and may be queued before

transmission. A networked system is called stable if the packet queues are asymptotically finite, with finite packet

delays. In [11], the stability region is defined as the closure of the set of all arrival rate vectors that can be stably

supported by the network. The exact characterization of the stability region of networks with bursty sources is
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known to be a difficult problem [12]. This is due to the interaction of the queues, i.e., when the service rate of a

queue depends on the state of the other queues. In [13] the authors presented a class of scheduling policies for an

K-user broadcast channel and showed that the system is stable in the mean through the use of a Lyapunov argument.

Sufficient conditions for stability in a broadcast setting were derived in [14]. For the degraded BCs, [15] presented

an outer bound to the stability region of message arrival rate vectors achievable by the class of stationary scheduling

policies and showed that the stability region of information arrival rate vectors is the information-theoretic capacity

region under an asymptotic regime. The work in [16] investigated stability regions of two-user Gaussian fading

multiple access and broadcast networks with centralized scheduling under the assumption of infinitely backlogged

users. The stability properties of different transmission schemes with and without network coding over a BEC-BC

with COF were evaluated in [17]. In [18] the authors characterized the stability region of a 2-user BEC-BC with

COF and constructed several algorithms that employ network coding of packets received at the un-intended receiver

and stabilize the system. The conditions under which the capacity and stability regions coincide are not known in

general [19].

B. Contributions

All exact capacity results for the LPE-BC are without COF [1], or for the single-layer case with COF and up to

K = 3 users [4], [5], [18]. We study the capacity and the stability regions of the (multi-layer) LPE-BC with COF,

combine and extend the works in [1], [4], [5], [18].

In this paper, rate region (with backlogged packet traffic) refers to an achievable message rate region, which can

not be larger than the capacity region; similarly, arrival region (with stochastic packet traffic) refers to an achievable

arrival rate region, which can not be larger than the stability region. Our main contributions are listed as follows.

1) We provide a general outer bound to the capacity region for LPE-BC with COF for K receivers (K ≥ 2)

and Q layers (Q ≥ 1). The outer bound is easily characterized by augmenting the model to various degraded

versions of the LPE-BC for which capacity is known.

2) We present an achievable rate region and an achievable arrival region for LPE-BC with COF for K = 2

users and Q layers (Q ≥ 1). The achievable rate and arrival regions are obtained by using schemes that employ

network coding across layers in case retransmissions are needed. We show the correctness of our schemes by

induction. Our proof techniques here (for the case of any number of layers) differs from that of [18] (for a

single layer): we do not rely on a “Markov chain”-argument as [18] but rather on a “concentration to the mean

”-argument explained in Appendix B and C.

3) Conditions are given under which these regions match for the case of K = 2 users and Q = 2

layers. Hence, for such channels both the capacity region and the arrival region are fully characterized,

and they coincide. Consequently, our results highlight similarity between the capacity and stability regions,

both measuring rates albeit for different traffic scenario.
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Fig. 1: Illustration of the LPE-BC model.

C. Paper Organization

The rest of the paper is organized as follows. Section II introduces the LPE-BC. Section III presents the

information theoretic inner and outer bounds on the capacity region. Section IV presents a queueing theoretic

arrival rate rates region, an inner bound on the stability region of the LPE-BC with COF. Section V gives sufficient

conditions under which the inner bound to the stability region coincide with the outer bound to the capacity region.

Section VI illustrates the derived bounds by means of numerical examples. Section VII concludes the paper. Most

of the proofs may be found in the Appendices.

II. SYSTEM MODEL AND DEFINITIONS

A. Notation

For the rest of this paper, we use the following convention:

• We use capital letters for random variables (apart from rates which are denoted by capital R’s but are not

random, to conform with standard information theoretic notation) and small letters for their realization.

• We shall also sometimes use small letters to indicate expectation of the corresponding random variables.
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• We use⌊x⌋ to indicate the greatest integer less than or equal to x and ⌈x⌉ to indicate the smallest integer

greater than or equal to x.

• We define [x]+ = max{0, x} for x ∈ R.

• We consider a time-slotted system where slot t ∈ N denotes the slot index.

• We use f(n) = o(g(n)) to denote limn→∞ f(n)/g(n) = 0.

• The notation [n] for n ∈ N denotes the set {1, 2, · · ·n}.

• The notation |A| denotes the cardinality of a set A.

• We use K ∈ N to denote the number of receivers (users).

• We use Q ∈ N to denote the number of layers.

• For an integer N , the symbol XN indicates the length-N vector (X1, . . . , XN). Also, we use Xj
i to denote

(Xi, · · · , Xj).

• For the plots, the logarithms are in base 2, i.e., rates are expressed in bits/s/Hz.

B. LPE-BC Model

The LPE-BC illustrated in Fig.1, as originally proposed in [1], consists of one transmitter (base-station) and K

receivers (users). At each channel use (slot) the transmitter sends Q symbols (packets / layers), each symbol from an

input alphabet X , where X is assumed to be a discrete finite set; the input is denoted as XQ := (X1, . . . , XQ) ∈ XQ.

The LPE-BC is characterized by the random vector (channel state) NK := (N1, . . . , NK) ∈ [0 : Q]K, where Nk ∈ N

denotes how many layers have been successfully received by user k ∈ [K]. The LPE-BC channel output for user

k ∈ [K] is Yk := XNk = (X1, . . . , XNk
) for Nk > 0, that is, layers (XNk+1, . . . , XQ) have been erased (i.e., all

the layers below the red bar in Fig.1); if Nk = 0 then all layers have been erased and we set Yk = e for some

constant “erasure” symbol e, which is distinct from any other possible transmitted symbol. The channel state N is

assumed to be independent and identically distributed (i.i.d.) across time slots, that is, the channel is memoryless.

In the LPE-BC, the erasures are correlated so as to capture the high SNR behavior of the fading AWGN-BC [1].

The case Q = 1 and X = GF(2) is the well studied K-user BEC-BC [4], [5].

There are two regions under consideration for this channel: 1) the information theoretic capacity region, and 2)

the queueing theoretic stability region. The first region describes the transmission rates under which it is possible

to transmit sets of messages (one for each user) so that all users receive the messages destined to them with

probability of error vanishing in the blocklength. The second region describes the set of average arrival rates at

which the packets may randomly arrive and be delivered to the destination without letting the queues blow up, i.e.,

the queues must remain stable, where we follow the definition of system stability from [18]. We formalize these

notions next.

C. Definitions in Information Theory: Capacity Region

In this setup, the transmitter has K queues of packets1, one per receiver, and all the queues have infinitely many

packets. A code C(|X |nR1 , . . . , |X |nRK , n) for the LPE-BC is defined as follows. The transmitter must convey

1In this paper, we use the term packet to describe an arriving unit of data in a communication network.
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|X |nRk (private) messages reliably to user k ∈ [K] in n channel uses. Note that the rate Rk is measured in number of

packets per channel use. Let (W1, . . . ,WK) be the messages to be sent to the users. With COF, the encoding function

at time t is XQ
t (W1, . . . ,WK, N

K,t−1), where NK,t−1 := (N1,1, · · · , N1,t−1, · · · , NK,1, · · · , NK,t−1) t ∈ [n]. We

assume that all receivers have full CSI, namely, by time t = n they know NK,n. User k ∈ [K] estimates Ŵk =

deck(Y
n
k , NK,n) for some decoding function deck. The probability of error is P

(n)
e := 1 − Pr[deck(Y

n
k , NK,n) =

Wk, ∀k ∈ [K]]. The set of rates (R1, . . . , RK) ∈ R
K
+ is said to be achievable if there exists a sequence of channel

codes C(|X |nR1 , . . . , |X |nRK , n), n = 1, 2 . . . , such that limn→∞ P
(n)
e = 0. The capacity region is the convex

closure of the set of all achievable rate vectors.

D. Definitions in Queueing Theory: Stability Region

In this setup, the transmitter maintains K packet queues, one per receiver, and exogenous packets arrive randomly

at each queue. Let Au,t be the packets that arrived at the beginning of slot t ∈ N and are intended for user u ∈ [K].

Let At := (A1,t, . . . , AK,t) be the vector of exogenous arrivals, assumed to be i.i.d. over time, with average arrival

rates λu := E[|Au,t|], u ∈ [K]. Let Qu,t be the queue that contains the packets that still need to be transmitted to

user u ∈ [K] at slot t ∈ N (i.e., it includes the exogenous packets Au,t, as well as those packets that were not yet

delivered to user u at previous slots, as described next). With COF, the transmitter sends XQ
t (Qt, N

K,t−1). User

u ∈ [K] applies decoding function deck(Y
n
k , NK,n) that returns the packets that could be retrieved error-free by

using all channel outputs and all channel states available to it up to time t ∈ N. A successfully received packet is

removed from its queue; this can be tracked at the transmitter thanks to COF. The evolution of the queue length

over time is given by |Qu,t| =
[
|Qu,t−1| + |Au,t| − |deck(Y t

k , N
K,t)|

]+
, t ∈ N, u ∈ [K], where | · | denotes the

number of packets in the queue. The stability region is the convex closure of the set of all arrival rate-tuples

(λ1, . . . , λK) ∈ R
K
+ for which the process of queue lengths {(|Q1,t|, . . . , |QK,t|)}t∈N is stable2.

III. CAPACITY REGION

In this section, we bound the capacity region of the LPE-BC with COF.

In Section III-A, we propose a new outer bound of the LPE-BC with COF. It is based on a channel enhancement

that creates a degraded BC for which the capacity region is known. Then, in Section III-B, we introduce a two-phase

protocol and present a trivial inner bound. The novelty lies in the use of inter-user & inter-layer network coding

retransmissions in the achievable scheme.

2From [18]: The process {Xt}t∈N, where Xt := (X1,t, . . . , XK,t), is stable if the following holds at all points of continuity of some

cumulative distribution function F (x): limt→∞ Pr[Xt ≤ x] = F (x) and limmin(x1,...,xK)→∞ F (x) = 1, where x := (x1, . . . , xK) and

Xt ≤ x means coordinate-wise inequalities. The process {Xt}t∈N is substable if limmin(x1,...,xK)→∞ lim inft→∞ Pr[Xt ≤ x] = 1. If the

processes {Xi,t}t∈N are substable for all i ∈ [K], then the process {Xt}t∈N is substable. In our case, {Xt}t∈N will represent the process of

queue lengths.

September 10, 2021 DRAFT



vii

A. Outer Bound of the LPE-BC with COF

Although COF does not increase the capacity of a memoryless point-to-point channels, it enlarges the capacity

region of broadcast channels in general [6], [7]. The following theorem characterizes the outer bound in the weighted

sum rate form.

Theorem 1 (New outer bound). The capacity region of the LPE-BC with COF is contained in

∑

k∈[K]

ωkRk ≤
∑

q∈[Q]

max
k∈[K]

(
ωπ(k) Pr[max(N

π(K)
π(k) ) ≥ q]

)
, (1)

for all (ω1, . . . , ωK) ∈ R
K
+ and for all permutations π of [K].

Proof: We enhance the original LPE-BC to a physically degraded LPE-BC by using a cooperation-based

argument. Consider a permutation π of [K] and define

Ñπ(k) := max(Nπ(k), Nπ(k+1), . . . , Nπ(K)). (2a)

Based on our system model, user π(k) with channel state Ñπ(k) can receive all the packets received by user π(k),

π(k + 1), . . . , π(K). Thus, the following Markov chains hold

XQ → XÑπ(1) → XÑπ(2) . . .→ XÑπ(K), (2b)

XQ → XÑk → XNk , ∀k ∈ [K]. (2c)

That is, the BC with CSI Ñk is physically degraded and its capacity is not enlarged by feedback [8]. By [1], the

capacity region of the LPE-BC with no CSIT is characterized by

∑

k∈[K]

ωkRk ≤
∑

q∈[Q]

max
u∈[K]

(
ωu Pr[Ñu ≥ q]

)
, (3)

for all (ω1, . . . , ωK) ∈ R
K
+. With Ñu in (2a), the region in (3) is the same as (1).

B. Inner Bound of the LPE-BC with COF

We proposed several achievable schemes in [20]. In this subsection, an achievable two-phase protocol with the

best performance will be introduced. As a comparison point, we also present a trivial achievable inner bound,

which is the simple extension of the single-layer case algorithm in [18] to multiple layers where the layers operate

independently. The analysis of the inner bound in this section is based on the law of large numbers. We provide the

detailed proof of Theorem 2 in Appendix C, which is an extension of the single-layer case proof in Appendix B to

multiple layers. Note that Appendix B is a new, alternative proof of the single-layer algorithm in [18]; we present

it as our generalization to multiple layers follows this new proof closely.

Our assumptions regarding the system are described as follows:

1) All terminals have enough storage to keep track of which packets have been sent and which have been

successfully received (for whichever user(s) they have access to).
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TABLE I: Definition and initialization value of different notations.

Notation Definition Initial value

Q{u},q, u ∈ [2], q ∈ [Q] The queues store the packets destined to user u

assigned on layer q

ku,q packets

Q{1,2},q, q ∈ [Q] The queues store the packets destined to user u but

only received by the other user ū, u 6= ū on layer q.

empty

K (unc)
u,q (t) The number of uncoded packets not yet transmitted

to user u on layer q at time t

ku,q

K (rem)
u,q (t) The number of packets not received by user u but

overheard by the other user on layer q at time t

0

K (rem)
u (t) The number of packets not received by user u but

overheard by the other user on all layers at time t

0

K (NC)
u,q (t) The number of coded packets received by user u on

layer q at time t

0

K (rtx)
u [j] The number of packets destined to user u ∈ [2] but

not yet successfully received by user u at the end of

j-th sub-phase

ku :=
∑

q∈[Q] ku,q

T (unc)

π(j)
The number of slots needed for layer π(j) to com-

plete the j-th sub-phase

∞

T (NC) The number of slots for Phase2 ∞

Fig. 2: Two-phase protocol with two layers.

2) When a network coded packet is sent (network coding to be defined soon) the code (i.e., set of coefficients

used for a linear combination) has been agreed upon in advance and is known to all terminals, i.e., every

terminal knows the codebook.

The achievable regions for the LPE-BC with COF and K = 2 users will be of the form presented in Theorem 2

next, which was inspired by [18]. We shall use the following nomenclature:

• An uncoded packet is packet that is sent by itself, i.e., not coded together with other packets, on some layer,

which is also defined as the native packet in [21].

• An overheard packet is a packet that has not yet been delivered uncoded to the intended user but has been

successfully received at the non-intended user and that serves as the side information when we apply network

coding.

• A (network) coded packet is a packet that is sent on some layer in a linear combination involving overheard
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packets from other users, which has been widely used in networking to improve the throughput of the

communication systems.

Algorithm 1 Two-phase Protocol

Input. Initialize QS,q,K
(unc)
u,q ,K (rem)

u,q ,K (rem)
u ,K (NC)

u for all S ⊆ {1, 2}, q ∈ [Q], u ∈ S as in Table I.

Output. T (unc), T (NC). The number of slots to finish Phase1 and Phase2 respectively.

1: t← 0;

2: while
∑

u∈[2]

(∑
q∈[Q]K

(unc)
u,q (t) +

∑
u∈[2] K

(rem)
u (t)

)
> 0 do

3: if
(∑

u∈[2] K
(unc)
u,q (t) > 0, ∀q ∈ [Q]

)
then ⊲ Phase1

4: for q ← 1, · · · ,Q do

5: Aq = {u} randomly based on the proportion of the number of packets in Q{1},q and Q{2},q.

6: end for

7: run Algorithm 2 based on the feedback from both users;

8: else if
(
∃q ∈ [Q] :

∑
u∈[2] K

(unc)
u,q (t) ≤ 0

)
then ⊲ Sub-phases of Phase1

9: T (unc)
q ← t;

10: for q ← 1, · · · ,Q do

11: if
∑

u∈[2] K
(rem)
u > 0 then

12: Aq = {1, 2};

13: layer q transmits a random linear combination of all the packets in ∪j∈[Q]Q{1,2},j;

14: end if

15: end for

16: else
(∑

u∈[2] K
(unc)
u,q (t) ≤ 0, ∀q ∈ [Q]

)
then ⊲ Phase2

17: T (unc) ← t;

18: transmit a different random linear combination of all the packets in ∪q∈[Q]Q{1,2},q on each layer;

19: run Algorithm 3 based on the feedback from both users;

20: end if

21: t← t+ 1;

22: end while

23: T (NC) ← t− T (unc)

The definition and initial value of some notations used in this section are listed in Table I. Before the protocol

description, we give a brief discussion of the underlying rationale. The idea is to have a protocol with two

phases: Phase1 corresponds to uncoded transmission on some layers (and can be split in sub-phases), while Phase2

corresponds to network coded transmissions on all layers. Herein, user u must decode exactly ku :=
∑

q∈[Q] ku,q

packets in ∪q∈[Q]Qu,q and the transmitter sends uncoded or coded packets to each user u. Hence, to show the

correctness of the algorithm, each user u must eventually receive ku linearly independent combinations of the

packets in ∪q∈[Q]Qu,q.
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Description of the Two-phase Protocol: It is succinctly described in pseudocode form in Algorithm 1. The two-

layer case is demonstrated in Fig. 2. The transmitter maintains a network of queues Q{1},q, Q{2},q and Q{1,2},q, q ∈

[Q], with initial value listed in Table I.

Phase1. In each slot, we transmit Q uncoded packets, one from each layer, simultaneously according to a

predetermined order in line 5 of Algorithm 1 that is known to all users. Aq ⊆ {1, 2} indicates which user is served

on layer q ∈ [Q], i.e., Aq = {u}, u ∈ [2] means an uncoded packet for user u is transmitted on layer q; Aq = {1, 2}

means a coded packet is transmitted on layer q. Each receiver’s output is fed back to the transmitter at the end

of slot t (ACK for received packet, NACK for erased packet), which implies that the transmitter knows N2,t at

the beginning of slot t + 1. The entities QS,q,K
(unc)
u,q ,K (rem)

u,q ,K (rem)
u ,K (NC)

u,q are dynamically updated based on the

feedback from both users as follows:

• If a transmitted packet from queue Q{u},q is erased at both users, it remains in queue Q{u},q.

• If a transmitted packet from queue Q{u},q is received by at least one of the receivers, it is removed from

Q{u},q and the counting number K (unc)
u,q is reduced by one.

• If a transmitted packet destined to user u from queue Q{u},q is only received by user ū, ū 6= u, it is moved

from queue Q{u},q to queue Q{1,2},q and the counting number K (unc)
u,q is reduced by one, K (rem)

u,q and K (rem)
u

are increased by one.

Sub-phases. In line 9 of Algorithm 1, we mean that T (unc)
q records the first time

∑
u∈[2] K

(unc)
u,q (t) ≤ 0 and it will

not be updated as time goes on. Thus, T (unc)
q is the time at which layer q finishes its all uncoded packets in queues

Q{1},q and Q{2},q. In line 17 of Algorithm 1, we mean that T (unc) records the first time
∑

u∈[2]

∑
q∈[Q]K

(unc)
u,q (t) ≤ 0

and it will not be updated as time goes on. Thus, T (unc) is the time at which all sub-phases complete and Phase 1

ends. Since the time needed for each layer to complete the transmission of its uncoded packets may be different,

let π be the permutation of [Q] such that

0 ≡ T (unc)

π(0) ≤ T (unc)

π(1) ≤ T (unc)

π(2) . . . ≤ T (unc)

π(Q) ≡ T (unc). (4)

At time T (unc)

π(j) , the layers π(1), . . . , π(j) have finished their uncoded phase. Phase1 is hence composed of Q sub-

phases. The slot
[
T (unc)

π(j−1), T
(unc)

π(j)

)
, j ∈ [Q], is where of the j-th sub-phase of Phase1 takes place. There are Q!

possible configurations of sub-phases, one for each permutation of [Q]. Once layer q has finished sending its uncoded

packets at time T (unc)
q , we send linear combinations of all overheard packets on all layers up to the current time

slot (note: each layer gets a linearly independent linear combination); we refer to this scheme as an inter-user &

inter-layer network coding scheme. The coded packets transmitted during the sub-phases in slot t ∈ [T (unc)

π(1) , T
(unc)]

can be written as

s =
∑

q∈[Q]

∑

p∈Q{1,2},q(t)

as(p)p, (5)

where as(p) is the random encoding coefficient of packet p over the finite field input alphabet X of dimension
∑

q∈[Q] |Q{1,2},q(t)| and it is generated by a random number generation algorithm known a priori to both users.

New packets may be added to Q{1,2},q after each slot and the packet s in (5) is the linear combinations of packets

from dynamic queues Q{1,2},q(t). We use Q{1,2},q(t) to emphasize that the queue will be updated as time goes
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Algorithm 2 Update of Phase1

1: for q ← 1, · · · ,Q do

2: pick Aq according to line 5 in Algorithm 1;

3: if Aq = {u} then

4: if max(N1, N2) < q then

5: retransmit that uncoded packet from Q{u},q on layer q;

6: else if
(
Nu ≥ q,K (unc)

u,q > 0
)

then

7: remove that uncoded packet from Q{u},q;

8: K (unc)
u,q ← K (unc)

u,q − 1;

9: else if
(
Nu < q,Nū ≥ q,K (unc)

u,q > 0, u 6= ū
)

then

10: remove that uncoded packet from Q{u},q and move that uncoded packet to Q{1,2},q;

11: K (unc)
u,q ← K (unc)

u,q − 1;

12: K (rem)
u,q ← K (rem)

u,q + 1;

13: K (rem)
u ← K (rem)

u +K (rem)
u,q ;

14: end if

15: else if Aq = {1, 2} then

16: if
(
Nu ≥ q,K (rem)

u > 0, u ∈ [2]
)

then

17: K (rem)
u ← K (rem)

u − 1;

18: K (NC)
u,q ← K (NC)

u,q + 1;

19: end if

20: end if

21: end for

Algorithm 3 Update of Phase2

1: for q ← 1, · · · ,Q do

2: if
(
Nu,t ≥ q,K (rem)

u > 0, u ∈ [2]
)

then

3: K (rem)
u ← K (rem)

u − 1;

4:
∑

q∈[Q]K
(NC)
u,q ←

∑
q∈[Q]K

(NC)
u,q + 1

5: end if

6: end for

on. During the sub-phases, some of Q{1,2},q finishes updating, i.e., the uncoded phase of layer q is done and no

more packets will be added to Q{1,2},q, while some of Q{1,2},j are still updating, i.e., the uncoded phase of layer

j is not done yet and new overheard uncoded packets may be added to Q{1,2},j later.

Phase2. In each slot, the coded packet s transmitted in line 18 of Algorithm 1 is the linear combination of all
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the overheard packets from all Q{1,2},q, q ∈ [Q] in the transmitter and can be expressed as

s =
∑

q∈[Q]

∑

p∈Q{1,2},q(T (unc))

as(p)p. (6)

We use K (NC)
u,q to track the number of coded packets received by user u on layer q in line 18 of Algorithm 2. Once

a coded packet is received by user u, K (rem)
u is reduced by one and

∑
q∈[Q]K

(NC)
u,q is increased by one as shown in

line 3, 4 of Algorithm 3. Phase2 completes as soon as
∑

u∈[2] K
(rem)
u ≤ 0.

By our protocol, the packets are transmitted in two forms: uncoded and coded. Each layer first transmits the

uncoded packets and these packets can be decoded by the users if they are received. We just need to confirm that all

the remaining packets can be recovered successfully from the coded packets by each user. Note that the overheard

uncoded packets are also stored at the users to serve as side information to help recover the coded packets in the

future. By random linear network coding of K packets, each coded packet is associated with an encoding vector

over a finite field of size q. The probability of successfully decoding K packets from K received coded packets

is [22]

Pr =

K∏

i=1

(
1−

1

qi

)
. (7)

Assuming q is large enough, any received packet is linearly independent from previously received (sums of) packets

with high probability. Following the same idea, for our protocol, we can show that all coded packets received by

the users are linearly independent with high probability. Then, we only need to count the number of coded packets

received by each user in order to make sure they can recover all the destined packets.

Based on our two-phase protocol, the achievable region is written in the following theorem.

Theorem 2 (Achievable region of two-phase protocol). The following region is achievable for the LPE-BC with

COF and K = 2 users:

C in := ∪t≥0,ku,q≥0,q∈[Q],u∈[2]

{
(R1, R2) : t

(unc) + t(NC) ≤ t, (8a)

t(unc) := max
q∈[Q]

(
t(unc)
q

)
, (duration of Phase1), (8b)

t(NC) := max
u∈[2]

(
t(NC)
u

)
, (duration of Phase2), (8c)

t(unc)
q :=

k1,q + k2,q
Pr[max(N1, N2) ≥ q]

, ∀q ∈ [Q], (8d)

t(NC)
u :=

k(rem)
u

E[Nu]
, ∀u ∈ [2], (8e)

k(rem)
u :=

[ ∑

q∈[Q]

k(rem)
u,q − (t(unc) − t(unc)

q ) Pr[Nu ≥ q]

]+
, u ∈ [2], (8f)

k(rem)
u,q := ku,q

(
1−

Pr[Nu ≥ q]

Pr[max(N1, N2) ≥ q]

)
,
∀q ∈ [Q],

∀u ∈ [2],
(8g)

Ru :=

∑
q∈[Q] ku,q

t
, ∀u ∈ [2], (rate)

}
. (8h)
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Analysis of Two-phase Protocol: We focus on the situation where no common message needs to be sent over

the channel. Fix ku,q, u ∈ [2], q ∈ [Q] and let ku,q ≫ 1 so that we can invoke the Law of Large Numbers

in the following analysis (loosely speaking, we “replace” random processes with their statistical averages). Then

ku =
∑

q∈[Q] ku,q, u ∈ [2] is the number of packets destined to user u. The special cases that ∃q ∈ [Q] or

u ∈ [2] : ku,q = 0 are discussed in Appendix C.

Phase1. The transmitter sends ku,q uncoded packets on layer q ∈ [Q] for user u ∈ [2], one by one according to

a predetermined order in line 5 of Algorithm 1, known to all users, until at least one of the two users has received

it. t(unc)
q , q ∈ [Q] is the number of time slots until all k1,q + k2,q uncoded packets on layer q are received by at least

one user. Recall that the channel is characterized by the random variable Nu,t, u ∈ [2] and Nu,t ≥ q indicates that,

at time slot t, the packet transmitted on layer q has been received by user u. If max(N1,t, N2,t) ≥ q, a packet on

layer q has been received by at least one of the users at time slot t. Therefore, it takes on average 1
Pr[max(N1,N2)≥q]

time slots to deliver one uncoded packet to some user on layer q ∈ [Q], and t(unc)
q is hence as given in (8d). All the

received uncoded packets can be decoded by both users successfully. Meanwhile, k(rem)
u,q in (8g), is the number of

packets not successfully received by user u on layer q and is also the number of packets overheard by the other user

ū 6= u on layer q. By time t(unc) in (8b), all layers are done sending uncoded packets, and Phase1 ends. There are

k(rem)
u in (8f) packets that have not been received by user u ∈ [2], which will be sent in a network coded manner on

any layer. If user u receives k(rem)
u linearly independent combinations of the overheard packets, it is able to decode

the remaining k(rem)
u packets.

Sub-phases. By (4), we have

0 ≡ t(unc)

π(0) ≤ t(unc)

π(1) ≤ t(unc)

π(2) . . . ≤ t(unc)

π(Q) ≡ t(unc), (9)

where we recall that at time t(unc)

π(j), the layers π(1), . . . , π(j) have finished their uncoded phase. Phase1 is hence

composed of Q sub-phases, where the j-th sub-phase has duration ∆j := [t(unc)

π(j−1) − t(unc)

π(j)), j ∈ [Q].

As stated in line 5 of Algorithm 1, the order in which packets are sent on layer q ∈ [Q] during the uncoded

phase (that is, time interval [0, t(unc)
q ]) is randomized, that is, the probability of a user being picked to be served

in a given time slot is proportional to the number of uncoded packets that the user needs to receive on that layer.

During the uncoded phase of Phase1, Aq is assumed to be i.i.d. over time and independent of everything else with

Pr[Aq = {u}] =
ku,q

k1,q + k2,q
, u ∈ [2]. (10)

With (10) and (8d), we write

Pr[Aq = {u},M ≥ q] =
ku,q

t(unc)
q

, (11)

Pr[Aq = {u},M ≥ q,Nu < q] =
ku,q

t(unc)
q

ηu,q, (12)

ηu,q :=
k(rem)
u,q

ku,q
= 1−

Pr[Nu ≥ q]

Pr[max(N1, N2) ≥ q]
∈ [0, 1], (13)

where (11) is the probability that a packet destined to user u ∈ [2] is assigned on layer q ∈ [Q] and its uncoded

packet is received by at least one of the users; similarly, (12) is the probability that a packet destined to user u ∈ [2]
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is assigned on layer q ∈ [Q] and its uncoded packet is received by the other user only. The quantity in (13) can be

thought of as the fraction of overheard packets for user u ∈ [2] on layer q ∈ [Q].

Let k(unc)
u,q [j] be the number of uncoded packets that have not yet been transmitted to user u ∈ [2] on layer q ∈ [Q]

at the end of the j-th sub-phase; these packets must be still sent on layer q ∈ [Q]. Also, let k(rtx)
u [j] be the number of

overheard packets left to be delivered to user u ∈ [2] at the end of the j-th sub-phase; we can send these packets in

a network coded way on any layer. Initialize k(unc)
u,q [0] = ku,q ≥ 0 and k(rtx)

u [0] = 0. We have the following recursive

equation for j ∈ [Q]

k(unc)
u,q [j] =

[
k(unc)
u,q [j − 1]−∆j Pr[Aq = {u},max(N1, N2) ≥ q]

]+

= ku,q

[
1−

t(unc)

π(j)

t(unc)
q

]+
. (14)

The update equation for k(unc)
u,q [j] in (14) says that the number of uncoded packets for user u ∈ [2] on layer q ∈ [Q]

decreases with “time” j ∈ [Q]. In particular, at the end of the j-th sub-phase, k(unc)
u,q [j− 1] is reduced by the number

of packets that can be received by either user during the time interval ∆j whenever user u ∈ [2] is scheduled for

transmission on layer q ∈ [Q]. The final expression in (14) simply says that by time t(unc)

π(j) the fraction of uncoded

packets left to be transmitted is proportional to 1− t(unc)

π(j)/t
(unc)
q if tπ(j) < tq and zero, otherwise. Similarly, we have

for j ∈ [Q]

k(rtx)
u [j] =

[
k(rtx)
u [j − 1]−∆j

j−1∑

ℓ=1

Pr[Nu ≥ π(ℓ)]

+
∑

q∈[Q]

min
(
pu,q,j , k

(unc)
u,q [j − 1]

)]+
(15)

=
[ ∑

q∈[Q]:tq≥tπ(j)

k(rem)
u,q

t(unc)

π(j)

t(unc)
q

+
∑

q∈[Q]:tq<tπ(j)

(
k(rem)
u,q − (t(unc)

π(j) − t(unc)
q ) Pr[Nu ≥ q]

) ]+
, (16)

pu,q,j := ∆j Pr[Aq = {u},max(N1, N2) ≥ q,Nu < q]. (17)

The update equation for k(rtx)
u [j] in (15) says that the number of coded packets for user u ∈ [2] can either increase

or decrease over “time” j ∈ [Q], depending on the difference of the number of coded packets delivered to user u

and the number of uncoded packets received at the other user only within the j-th sub-phase. Specifically, at the

end of the j-th sub-phase, k(rtx)
u [j − 1] is decreased by the number of packets that can be received by user u ∈ [2]

during the time interval ∆j on the layers that have already completed their uncoded phase (which is proportional

to
∑j−1

ℓ=1 Pr[Nu ≥ π(ℓ)]), or increased by the number of overheard packets during the time interval ∆j across

any of the layers. The “min” in (15) simply says that the number of overheard packets for user u ∈ [2] on layer

q ∈ [Q] cannot exceed the number of uncoded packets left for transmission at the end of the (j − 1)-th sub-phase,

k(unc)
u,q [j − 1]. The much simplified expression in (16) is derived in Appendix C.
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At the end of the Q-th sub-phase, all the uncoded packets on all layers are done, i.e., we have k(unc)
u,q [Q] = 0 for

all q, but possibly some k(rtx)
u [Q] > 0. Therefore, we still have k(rem)

u = k(rtx)
u [Q] in (8) coded packets to deliver to

user u ∈ [2] during Phase2. The expression in (8f) can be obtained from (16) with j = Q as follows

k(rtx)
u [Q] =

[
k(rem)

u,π(Q)

t(unc)

π(Q)

t(unc)

π(Q)

+
∑

q∈[Q]:tq<tπ(Q)

(
k(rem)
u,q − (t(unc)

π(Q) − t(unc)
q ) Pr[Nu ≥ q]

) ]+

=
[ ∑

q∈[Q]

k(rem)
u,q − (t(unc) − t(unc)

q ) Pr[Nu ≥ q]
]+

, (18)

as claimed. We also give an alternative proof of the achievable region for the single-layer case in Appendix B, as

an alternative to the Markov chain based analysis in [18].

Phase2. Once all layers are done sending their uncoded packets at time t(unc) in (8b), on each layer we send

different linearly independent linear combinations of the overheard packets, as defined in Section III-B. If the

coded packets are transmitted so, user u ∈ [2] will eventually receive k(rem)
u packets, which it uses to recover its

desired messages by solving a linear system that has a full-rank matrix with probability 1. In each time slot, user

u receives on average
∑

q∈[Q] q Pr[Nu = q] = E[Nu] packets. Therefore, t(NC)
u , the average time needed to receive

the remaining k(rem)
u packets in (8f) is given in (8e).

The following lemma shows the correctness of the two-phase protocol in Theorem 2.

Lemma 1. At any time t ∈ [T (unc)

π(1) , T
(unc) + T (NC)], for any ε > 0,

Pr[“the encoding vectors of the received
∑

q∈[Q]

K (NC)
u,q (t) =

∑

q∈[Q]

k(NC)
u,q (t),

∀u ∈ [2] packets are linearly independent”] > 1− ε. (19)

Lemma 1 guarantees that after T (unc) +T (NC) time slots with high probability user u ∈ [2] can decode the desired

ku packets. The proof of this Lemma is relegated to Appendix A.

Note that the outer bound in Theorem 1 is for any number of users, while the inner bound in Theorem 2 is for

K = 2 users only. Extension of the scheme that attains the inner bounds to more than K = 2 users requires being

able to track which subset of non-intended users has received a certain packet; this is the same stumbling block as

in the single-layer case in [4] for K ≥ 4.

We end this section with a trivial inner bound result which is the simple extension of the algorithm in [18],

where the erasure channel model studied in [18] is the special case of Q = 1 in our LPE-BC model. This will be

used as a comparison point for our proposed Theorem 2.

Lemma 2 (Trivial scheme). The following region is achievable for the LPE-BC with COF and K = 2 users

∪Ru,q≥0,q∈[Q],u∈[2]

{
(R1, R2) : max

q∈[Q]
(vq) ≤ 1, (21a)

vq := max

(
R1,q

Pr[max(N1, N2) ≥ q]
+

R2,q

Pr[N2 ≥ q]
,
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R1,q

Pr[N1 ≥ q]
+

R2,q

Pr[max(N1, N2) ≥ q]

)
, q ∈ [Q], (21b)

Ru := Ru,1 + . . .+Ru,Q, u ∈ [2]
}
. (21c)

The region in (21) is achievable for the LPE-BC with COF by employing the two-phase algorithm in [18]

independently on each layer. To map the notation used in [18] to ours, please note that ǫu,q = 1−Pr[Nu ≥ q], u ∈

[2], q ∈ [Q] is the probability that layer q is erased for user u, and ǫ12,q = 1 − Pr[max(N1, N2) ≥ q], q ∈ [Q] is

the probability that layer q is erased at both users.

Note that the extension of Lemma 2 to more than K = 2 users requires knowing the capacity of the single-layer

model for K users, which is open at present in general. The scheme in [4] is tight (i.e., it achieves the outer bound

in Theorem 1) for Q = 1 and K ≤ 3 users, and also for Q = 1 and K ≥ 4 in some symmetric settings. Paper [4]

claims that the scheme matches (up to numerical precision) the outer bound for all simulated case of K ≤ 6 users;

if the scheme were indeed optimal for any number of users, then Lemma 2 could give a scheme for any number

of layers and users, and would prove the tightness of Theorem 1 for Q = 1.

IV. STABILITY REGION

In this section, we assume that packets arrive randomly to the system rather than assuming backlogged packet

queues as was done above. The general assumptions remain the same as was presented in Section III-B. We first

describe how Theorem 2 can be adapted to such an environment, then propose an achievable stability region of this

modified protocol.

Protocol Description: The protocol works in epochs. During each epoch, a certain (random) number of packets

have to be successfully delivered to the users by employing the coding scheme for the backlogged case in Theorem 2.

The beginning of a new epoch is a renewal event for the system. Initially, epoch 1 starts at time T [1] = 0.

Epoch m ∈ N starts at time L[m] and ends at time L[m+ 1]. Denote T [m] := L[m+ 1]−L[m] as the number of

time slots in epoch m, where each packet is transmitted in one slot. Epoch m+1 starts at time L[m+1] (right after

the end of epoch m), employing the same procedure as in epoch m. Let Au,t be the number of exogenous arrival

packets for user u at slot t. At the beginning of epoch m, Ku[m] :=
∑

t∈T [m−1] Au,t new exogenous packets need

to be transmitted to user u ∈ [2]. If K1[m] = K2[m] = 0, the m-th epoch ends at the time T [m − 1], which is

the time that the (m − 1)-th epoch ends. In general, epoch m ends when all Ku[m] packets have been decoded

successfully by user u, thus T [m],m ∈ N are random.

The transmitter maintains Q + 2 queues of infinite size, denoted by Q01, Q02, · · · , Q0Q, Q1, Q2. New arrival

packets assigned on layer q are queued in Q0q, q ∈ [Q], but are not transmitted until the epoch ends. Queue Qu

is used to store the packets destined to user u but only received by user ū, u 6= ū. For each user u, the average

arrival rate λu = E[Au,t] is expressed as λu =
∑

q∈[Q] λu,q =
∑

q∈[Q] E[Au,q;t] where Au,q;t is the number of

exogenous packets assigned for user u on layer q at slot t, for some λu,q ≥ 0 and q ∈ [Q]. At the beginning of

epoch m, no packet is assigned to queue Qu (i.e., there are no overheard packets at the start of an epoch as the

previous epoch ends after all packets are delivered), and each of the Ku[m] packets is assigned independently at
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random with probability λu,q/λu to queue Q0q. Let Ku,q[m] be the (random) number of packets that are assigned

to queue Q0q, and destined to user u.

The protocol works as follows. All packets, whether they are destined to user 1 or 2, are transmitted on a

first-come-first-served policy from Q0q . The users send the COF to the transmitter after each transmission based

on their receipt. The queue management policy according to the COF from both users, is given as follows. For

K1[m] +K2[m] 6= 0,

• If an uncoded packet transmitted from Q0q is not received by either of the two receivers, it remains in queue

Q0q;

• If an uncoded packet, destined to user u and transmitted from Q0q, is successfully received by user u, it leaves

Q0q (regardless whether the other user ū receives it or not);

• If an uncoded packet, destined to user u and transmitted from Q0q, is erased at user u and received by the

other user ū, it is moved from queue Q0q to queue Qu;

• If a coded packet, which is a linear combination of packets p1 from Q1 and packets p2 from Q2, is received

by user u, then packets pu leaves Qu;

• If an uncoded packet transmitted from Qu is received by user u, it leaves Qu (regardless whether the other

user ū receives it or not).

At any time, the transmission policy is the following:

• All queues are empty: this epoch ends.

• All Q0q’s are non-empty: a packet from Q0q is transmitted on layer q. This corresponds to the initial uncoded

transmission from queues Q{1},q and Q{2},q of Phase1 in Theorem 2.

• Some Q0q’s are empty, and all Qu’s are non-empty: if ∃q, p ∈ [Q] : p 6= q,Q0q = ∅, Q0p 6= ∅ and Qu 6=

∅, ∀u ∈ [2], then we transmit a network coded packet on layer q, and an uncoded packet from Q0p on layer p.

This corresponds to the coded transmission from queues ∪q∈[Q]Q{1,2},q in sub-phases of Phase1 in Theorem 2.

• Some Q0q’s are empty, and some Qu’s are empty: if ∃q, p ∈ [Q] : p 6= q,Q0q = ∅, Q0p 6= ∅ and ∃u 6= ū :

Qu 6= ∅, Qū = ∅, then we transmit an uncoded packet from Qu on layer q, and an uncoded packet from

Q0p on layer p. This also corresponds to the coded transmission from queues ∪q∈[Q]Q{1,2},q in sub-phases of

Phase1 in Theorem 2. This happens when the number of packets intended to user u only received by user ū

exceeds the number of packets intended to user ū only received by user u, u 6= ū.

• All Q0q’s are empty, and all Qu’s are non-empty: if Q0q = ∅, ∀q ∈ [Q] and Qu 6= ∅, ∀u ∈ [2], then we transmit

different coded packets from all the non-empty Qu’s on all layers This corresponds to the coded transmission

from queues ∪q∈[Q]Q{1,2},q of Phase2 in Theorem 2.

• All Q0q’s are empty, and some Qu’s are non-empty: if Q0q = ∅, ∀q ∈ [Q] and ∃u 6= ū : Qu 6= ∅, Qū = ∅, then

we transmit different uncoded packets from the non-empty Qu’s on all layers. This corresponds to the coded

transmission from queues ∪q∈[Q]Q{1,2},q of Phase2 in Theorem 2. This happens when the number of packets

intended to user u only received by user ū exceeds the number of packets intended to user ū only received

by user u, u 6= ū after Phase1.
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This protocol stated above is a natural adaptation of Theorem 2. It is easy to check that when all Q+ 2 queues

are empty, all the received packets can be decoded successfully. An achievable stability region is as follows.

Theorem 3 (Achievable Stability Region (novel result)). For the LPE-BC with COF and K = 2 users, the following

region is an inner bound to the stability region

S in :=
{
(λ1, λ2) ∈ R

2
+ : λu :=

∑

q∈[Q]

λu,q, (22)

λ1,q + λ2,q

Pr[max(N1, N2) ≥ q]
< 1, ∀q ∈ [Q],

∑

q∈[Q]

λu,q + λū,q

Pr[Nu ≥ q]

Pr[max(N1, N2) ≥ q]
< E[Nu],

(u, ū) ∈ [2]2 : u 6= ū, for some λu,q ≥ 0, u ∈ [2], q ∈ [Q]
}
.

The proof can be found in Appendix D.

Note that extension of S in to more than two users incurs the same problem as discussed for the inner bounds

earlier. The region in (22) recovers the result in [18] when Q = 1.

V. OPTIMALITY CONDITIONS

In this section, we focus on the two-layer and two-user case, compare the regions of the capacity outer bound

obtained in Section III-A and the stability inner bound presented in Section IV, and further state the sufficient

conditions under which these two regions coincide. Let C in be the inner bound of Theorem 2. We have C in ⊆ C ⊆ Cout

and S in ⊆ S from Theorem 3, where S is the stability region and C the capacity region. We also know [11] that

S ⊆ C. We first show that C in can be written in the same form as S in, by replacing message rates with average

arrival rates. Next, we find conditions under which S in = Cout, for Q = 2 layers and K = 2 users, thus showing

that under such conditions one has S = C. This result confirms the similarity between the capacity and stability

regions already observed in [23], [24], [18].

Lemma 3. S in in (22) coincides with C in in (8).

Proof: By (8), after some simple algebra, we obtain

t ≥ t(unc) +max
u∈[2]

(t(NC)
u )

≥ max
q∈[Q]

(
k1,q + k2,q

Pr[max(N1, N2) ≥ q]

)
+max

u∈[2]

(
1

E[Nu]

[ ∑

q∈[Q]

ku,q

(
1−

Pr[Nu ≥ q]

Pr[max(N1, N2) ≥ q]

)
−
(
max
q∈[Q]

(
k1,q + k2,q

Pr[max(N1, N2) ≥ q]
)

−
k1,q + k2,q

Pr[max(N1, N2) ≥ q]

)
Pr[Nu ≥ q]

]+
)
. (23)

Assume layer w ∈ [Q] is the “slowest” (i.e., t(unc) = t(unc)
w ). Continuing from (23), we can write
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t ≥
k1,w + k2,w

Pr[max(N1, N2) ≥ w]
+max

u∈[2]

(
1

E[Nu]

[ ∑

q∈[Q]

ku,q (24)

+
∑

q∈[Q]

kū,q
Pr[Nu ≥ q]

Pr[max(N1, N2) ≥ w]
− E[Nu]

k1,w + k2,w
Pr[max(N1, N2) ≥ w]

]+
)
,

(u, ū) ∈ [2]2 : u 6= ū (25)

Let Ru,q =
ku,q

t
, the achievable region in (8) becomes

{
(R1, R2) ≥ 0 : max

q∈[Q]

(
R1,q +R2,q

Pr[max(N1, N2) ≥ q]

)
≤ 1,

max
u∈[2]


 Ru

E[Nu]
+
∑

q∈[Q]

Pr[Nu ≥ q]

Pr[max(N1, N2) ≥ q]

Rū,q

E[Nu]


 ≤ 1

(u, ū) ∈ [2]2 : u 6= ū, for some Ru,q ≥ 0

}
,

Ru := Ru,1 + . . .+Ru,Q, u ∈ [2]. (26)

As a result, the achievable region C in in (8) is the same as S in presented in (22).

Before proceeding to ddetermine the sufficient optimality conditions, for convenience, we define

ξ1 := max
q∈[2]

(
Pr[max(N1, N2) ≥ q]

Pr[N1 ≥ q]

)
, (27a)

ξ2 := min
q∈[2]

(
Pr[max(N1, N2) ≥ q]

Pr[N1 ≥ q]

)
, (27b)

ξ3 := max
q∈[2]

(
Pr[N2 ≥ q]

Pr[max(N1, N2) ≥ q]

)
, (27c)

ξ4 := min
q∈[2]

(
Pr[N2 ≥ q]

Pr[max(N1, N2) ≥ q]

)
, (27d)

where clearly ξ1 ≥ ξ2 ≥ 1 ≥ ξ3 ≥ ξ4 ≥ 0. Rewrite the outer bound in (1) as

R1 +
R2

ξ1
≤ E[N1], (28a)

ξ2R1 +R2 ≤ E[max(N1, N2)], (28b)

R1 +
R2

ξ3
≤ E[max(N1, N2)], (28c)

ξ4R1 +R2 ≤ E[N2]. (28d)

Now we give the sufficient optimality conditions as follows.

Theorem 4. The stability region inner bound in Theorem 3 coincides with capacity region outer bound in Theorem 1

for the LPE-BC with COF for the case of K = 2 users and Q = 2 layers when the following two conditions are

verified:

(C1) the joint channel statistic is as in Table II with x2 ≥ 2x4 and
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TABLE II: Joint PMF Pr[(N1, N2) = (i, j)] with x1 + 2x2 + x3 + x4 = 1.

j = 0 j = 1 j = 2

i = 0 x1 x2 0

i = 1 x2 x3 0

i = 2 0 0 x4

(C2) either bound (28b) or bound (28c) is redundant, and

(C3) either
Pr[N1≥2]
Pr[N1≥1] ≥

Pr[max(N1,N2)≥2]
Pr[max(N1,N2)≥1] ≥

Pr[N2≥2]
Pr[N2≥1] or

Pr[N2≥2]
Pr[N2≥1] ≥

Pr[max(N1,N2)≥2]
Pr[max(N1,N2)≥1] ≥

Pr[N1≥2]
Pr[N1≥1] hold.

The proof can be found in Appendix E.

Intuition: The condition (C1) in Theorem 4 is inspired by [25, Theorem 3], which is different from the LPEBC

model we use here, since the layers (subchannels) are independent in [25] but correlated in the LPEBC model. This

class of channel in Table II may be interpreted as follows. User 1 and 2 have the same ability to receive packets

on layer 1 and 2 separately, that is Pr[N1 ≥ 1] = Pr[N2 ≥ 1] and Pr[N1 ≥ 2] = Pr[N2 ≥ 2]; user 1 and 2 either

receive or erase a packet on layer 2 at the same time, that is Pr[N1 ≥ 2] = Pr[N2 ≥ 2] = Pr[max(N1, N2) ≥ 2].

Conditions (C2) and (C3) in Theorem 4 may be interpreted as follows. User u ∈ [2] is more likely to receive

a packet from layer 1 than user ū 6= u, while at the same time user ū is more likely to receive a packet from

layer 2 than user u. It is fairly straightforward to see that when
Pr[N1≥2]
Pr[N1≥1] =

Pr[N2≥2]
Pr[N2≥1] =

Pr[max(N1,N2)≥2]
Pr[max(N1,N2)≥1] , both (28b)

and (28c) are redundant and the outer bound becomes identical to the inner bound; under this condition we obtain the

capacity region C = {(R1, R2) ∈ R
2
+ : max

(
R1

E[N1]
+ R2

E[max(N1,N2)]
, R2

E[max(N1,N2)]
+ R2

E[N2]

)
≤ 1} that has the same

form as the capacity region derived in [18] for the single layer BEC-BC with COF; in other words, in this special

case, the two-layer LPE-BC behaves as the one-layer BEC-BC where 1− ε1 = Pr[N1 ≥ 1]+Pr[N1 ≥ 2] = E[N1],

1− ε2 = E[N2], 1− ε12 = E[max(N1, N2)] correspond to the notation in [18].

VI. NUMERICAL EVALUATIONS

A. Example 1 (the channel of user 1 and 2 are independent)

This example considers the case of K = 2 users and Q = 2 layers, with N1 independent of N2 and with the joint

channel statistics as in Table III. Fig. 3 illustrates the capacity region in (3), the outer bound region of Theorem 1,

and the inner bound regions of Lemma 2, and Theorem 2. Without CSIT, the capacity region in (3) has three

corner points (R1, R2) ∈ {(0, 1), (
3
4 ,

1
2 ), (1, 0)}, where 1 = E[N1] = E[N2]. The corner point (34 ,

1
2 ) is achieved by

assigning layer 1 to user 1 and layer 2 to user 2 [1]. With COF, it can be shown analytically that the outer bound

in Theorem 1 has three corner points (R1, R2) ∈ {(0, 1), (
7
9 ,

5
9 ), (1, 0)}, and that Lemma 2 does not achieve the

corner point (79 ,
5
9 ), while Theorem 2 does (with R1 = R1,1 and R2 = R2,2 in region C in). This is an example

where our inner and outer bounds match. Notice that COF enlarges the capacity region for this example.

B. Example 2 (the channel of user 1 and 2 are correlated)

This example illustrates the case of K = 2 users and Q = 2 layers, with N1 correlated with N2. The inner and

outer bound regions for the channel described in Table IV are evaluated in Fig. 4, in which both users have a more
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TABLE III: Joint PMF Pr[(N1, N2) = (i, j)].

j = 0 j = 1 j = 2 Pr[N1 = i]

i = 0 0.125 0 0.125 0.250

i = 1 0.250 0 0.250 0.500

i = 2 0.125 0 0.125 0.250

Pr[N2 = j] 0.500 0 0.500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
2

outer bound with COF in Theorem 1
achievable region in Theorem 2
achievable region in Lemma 2
capacity region without COF

Fig. 3: Outer and inner bounds for the channel in Table III.

reliable look at layer 1 than at layer 2.

The outer bound in Theorem 1 is the convex-hull of the following rate points: A = (0, 0.9748), B1 = (0.3326, 0.7585),

C1 = (0.4231, 0.6862), D1 = (0.6739, 0.3326), E = (0.8522, 0). Corner points A and E are always trivially

achievable, so we will not list them in the following. The achievable region in Lemma 2 has non-trivial corner

points: B2 = (0.0957, 0.9125), C2 = (0.4091, 0.6624), D2 = (0.7697, 0.1540). The achievable region in Theorem 2

has non-trivial corner points: B3 = (0.3069, 0.7752), C3 = (0.5035, 0.5729), D3 = (0.6739, 0.3326). Note that

TABLE IV: Joint PMF Pr[(N1, N2) = (i, j)].

j = 0 j = 1 j = 2 Pr[N1 = i]

i = 0 0.0497 0.2443 0.0321 0.3261

i = 1 0.1483 0.2251 0.1222 0.4956

i = 2 0.0435 0.0728 0.0620 0.1783

Pr[N2 = j] 0.2415 0.5422 0.2163
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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0.1
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0.4

0.5

0.6

0.7

0.8

0.9

1

R
2

 A

 B
1

 C
1

 D
1

 E

outer bound with COF in Theorem 1
achievable region in Theorem 2
achievable region in Lemma 2

Fig. 4: Outer and inner bounds for the channel in Table IV.

Theorem 2 achieves one of the corner points (D1) of the outer bound in Theorem 1.

An interesting observation from the numerical optimization for this example is that at the corner points either

k1,q = 0 or k2,q = 0 in the various achievable regions across layers (i.e., a layer is assigned to one user only, as it

was the case in Example 1), with the only exception of the C-points; for the C-points, the ‘more reliable’ layer 1

is shared by both users. We also remark from Fig. 4 that the inner and outer bounds are the furthest apart around

the C-points. Why this is the case is subject of current investigation. In general, inner and out bounds coincide

when one of the two rates is not too large, i.e., around the trivially achievable corner points A and E which are

the equivalent rates of point-to-point channels.

C. Example 3 (the channel statistics satisfy the conditions in Theorem 3)

This example demonstrates that the achievable stability region in Theorem 3 coincides with the outer bound of

capacity region in Theorem 1, i.e., the conditions in Theorem 4 are satisfied.

Consider the channel in Table V, in which both users have a more reliable look at layer 2 than at layer 1; here

the channel states are correlated. The outer bound in Theorem 1 is the convex-hull of the following rate pairs:

P1 = (0, 1.234), P2 = (0.302, 1.035), P3 = (0.366, 0.912), P4 = (0.836, 0).

If all four bounds in (28) were active, the outer bound would be a convex hull of at most 6 corner points

(including the point (0,0), two corner points on the R1 and R2 axes, and 3 other non-trivial corner points). Here,

we only have two non-trivial corner points, points P2, P3. We know the bound in (28a) and the one in (28d) are

always active. Hence, either the bound in (28b) or the one in (28c) is redundant. Here is a case where either (28b)

or (28c) is redundant. For this channel,
Pr[max(N1,N2)≥1]

Pr[N1≥1] > Pr[max(N1,N2)≥2]
Pr[N1≥2] ,

Pr[N2≥1]
Pr[max(N1,N2)≥1] >

Pr[N2≥2]
Pr[max(N1,N2)≥2]
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TABLE V: Joint PMF Pr[(N1, N2) = (i, j)].

j = 0 j = 1 j = 2 Pr[N1 = i]

i = 0 0.088 0.178 0.264 0.530

i = 1 0.011 0.018 0.075 0.104

i = 2 0.131 0.110 0.125 0.366

Pr[N2 = j] 0.230 0.306 0.464

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
2

 P
1

 P
2
 P

3

 P
4

outer bound with COF in Theorem 1
achievable stability region in Theorem 3

Fig. 5: Capacity and stability region for the channel in Table V.

and ξ1 = 1.940, ξ2 = 1.926, ξ3 = 0.844, ξ4 = 0.658 in (27). This is an example where the erasures are correlated

and for which we obtain the optimal capacity region which coincides with the stability region.

VII. CONCLUSIONS

This paper derived achievable regions for the LPE-BC with COF both in information-theoretic terms (i.e., capacity

region) and queueing-theoretic terms (i.e., stability region). The studied LPE-BC extends the classical (single-layer)

binary erasure BC and can be connected to the Gaussian fading BC at high SNR. Our capacity inner bound and

achievable stability region make use of network coded retransmissions when the sender, through COF, realizes that

a packet has been received only by unintended users. What this work shows is the necessity of network coding

across users (a key element also for the single-layer binary erasure BC with COF) and across layers. Conditions

under which the obtained stability region inner bound coincides with the capacity region outer bound are given,

thus establishing optimality. Future work includes determining a set of conditions under which the proposed scheme

is optimal, extending the analysis to more than two users, and ultimately deriving constant gap approximations to

the capacity of the fading AWGN-BC without CSIT but with COF.
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APPENDIX A

PROOF OF LEMMA 1

We focus on proving a statement that is slightly stronger than Lemma 1: At any time t ∈ [T (unc)

π(1) , T
(unc) + T (NC)],

Pr[K(t)] > 1− ε, ∀ε ∈ (0, 1). (29)

where K(t) denotes the event that “the encoding vectors of received
∑

q∈[Q]

∑
u∈[2] K

(NC)
u,q (t) =

∑
q∈[Q]

∑
u∈[2]

k(NC)
u,q (t) packets are linearly independent”. We prove the above statement by induction on time t. At the end of time

t = T (unc)

π(1) , since no coded packet is transmitted previously and we initialize K (NC)
1,q (0) = 0 and K (NC)

2,q (0) = 0, ∀q ∈

[Q], we have Pr[K(T (unc)

π(1) )] = 1. The condition in (29) is thus satisfied. Consider now time t ∈ (T (unc)

π(1) , T
(unc)+T (NC)).

By induction assumption,

Pr[K(t)] > 1− ε, ∀ε ∈ (0, 1). (30)

By our Theorem 2, for any time t, we always have

∑

q∈[Q]

∣∣Q{1,2},q(t)
∣∣ =

∑

u∈[2]


K (rem)

u (t) +
∑

q∈[Q]

K (NC)
u,q (t)


 . (31)

At time t, denote the realization of the RVs as follows

k{1,2}(t) =
∑

q∈[Q]

∣∣Q{1,2},q(t)
∣∣ , (32a)

k(rem)(t) =
∑

u∈[2]

K (rem)
u (t), (32b)

k(NC)(t) =
∑

u∈[2]

∑

q∈[Q]

K (NC)
u,q (t), (32c)

which are always non-negative. Rewrite (31) for slot t+ 1 as

k{1,2}(t+ 1) = k(rem)(t+ 1) + k(NC)(t+ 1). (33)

Based on the values of the three terms in (32), at the end of slots t+ 1 and t, we partition them into

k{1,2}(t+ 1)




= k{1,2}(t),

> k{1,2}(t);

k(rem)(t+ 1)





> k(rem)(t),

= k(rem)(t),

< k(rem)(t);

k(NC)(t+ 1)




= k(NC)(t),

> k(NC)(t).

Thus, we have 2× 3× 2 = 12 combinations in total. However, some of the combinations are impossible and some

of the combinations can be merged together. We list them as follows.
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Case 1: k(NC)(t + 1) = k(NC)(t). This implies that no new coded packets are received by the users, and the

received k(NC)(t+ 1) packets are linearly independent by the induction hypothesis in (30). Therefore,

Pr
[
K(t+ 1)

∣∣k(NC)(t+ 1) = k(NC)(t),K(t)
]
= 1.

Case 2: k(NC)(t+1) > k(NC)(t). This implies that there are k(NC)(t+1)− k(NC)(t) > 0 coded packets received

by the two users in slot t+ 1. We have two sub-cases depending on the values of |Q{1,2}(t+ 1)| and |Q{1,2}(t)|.

Case 2.1: k{1,2}(t + 1) = k{1,2}(t). This implies that no more overheard packets are added to the queues

Q{1,2},q, ∀q ∈ [Q] in slot t + 1. This may happen in some sub-phases of Phase1 when the uncoded packets are

successfully received by the destined user or the uncoded packets are erased at both users; this may also happen

in Phase2. We have three sub-cases depending on the realizations of K (rem)(t+ 1) and K (rem)(t).

Case 2.1.1: k(rem)(t+ 1) > k(rem)(t). This implies that the number of packets added to Q{1,2},q is larger than

the number of packets received by the users in slot t+1. Since k{1,2}(t+1) = k{1,2}(t) and according to (33), here

we have k(rem)(t+1)+k(NC)(t+1) = k(rem)(t)+k(NC)(t). This is violated by the conditions of k(NC)(t+1) > k(NC)(t)

and k{1,2}(t+ 1) > k{1,2}(t), and hence leads to a contradiction and hence

Pr
[
k(NC)(t+ 1) > k(NC)(t), k{1,2}(t+ 1) = k{1,2}(t), k

(rem)(t+ 1) > k(rem)(t)
]
= 0.

Case 2.1.2: k(rem)(t + 1) = k(rem)(t). This implies that the number of packets added to Q{1,2},q is equal to

the number of packets received by the users in slot t+1. This case is again impossible, which follows similarly to

Case 2.1.1. Thus,

Pr
[
k(NC)(t+ 1) > k(NC)(t), k{1,2}(t+ 1) = k{1,2}(t), k

(rem)(t+ 1) = k(rem)(t)
]
= 0.

Case 2.1.3: 0 ≤ k(rem)(t + 1) < k(rem)(t). This implies that the number of packets added to Q{1,2},q is less

than the number of packets received by the users in slot t+ 1. By the induction hypothesis, we have

Pr
[
K(t+ 1)

∣∣∣k(NC)(t+ 1) > k(NC)(t), k{1,2}(t+ 1) = k{1,2}(t), k
(rem)(t+ 1) < k(rem)(t),K(t)

]

=

k(NC)(t+1)−1∏

i=k(NC)(t)

(
1−

|X |i

|X |k{1,2}(t+1)

)

=

k(NC)(t+1)−k(NC)(t)∏

i=1

(
1−

1

|X |i+k(rem)(t+1)

)
(34a)

≥

(
1−

1

|X |

)∆k(NC)(t+1)

(34b)

where (34a) follows from (33); where in (34b), ∆k(NC)(t+ 1) = k(NC)(t+ 1)− k(NC)(t) > 0, which is the number

of coded packets received by both users in slot t + 1. Since we assume X is a finite field, |X | must be a prime

power.

Case 2.2: k{1,2}(t+1) > k{1,2}(t). This implies that there are new overheard packets added to Q{1,2},q, ∀q ∈

[Q] in slot t+ 1. Similar to Case 2.1, we have three sub-cases depending on the realizations of K (rem)(t+ 1) and

K (rem)(t).
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Case 2.2.1: k(rem)(t+ 1) > k(rem)(t) ≥ 0. We have

Pr
[
K(t+ 1)

∣∣∣k(NC)(t+ 1) > k(NC)(t), k{1,2}(t+ 1) > k{1,2}(t), k
(rem)(t+ 1) > k(rem)(t),K(t)

]

=

k(NC)(t+1)−k(NC)(t)∏

i=1

(
1−

1

|X |k(rem)(t+1)+i

)

≥

(
1−

1

|X |2

)∆k(NC)(t+1)

Case 2.2.2: k(rem)(t+ 1) = k(rem)(t) ≥ 0. We have

Pr
[
K(t+ 1)

∣∣∣k(NC)(t+ 1) > k(NC)(t), k{1,2}(t+ 1) > k{1,2}(t), k
(rem)(t+ 1) = k(rem)(t),K(t)

]

=

k(NC)(t+1)−k(NC)(t)∏

i=1

(
1−

1

|X |k(rem)(t+1)+i

)

≥

(
1−

1

|X |

)∆k(NC)(t+1)

Case 2.2.3: 0 ≤ k(rem)(t+ 1) < k(rem)(t). We have

Pr
[
K(t+ 1)

∣∣∣k(NC)(t+ 1) > k(NC)(t), k{1,2}(t+ 1) > k{1,2}(t), k
(rem)(t+ 1) < k(rem)(t),K(t)

]

=

k(NC)(t+1)−k(NC)(t)∏

i=1

(
1−

1

|X |k(rem)(t+1)+i

)

≥

(
1−

1

|X |

)∆k(NC)(t+1)

Combining all cases: Based on the discussion of Cases 1 to 2.2.3, for any k(NC)(t + 1), k(NC)(t), k{1,2}(t +

1), k{1,2}(t), k
(rem)(t+ 1), k(rem)(t), we have the following inequality

Pr
[
K(t + 1)

∣∣∣k(NC)(t+ 1), k(NC)(t), k{1,2}(t+ 1), k{1,2}(t), k
(rem)(t+ 1), k(rem)(t),K(t)

]
(34c)

≥

(
1−

1

|X |

)∆k(NC)(t+1)

.

By considering all the conditional probabilities, we thus have

Pr[K(t+ 1)] ≥
t∏

i=T
(unc)

π(1)

⋃

k(NC)(t+1),k(NC)(t),k{1,2}(t+1),k{1,2}(t),k(rem)(t+1),k(rem)(t)

(
(34c)× Pr

[
k(NC)(t+ 1), k(NC)(t), k{1,2}(t+ 1), k{1,2}(t), k

(rem)(t+ 1), k(rem)(t)
] )

≥

(
1−

1

|X |

)∑t

i=T
(unc)
π(1)

∆k(NC)(i+1)

=

(
1−

1

|X |

)k(NC)(t+1)

≥

(
1−

1

|X |

)k1+k2

. (34d)

In conclusion, for any fixed k1 and k2, we can choose a sufficiently large input alphabet X such that (34d) approaches

one. (29) thus holds for all t ∈ [T (unc)

π(1) , T
(unc) + T (NC)].
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APPENDIX B

A NEW PROOF FOR THE SINGLE-LAYER CASE IN [18]

A. Aim

The authors of [18] proved the optimality of Theorem 2 (i.e., achieving the region in Theorem 1) for the case of

a single layer and two receivers by using an analysis based on Markov chains. Our attempt to extend this approach

to the multi-layer of multi-receiver case failed due to the complexity of the state space of the Markov chain. Here

we give an alternative proof of the result in [18], which we shall then extend to the case of any number of layers

and two receivers. The extension to multiple receivers follows by the same reasoning.

We seek a concentration result of the following form. Let ku := ⌊nRu⌋, for fixed Ru > 0, be the total number

of packets that must be delivered to user u ∈ [K]. Let T be the random variable that represents the time needed

to deliver all these packets according to Theorem 2. We aim to show convergence in probability of the random

variable (RV) T to its mean, namely

lim
n→∞

Pr [|T − E[T ]| > ε] = 0, ∀ε > 0. (35)

Since the total time T is the summation of the time needed for Phase1 (indicated as Tp1 next, corresponds to

T (unc) used earlier) and Phase2 (indicated as Tp2 next, corresponds to T (NC) used earlier), the idea is to show that

the RVs Tp1 and Tp2 are independent, and that each concentrates to its mean with probability 1 for large enough

n. Actually, we aim to show that a convergence is exponentially fast in n. In Appendix B-B, we show that Tp1

concentrates to its expectation by using the Chernoff bound for geometric RVs. In order to show the concentration

of Tp2 to its mean, we also need to determine the behavior of two other RVs: the numbers of packets B1 and

B2 to be received at user 1 and 2, respectively, in Phase2. In Appendix B-C, we aim to show that both B1 and

B2 converge to their respective means exponentially fast in n. We shall show that the RVs (B1, B2) are mutually

independent, where independence follows because B1 and B2 are defined over disjoint time intervals during Phase1

and because the channel is memoryless. In Appendix B-D, in order to show the RV Tp2 has a sharp concentration

to its expectation, we create an event which contains all undesirable events related to this RV. We shall refer to

such events as “outages.” Based on the Chernoff and/or Hoeffding bounds, we show that the probability of outage

vanishes exponentially fast in some parameters. This is inspired by the asymptotic equipartition property or method

of types in information theory, namely, for an event E and an outage event O, we seek bounds of the form

Pr[E ] = Pr[E|O] Pr[O] + Pr[E|Oc] Pr[Oc]

≤ Pr[O] + Pr[E|Oc],

where the event E is either the right or the left tail of a RV of interest. Given the complement of the outage event,

we can bound each of the range of the RVs in the event E . By appropriately combining all these pieces, we will

obtain our desired result in (35). To simplify notations, in the rest of this paper, we use M to denote max(N1, N2)

and Mt to represent the value of M at time t.
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B. Duration of Phase1

In Phase1 the transmitter keeps transmitting k1 and k2 packets destined to receivers 1 and 2, respectively, until

at least one of the receivers receives it; the transmission time needed to complete Phase1 is the RV

Tp1 :=

k1+k2∑

i=1

G0,i, (36)

where the G0,i are i.i.d. geometric RVs with parameter (1− ǫ12) where ǫ12 := Pr[M = 0] for i ∈ [k1 + k2] and

the mean of Tp1 is E[Tp1] =
k1+k2

1−ǫ12
.

Concentration Result for Tp1: By [26, Theorem 10.32], for every ε1 > 0,

Pr [Tp1 − E[Tp1] > ε1] ≤ exp
(
−

ε21
2E[Tp1]2

k1 + k2 − 1

1 + ε1/E[Tp1]

)
, (37a)

Pr [Tp1 − E[Tp1] < −ε1] ≤ exp
(
−

2(k1 + k2)
2ε21

E[Tp1]3

)
. (37b)

The bounds in (37) imply that Tp1 converges to its expectation E[Tp1] with probability 1 as k1 + k2 →∞.

C. Number of packets not delivered by the end of Phase1

At the end of Phase1, there are B1 packets destined to user 1 that were received at user 2 but not at user 1,

where

B1 ∼ Binomial (k1, p1) ,

E[B1] = k1p1,

p1 =
Pr[N1 = 0, N2 = 1]

1− ǫ12
,

Pr[N1 = 0, N2 = 1] = ǫ1 − ǫ12.

Similarly, there are B2 packets destined to user 2 that were received at user 1 but not at user 2, where

B2 ∼ Binomial (k2, p2) ,

E[B2] = k2p2,

p2 =
Pr[N1 = 1, N2 = 0]

1− ǫ12
,

Pr[N1 = 1, N2 = 0] = ǫ2 − ǫ12.

Now, since in Phase1 packets are sent uncoded to the users on different slots, we have immediately that (B1, B2)

are independent. Next we show that (B1, B2) is independent of Tp1. This follows because, for any k ∈ N

Pr[‘packet received at user 2 but not at user 1’|G0 = k]

=
Pr[M1 = 0, . . . ,Mk−1 = 0, N1,k = 0, N2,k = 1]

Pr[M1 = 0, . . . ,Mk−1 = 0,Mk 6= 0]

=
Pr[N1,k = 0, N2,k = 1]

Pr[Mk 6= 0]

=
ǫ1 − ǫ12
1− ǫ12

,
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ǫ1 := Pr[N1 = 0].

Similarly, B2 is independent of Tp1 because

Pr[‘packet received at user 1 but not at user 2’|G0 = k]

=
ǫ2 − ǫ12
1− ǫ12

,

ǫ2 := Pr[N2 = 0].

This shows that the RVs B1, B2, Tp1 are mutually independent.

Concentration Result for B1 and B2: We next show that both B1 and B2 concentrate to their means. In order

to do so, we use bounding ideas routinely used in the method-of-type type of proofs in information theory. Define

the outage event for K = 2, A := {∃u ∈ [K] : |Bu − E[Bu]| > ε} . By the Chernoff bound, for every ε > 0, we

have

Pr [|Bu − E[Bu]| > ε] ≤ 2 exp(−
ε2

3E[Bu]
), u ∈ [2].

By the union of events bound, for ε = o
(
(maxu∈[2] E[Bu])

1
2+ǫ
)

, we obtain that

Pr[A] ≤ 4 exp

(
−
(maxu∈[2] E[Bu])

2ǫ

3

)
, (38)

which implies that Bu concentrates to its expectation E[Bu] = kupu when ku is large enough, u ∈ [2].

D. Duration of Phase2

In Phase2 the transmitter keeps sending linear combinations of the overheard B1 + B2 packets until each user

successfully decodes its intended packets. Since Phase2 occurs over a disjoint time interval compared to Phase1,

we immediately have that Tp2 is independent of Tp1, where by the working of our protocol we have

Tp2 := min


t :

t∑

j=1

Nu,j ≥ Bu, ∀u ∈ [K]


 , (39)

where the ‘time index’ j for the RVs N1,j and N2,j over Phase2 has be reset to one in order not to clutter the

notation. Also in order to cover the case B1 = B2 = 0, we define
∑0

j=1 . . . = 0.

The tricky part is to find the left and right tail probabilities of Tp2, which are needed to show the concentration

of Tp2 to its mean. To show this, we define the following outage-like events, here K = 2, E[Nu] = 1− ǫu,

Bℓ :=



∃u ∈ [K] :

ℓ∑

j=1

Nu,j < Bu



 , (40)

Cℓ :=



∃u ∈ [K] :

∣∣∣∣∣∣

ℓ∑

j=1

Nu,j − ℓE[Nu]

∣∣∣∣∣∣
> ε



 , (41)

where Bℓ is the complement event of Tp2 defined in (39) and where Cℓ is the complement of the event that the

number of packets received by each user concentrates to its mean.
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Next we want to upper bound the probabilities of these outage-like events. By the Chernoff bound and the union

bound, we have

Pr[Cℓ] ≤ 4 exp(−
ε2

3ℓ
min
u∈[2]

(1/E[Nu])). (42)

Bounding Pr[Bℓ] is done as follows

Pr[Bℓ] ≤ Pr [Cℓ] + Pr [Bℓ|C
c
ℓ ] (43a)

≤ Pr [Cℓ] + Pr [∃u ∈ [K] : Bu > ℓE[Nu]− ε] (43b)

≤ Pr [Cℓ] + Pr [A] (43c)

+ Pr
[
∃u ∈ [K] : Bu > ℓE[Nu]− ε

∣∣∣Ac
]

(43d)

≤ Pr [Cℓ] + Pr [A] (43e)

+ Pr [∃u ∈ [K] : E[Bu] + ε > ℓE[Nu]− ε] (43f)

where (43a) follows the axioms of probability; where (43b) holds since conditioning the event Ccℓ allows us to

lower bound the term
∑ℓ

j=1 Nu,j , ∀u ∈ [K]; in addition, Bℓ is independent of Ccℓ since the channel is memoryless;

where (43d) follows similar steps as in (43a); where (43f) holds since conditioning on the event Ac allows us to

upper bound Bu, ∀u ∈ [K].

Next, the terms in (43e) can be bounded with (38) and (42); while the term in (43f) is zero if

ℓ ≥ E[Tp2] + max
u∈[K]

(
2ε

E[Nu]

)
, (43g)

since

E[Tp2] = max
u∈[K]

(
E[Bu]

E[Nu]

)
= max

u∈[K]

(
ku

1− ǫu

ǫu − ǫ12
1− ǫ12

)
. (44)

By similar steps to those in (43), we obtain

Pr
[
Bc
ℓ−1

]
≤ Pr [Cℓ−1] + Pr [A] (45a)

+ Pr [E[Bu]− ε ≤ (ℓ− 1)E[Nu] + ε, ∀u ∈ [K]] , (45b)

and the term in (45b) is zero if ℓ < E[Tp2]−maxu∈[K]

(
2ε

E[Nu]

)
+ 1.

Now we have all the components to compute the left and right tail of Tp2.

Right Tail Bound for Tp2: Recall that (Tp1, B1, B2), which are functions of the channels gains in Phase1,

are independent of the channel gains in phase2 because the channel is memoryless. According to (39), we have

Pr[Tp2 > ℓ] = Pr [Bℓ] . By (43), we have obtained Pr[Tp2 > ℓ] ≤ o(ε) if ℓ ≥ E[Tp2] + maxu∈[K]

(
2ε

E[Nu]

)
.

Left Tail Bound for Tp2: Since Tp2 < ℓ implies that
∑ℓ−1

j=1 Nu,j ≥ Bu, ∀u ∈ [K], we bound the left tail of Tp2

as Pr[Tp2 < ℓ] = Pr
[
Bc
ℓ−1

]
. By (45), we have obtained Pr[Tp2 < ℓ] ≤ o(ε) if ℓ < E[Tp2]−maxu∈[K]

(
2ε

E[Nu]

)
+1.

Concentration Result for Tp2: Combining the left and right tail bound of Tp2, we have

Pr
[∣∣∣Tp2 − E[Tp2]

∣∣∣ > ε2

]

= Pr [Tp2 > E[Tp2] + ε2] + Pr [Tp2 < E[Tp2]− ε2]
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≤ 2o(ε) (46)

if 


E[Tp2] + ε2 ≥ E[Tp2] + maxu∈[K]

(
2ε

E[Nu]

)

E[Tp2]− ε2 < E[Tp2]−maxu∈[K]

(
2ε

E[Nu]

)
+ 1.

(47)

Thus, by choosing ε2 = maxu∈[K]

(
2ε

E[Nu]

)
in (47), we have Tp2 concentrates to its expected value given by E[Tp2]

in (44).

E. Total duration

Finally, we are interested in T := Tp1 + Tp2, for which we have

E[T ] = E[Tp1] + E[Tp2]

=
k1 + k2
1− ǫ12

+ max
u∈[K]

(
ku

1− ǫu

ǫu − ǫ12
1− ǫ12

)

= max

(
k1

1− ǫ1
+

k2
1− ǫ12

,
k1

1− ǫ12
+

k2
1− ǫ2

)
. (48)

Now, since Tp1 and Tp2 concentrate to their mean, also T does – recall that Tp1 and Tp2 are independent so T ’s

distribution is the convolution of the distributions of Tp1 and Tp2.

Thus, we have derived the result for the infinite backlog case as in [18] without the use of Markov chains. We

next generalize this idea to the case of multiple layers.

APPENDIX C

PROOF OF THEOREM 2

A. Aim

We aim to generalize the proof of the single-layer case in Appendix B, to the case of any number of layers Q,

and K = 2 users. We still use the two-phase protocol, but now Phase1 is composed of Q sub-phases, since the

time needed for each layer to complete the transmission of its uncoded packets may be different. In Appendix C-B,

the idea is to show that for Phase1, the time T (unc)
q defined in (50), of sub-phase q ∈ [Q], concentrates to its

expectation. The total time of Phase1 is T (unc) defined in (51), as it is the time needed for the “slowest” layer to

finish its uncoded phase. In general, the expectation of the maximum of some RVs is not equal to the maximum of

the expected value of the RVs. Herein, we attain that t(unc) = maxq∈[Q] t
(unc)
q by showing that each RV T (unc)

q has a

sharp concentration to its expectation by using the outage-event technique introduced in Appendix B. At the end of

each sub-phase, the number of “overheard packets” for each user is indicated by K (rtx)
u [j], u ∈ [K], j ∈ [Q] defined

in (57). In Appendix C-C, we aim to show that the RVs (K (rtx)
1 [Q],K (rtx)

2 [Q]) also concentrate to their expectations.

We discuss the expectations of these RVs in two separate cases and obtain the general simplified expression in (16).

The key technique to show the concentration of these RVs still follows the method of types in information theory.

Then, proving a concentration for Phase2 (where only network coded packets are transmitted on each layer) for

a given K (rtx)
u [Q], u ∈ [K], in Appendix C-D, will follow along the same line as proof in Appendix B. This will

conclude the proof that the total time T := T (unc) + T (NC) has a sharp concentration at its expectation.
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B. Duration of Phase1

In Phase1 the transmitter keeps sending each of the k1,q + k2,q packets on layer q, q ∈ [Q], until one of the

receivers receives it. We are given {ku,q ≥ 0, q ∈ [Q], u ∈ [K]}, Q ≥ 1, K = 2. In the following, we shall first

analyze the case k1,q + k2,q > 0 for all q ∈ [Q]. Appendix C-C describes how the analysis should be modified if

k1,q + k2,q = 0 for some q ∈ [Q]. Recall that the packets are transmitted randomly on each layer, and that the RV

Aq,t indicates which user is being served in the uncoded phase at time t on layer q, with probability

Pr[Aq = u] =
ku,q

k1,q + k2,q
, u ∈ [2], q ∈ [Q], (49)

which is well defined since we assume here that k1,q + k2,q > 0 for all q ∈ [Q].

To simplify notation, we define Xu,q,t := 1{Aq,t=u, Mt≥q}, t ∈ N. The event {Xu,q,t = 1}, u ∈ [2], indicates

that a packet destined to user u has been transmitted on layer q and at least one of the receivers has received that

packet at time slot t. Since Aq,t and Mt are independent and each is i.i.d. over time, we have E[Xu,q] = Pr[Aq =

u,M ≥ q] =
ku,q

k1,q+k2,q
Pr[M ≥ q]. The time needed to send all k1,q + k2,q > 0 uncoded packets on layer q ∈ [Q]

is the RV

T (unc)
q := min

{
j :

j∑

t=1

Xu,q,j ≥ ku,q, ∀u ∈ [2]

}
. (50)

The time needed to complete Phase1 is the RV

T (unc) := max
q∈[Q]

{
T (unc)
q

}
. (51)

We partition the layers into

V0 = {q ∈ [Q] : k1,q = k2,q = 0},

V1 = {q ∈ [Q] : k1,q > k2,q = 0},

V2 = {q ∈ [Q] : k1,q = 0 < k2,q},

V12 = {q ∈ [Q] : k1,q > 0, k2,q > 0}.

|V | gives the number of layers belongs to set V . In the following, we shall do the analysis for |V12| = Q (so as to
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avoid doing a very similar analysis three times)3.

To bound the left and right tails of T (unc)
q , for all q ∈ [Q], ε > 0, we define the outage-like events

O−
ℓq

:= {∃u ∈ [2] :

ℓq∑

t=1

Xu,q,t < ℓqE[Xu,q]− ε}, (52a)

O+
ℓq

:= {∃u ∈ [2] :

ℓq∑

t=1

Xu,q,t > ℓqE[Xu,q] + ε}. (52b)

By the Chernoff bound and the union of events bound, for every ε > 0, we have

Pr
[
O−

ℓq

]
≤
∑

u∈[2]

Pr




ℓq∑

t=1

Xu,q,t − ℓqE[Xu,q] < −ε




≤ 2 exp(−
ε2

3ℓq
min
u∈[2]

(1/E[Xu,q])), (52c)

Pr
[
O+

ℓq

]
≤
∑

u∈[2]

Pr




ℓq∑

t=1

Xu,q,t − ℓqE[Xu,q] > ε




≤ 2 exp(−
ε2

2ℓq
min
u∈[2]

(1/E[Xu,q])). (52d)

Following similar steps as in the bounding of the left and right tails of Tp2 in the single-layer case, we next give

tail probabilities of each T (unc)
q , q ∈ [Q].

Right Tail Bound for T (unc)
q : According to (50), we have for all q ∈ [Q]

Pr
[
T (unc)
q > ℓq

]

= Pr


∃u ∈ [2] :

ℓq∑

t=1

Xu,q,t < ku,q




≤ Pr
[
O−

ℓq

]
+ Pr


∃u ∈ [2] :

ℓq∑

t=1

Xu,q,t < ku,q

∣∣∣(O−
ℓq
)c


 (53a)

≤ Pr
[
O−

ℓq

]

3In the general case, the condition in (53b) reads

max

{

max
q∈V1

k1,q + ε

Pr[M ≥ q]
,max
q∈V2

k2,q + ε

Pr[M ≥ q]
,

max
u∈[2],q∈V12

ku,q + ε

E[Xu,q]

}

= max
u∈[2]

{

ku,q + ε

E[Xu,q]

}

≤ ℓq,

and similarly for the condition in (54). Also

Pr
[

O−
ℓq

∪ O+
ℓq

]

≤
∑

u∈[2]

Pr



q ∈ V12 :

∣

∣

∣

∣

∣

∣

ℓq
∑

t=1

Xu,q,t − ℓqE[Xu,q]

∣

∣

∣

∣

∣

∣

> ε





+Pr

[

q ∈ V1 ∪ V2 :

∣

∣

∣

∣

∣

ℓ
∑

t=1

1{Mt≥q} − ℓq Pr[M ≥ q]

∣

∣

∣

∣

∣

> ε

]

≤ 4 exp(−
ε2

3ℓq
min
u∈[2]

(1/E[Xu,q ])) + 4 exp(−
ε2

3ℓq Pr[M ≥ q]
).
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+ Pr [∃u ∈ [2] : ℓqE[Xu,q]− ε < ku,q] (53b)

where (53a) follows the axioms of probability; where (53b) holds since conditioning on the event (O−
ℓq
)c allows

us to lower bound the term
∑ℓq

t=1 Xu,q,t, u ∈ [2], q ∈ [Q]; in addition, the term in (53b) becomes zero if ℓq ≥

t(unc)
q + ε

E[Xu,q ]
, ∀u ∈ [2] where t(unc)

q :=
ku,q

E[Xu,q ]
=

k1,q+k2,q

Pr[M≥q] .

Left Tail Bound for T (unc)
q : Similarly, for every q ∈ [Q], we have

Pr
[
T (unc)
q < ℓq

]

= Pr



ℓq−1∑

t=1

Xu,q,t ≥ ku,q, ∀u ∈ [2]




≤ Pr
[
O+

ℓq−1

]
+ Pr

[
ℓq−1∑

t=1

Xu,q,t ≥ ku,q, ∀u ∈ [2]
∣∣∣(O+

ℓq
)c

]

≤ Pr
[
O+

ℓq−1

]
+ Pr

[
(ℓq − 1)E[Xu,q] + ε ≥ ku,q, ∀u ∈ [2]

]
(54)

= Pr
[
O+

ℓq−1

]
+ 0,

if ∃u ∈ [2] : ℓq < t(unc)
q − ε

E[Xu,q ]
+ 1.

Concentration Result for T (unc)
q : Now we want to show that each T (unc)

q , q ∈ [Q] has a sharp concentration to

its mean t(unc)
q . Since Pr

[
|T (unc)

q − t(unc)
q | ≤ ε3, ∀q ∈ [Q]

]
= 1 − Pr

[
∃q ∈ [Q] : |T (unc)

q − t(unc)
q | > ε3

]
, based on the

results of (53) and (54), we have

Pr
[
∃q ∈ [Q] : |T (unc)

q − t(unc)
q | > ε3

]

= Pr
[
∃q ∈ [Q] : T (unc)

q > t(unc)
q + ε3

]

+ Pr
[
∃q ∈ [Q] : T (unc)

q < t(unc)
q − ε3

]

≤
∑

q∈[Q]

(Pr
[
O−

ℓq

]
+ Pr

[
O+

ℓq−1

]
), (55a)

where (55a) holds if



t(unc)
q + ε3 ≥ t(unc)

q + ε
E[Xu,q ]

t(unc)
q − ε3 < t(unc)

q − ε
E[Xu,q ]

+ 1,

∀q ∈ [Q]. (55b)

Thus, by choosing ε3 = max(u,q)∈[2]×[Q](
ε

E[Xu,q ]
), the bound in (55a) implies that for every q ∈ [Q], T (unc)

q

concentrates to its expected value given by t(unc)
q . According to the definition of T (unc) in (51), this also implies that

T (unc) concentrates to its expected value given by t(unc) := maxq∈[Q]{t
(unc)
q }. More precisely, for every ε3 > 0,

lim
minu∈[2],q∈[Q]:ku,p>0{ku,p}→∞

Pr
[∣∣∣T (unc) − t(unc)

∣∣∣ > ε3

]
= 0.

C. Number of packets not delivered by the end of a sub-phase

Next, we want to show that K (rtx)
u [Q], the number of packets only received by the other user ū, ū 6= u, u ∈ [2]

concentrates to its expectation. Recall that at time T (unc)

π(j) , the layers π(1), . . . , π(j) have finished their uncoded
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phase; the interval [T (unc)

π(j−1), T
(unc)

π(j) ), j ∈ [Q], is where of the j-th sub-phase of Phase1 takes place. We indicate the

average duration of the j-th sub-phase of Phase1 as ∆j := E[T (unc)

π(j) − T (unc)

π(j−1)], j ∈ [Q]. Based on our protocol

and considering the notation used in Theorem 2 , we define for u ∈ [2], q ∈ [Q], j ∈ N

K (unc)
u,q [j] =


ku,q −

T
(unc)

π(j)∑

t=1

Xu,q,t




+

(56)

where K (unc)
u,q [j] is the number of packets destined to user u on layer q that have not been received by any user by

the j-th sub-phase. Let K (unc)
u,q [0] = 0. By the definition of the RVs (T (unc)

π(j) , j ∈ [Q]) in (50), we have when q = j,

layer π(q) finishes its uncoded packets and K (unc)

u,π(q)[j] = 0. Thus, K (unc)

u,π(q)[j] ≥ 0, when q ≥ j.

We define K (rtx)
u [j] as the number of packets destined to user u ∈ [2] but not yet successfully received by user u

at time T (unc)

π(j) . Let us initialize K (rtx)
u [0] = 0, u ∈ [2]. By the description of our protocol, K (rtx)

u [j] is the number

of overheard packets from the previous sub-phase K (rtx)
u [j − 1], plus the number of overheard packets that were

sent uncoded during the time window [T (unc)

π(j−1), T
(unc)

π(j) ), minus the number of packets delivered in a network-coded

manner [T (unc)

π(j−1), T
(unc)

π(j) ). Let Iu,q,t be an indicator that user u ∈ [2] is scheduled to transmit an uncoded packet on

layer q ∈ [Q] at time t ∈ N and that this uncoded packet is received by the other user only; we have

Pr[Iu,q,t = 1] =
ku,q

k1,q + k2,q
Pr[M ≥ q,Nu < q].

By our protocol

K (rtx)
u [j] :=

[
K (rtx)

u [j − 1]−

j−1∑

q=1

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

1{Nu,t≥π(q)}

+

Q∑

q=j

min
( T

(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

Iu,π(q),t,K
(unc)

u,π(q)[j − 1]
)]+

, j ∈ [Q]. (57)

It can be easily checked that Bu[j] = Bu[j − 1] if two layers complete their uncoded phase at the same time (i.e.,

if T (unc)

π(j) = T (unc)

π(j−1)); the same holds if more that two layers finish their uncoded phase at the same time. This is

because we define
∑T

t=T+1 . . . = 0. For q ≥ j, we have

K (unc)

u,π(q)[j − 1]−

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

Iu,π(q),t

= ku,π(q) −

T
(unc)

π(j−1)∑

t=1

Xu,π(q),t −

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

Iu,π(q),t (58a)

≥ ku,π(q) −

T
(unc)

π(j−1)∑

t=1

Xu,π(q),t −

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

Xu,π(q),t (58b)

= ku,π(q) −

T
(unc)

π(j)∑

t=1

Xu,π(q),t (58c)

= K (unc)

u,π(q)[j] ≥ 0 (58d)

September 10, 2021 DRAFT



xxxvi

where (58a) and (58d) follow (56) and K (unc)

u,π(q)[j − 1] > 0,K (unc)

u,π(q)[j] ≥ 0 when q ≥ j; where (58b) holds because

in the j-th sub-phase, on layer π(q), the number of packets destined to user u has been received by at least one of

the users is no less than the number of packets destined to user u has been received by the unintended user only;

where (58c) simply groups the packets in different sub-phases together. Therefore, (57) can be simplified as

K (rtx)
u [j] =

[
K (rtx)

u [j − 1] +Du[j]

]+
(59)

where

Du[j] :=

Q∑

q=j

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

Iu,π(q),t −

j−1∑

q=1

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

1{Nu,t≥π(q)}, (60)

E[Du[j]] = ∆j




Q∑

q=j

Pr[Iu,π(q) = 1]−

j−1∑

q=1

Pr[Nu ≥ π(q)]


 . (61)

Before analyzing the concentration of RVs (K (rtx)
u [j], u ∈ [2], j ∈ [Q]) in (59), let us clarify some special cases.

Special cases: ∃q ∈ [Q] : k1,q + k2,q = 0. The above random variables and processes are well defined

if ∀q ∈ [Q] : k1,q + k2,q > 0 (in which case the probabilities in (49) are well defined and the RVs in (50)

are strictly positive). We describe here how the above has to be changed if ∃q ∈ [Q] : k1,q + k2,q = 0. Let

V0 := {q ∈ [Q] : k1,q + k2,q = 0}. There are no packets to be sent on the layers indexed by V0. We thus set Tq = 0

for all q ∈ V0, and Tπ(1) = . . . = Tπ(|V0|) = K (rtx)
u [1] = . . . = K (rtx)

u [|V0|] = 0. Note that the case |V0| = Q means

that there are no packets to transmit at all.

Next, we focus on the expectation of Bu[j] and define an outage-like event, for all ε > 0,

Ej :=

{
either ∃u ∈ [2] or q ∈ [j − 1]:

∣∣∣∣∣∣∣

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

1{Nu,t≥π(q)} −∆jPr[Nu ≥ π(q)]

∣∣∣∣∣∣∣
> ε, (62a)

or ∃u ∈ [2] or q ∈ [j : Q]:
∣∣∣∣∣∣∣

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

Iu,π(q),t −∆j Pr[Iu,π(q),t = 1]

∣∣∣∣∣∣∣
> ε

}
, j ∈ [Q]. (62b)

Now, we give the probability upper bound of the terms in (62a) and (62b) of Ej . Let Oℓπ(j−1)
:= O−

ℓπ(j−1)
∪O+

ℓπ(j−1)

and Oℓπ(j)
:= O−

ℓπ(j)
∪ O+

ℓπ(j)
, we have

Pr

[
∃u ∈ [2] or q ∈ [j − 1]:

∣∣∣∣∣∣∣

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

1{Nu,t≥π(q)} −∆j Pr[Nu ≥ π(q)]

∣∣∣∣∣∣∣
> ε

]

≤ Pr[Oℓπ(j−1)
∪Oℓπ(j)

]
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+ Pr

[
∃u ∈ [2] or q ∈ [j − 1]:

∣∣∣∣∣∣∣

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

1{Nu,t≥π(q)}

−∆j Pr[Nu ≥ π(q)]| > ε
∣∣∣(Oℓπ(j−1)

∪Oℓπ(j)
)c

]
(63a)

≤ Pr[Oℓπ(j−1)
∪Oℓπ(j)

]

+
∑

(u,q)∈[2]×[j−1]

Pr

[ ⌊t(unc)

π(j)
+ε3⌋∑

t=⌊t(unc)

π(j−1)
−ε3⌋+1

1{Nu,t≥π(q)}

−∆+
j Pr[Nu ≥ π(q)] > ε− (∆+

j −∆j) Pr[Nu ≥ π(q)]

]
(63b)

+
∑

(u,q)∈[2]×[j−1]

Pr

[ ⌊t(unc)

π(j)
−ε3⌋∑

t=⌊t(unc)

π(j−1)
+ε3⌋+1

1{Nu,t≥π(q)} −∆−
j

× Pr[Nu ≥ π(q)] < −
(
ε+ (∆−

j −∆j) Pr[Nu ≥ π(q)]
)]

(63c)

≤ Pr[Oℓπ(j−1)
∪Oℓπ(j)

]

+
∑

(u,q)∈[2]×[j−1]

(
exp(−

λu,q,1

3∆+
j

) + exp(−
λu,q,2

2∆−
j

)

)
(63d)

where

∆+
j := ⌊t(unc)

π(j) + ε3⌋ − ⌊t
(unc)

π(j−1) − ε3⌋, (63e)

∆−
j := ⌊t(unc)

π(j) − ε3⌋ − ⌊t
(unc)

π(j−1) + ε3⌋, (63f)

g1(p) :=

(
ε−

(
∆+

j −∆j

)
p
)2

p
, (63g)

g2(p) :=

(
ε+

(
∆−

j −∆j

)
p
)2

p
, (63h)

λu,q,1 := g1(Pr[Nu ≥ π(q)]),

λu,q,2 := g2(Pr[Nu ≥ π(q)]),

where (63a) follows the axioms of probability; (63b) and (63c) hold since conditioning the event (Oℓπ(j−1)
∪Oℓπ(j)

)c

allows us to lower and upper bound the term T (unc)

π(j−1) and T (unc)

π(j) (recall that T (unc)

π(j−1) and T (unc)

π(j) are integer-valued

RVs); in addition, to construct the same form as the Chernoff bound, we subtract (∆+
j −∆j) Pr[Nu ≥ π(q)] and

(∆−
j −∆j) Pr[Nu ≥ π(q)] from both sides of the inequalities within the probability of (63b) and (63c), respectively;

by the Chernoff bound, we obtain (63d); we also select ε3 to make ∆−
j > 0 in (63f). Note that when the number

of packets to be transmitted is large enough, we have shown that T (unc)

π(j) has a sharp concentration to its expectation,

which implies ∆−
j ≈ ∆j ≈ ∆+

j . In particular, in (63g) and (63h), for constant p ∈ (0, 1) and ε = o(∆
1
2+ǫ

j ),
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continue with (63d), we have

Pr

[
∃u ∈ [2] or q ∈ [j − 1]:

∣∣∣∣∣∣∣

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

1{Nu,t≥π(q)} −∆j Pr[Nu ≥ π(q)]

∣∣∣∣∣∣∣
> ε

]

≤ Pr[Oℓπ(j−1)
∪Oℓπ(j)

]

+
∑

(u,q)∈[2]×[j−1]

(
exp

(
−o(

∆2ǫ
j

3Pr[Nu ≥ π(q)]
)

)
+ exp

(
−o(

∆2ǫ
j

2Pr[Nu ≥ π(q)]
)

))
.

Similarly,

Pr

[
∃u ∈ [2] or q ∈ [j : Q]:

∣∣∣∣∣∣∣

T
(unc)

π(j)∑

t=T
(unc)

π(j−1)
+1

Iu,π(q),t −∆j Pr[Iu,π(q) = 1]

∣∣∣∣∣∣∣
> ε

]

≤ Pr
[
Oℓπ(j−1)

∪ Oℓπ(j)

]

+
∑

(u,q)∈[2]×[j:Q]

(
exp

(
−o(

∆2ǫ
j

3Pr[Iu,π(q) = 1]
)

)
+ exp

(
−o(

∆2ǫ
j

2Pr[Iu,π(q) = 1]
)

))
.

By the union bound, we have

Pr[Ej ] ≤ 2Pr
[
Oℓπ(j−1)

∪ Oℓπ(j)

]

+
∑

(u,q)∈[2]×[j−1]

(
exp

(
−o(

∆2ǫ
j

3Pr[Nu ≥ π(q)]
)

)
+ exp

(
−o(

∆2ǫ
j

2Pr[Nu ≥ π(q)]
)

))

+
∑

(u,q)∈[2]×[j:Q]

(
exp

(
−o(

∆2ǫ
j

3Pr[Iu,π(q) = 1]
)

)
+ exp

(
−o(

∆2ǫ
j

2Pr[Iu,π(q) = 1]
)

))
. (64)

This implies that the outage event Ej , ∀j ∈ [Q] has vanishing probability when ∆j , the expectation of the number

of slots of sub-phase j is large. Given Ecj , by (60), we obtain

Du[j] ∈ [E[Du[j]]− Qε,E[Du[j]] + Qε] . (65)

Following the same technique as in (53) and (54), we have

Pr[∃u ∈ [2] : |Du[j]− E[Du[j]]| > ε4]

≤ Pr[Ej ] + Pr
[
∃u ∈ [2] : |Du[j]− E[Du[j]]| > ε4

∣∣∣Ecj
]

(66a)

≤ Pr[Ej ] + Pr [∃u ∈ [2] : |E[Du[j]] + Qε− E[Du[j]]| > ε4] , (66b)

where (66a) follows the axioms of probability; where (66b) follows (65); in addition, by choosing ε4 = Qε, the

second term in (66b) becomes zero. Thus, we have shown that the RVs (Du[j], u ∈ [2], j ∈ [Q]) concentrate to

their expectations, and by (59), we obtain that

E[K (rtx)
u [j]] =

[
E[K (rtx)

u [j − 1]] + E[Du[j]]
]+
≥ 0. (67)
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In the following, we simplify the expression of E[K (rtx)
u [j]]. Recall that RVs (K (rtx)

u [j], u ∈ [2], j ∈ [Q]) are

nonnegative. We partition the expectations of RVs (K (rtx)
u [j], u ∈ [2], j ∈ [Q]) into two sets W and W c where

W =
{
E[K (rtx)

u [j]] > 0, ∀u ∈ [2], j ∈ [Q]
}
, and W c =

{
∃u ∈ [2], j ∈ [Q] : E[K (rtx)

u [j]] = 0
}
. Since we are working

on the case that |V12| = Q, we have E[K (rtx)
u [1]] = t(unc)

π(1)

∑Q

q=1 Pr[Iu,π(q) = 1] > 0, we can write

W c =
{
∃u ∈ [2], j ∈ [2 : Q] : E[K (rtx)

u [j]] = 0
}
. (68)

Recall that E[Du[1]] = t(unc)

π(1)

∑Q

q=j Pr[Iu,π(q) = 1] by (61). Therefore, in set W , according to (67) and E[K (rtx)
u [0]] =

0, we have for j ∈ [Q],

E[K (rtx)
u [j]] =

∑

q∈[j]

E[Du[q]]. (69)

Next, we give the expression of E[K (rtx)
u [Q]] in set W c by induction. We want to show that

E[K (rtx)
u [j + 1]] = 0,

if ∃u ∈ [2],min(j ∈ [2 : Q− 1]) : E[K (rtx)
u [j]] = 0, (70)

which implies E[K (rtx)
u [Q]] = 0, when W c is true. By (67), if ∃u ∈ [2],min(j ∈ [2 : Q− 1]) : E[K (rtx)

u [j]] = 0, we

have

E[K (rtx)
u [i]] =





∑
q∈[i] E[Du[q]] > 0, ∀i < j,

[
E[K (rtx)

u [i− 1]] + E[Du[i]]
]+

= 0, i ≥ j,

(71)

which implies

E[Du[j]]

= ∆j




Q∑

q=j

Pr
[
Iu,π(q) = 1

]
−

j−1∑

q=1

Pr [Nu ≥ π(q)]


 < 0,

E[K (rtx)
u [j + 1]] = [E[Du[j + 1]]]

+
= 0

where

E[Du[j + 1]]

= ∆j+1




Q∑

q=j+1

Pr
[
Iu,π(q) = 1

]
−

j∑

q=1

Pr [Nu ≥ π(q)]




≤ E[Du[j]] < 0.

Thus, we have shown (70), which implies that for set W we have

E[K (rtx)
u [j]] =


∑

q∈[j]

E[Du[q]]



+

, j ∈ [Q]. (72)
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By considering (69) and (72), we conclude that E[K (rtx)
u [j]] =

[∑
q∈[j] E[Du[q]]

]+
, j ∈ [Q], which is the expression

in (16). Also, E[K (rtx)
u [Q]] can be written in closed form as follows

E[K (rtx)
u [Q]] =


∑

q∈[Q]

ku,π(q) +
∑

q∈[Q]

kū,π(q)
Pr[Nu ≥ π(q)]

Pr[M ≥ π(q)]

−E[Nu]
k1,π(Q) + k2,π(Q)

Pr[M ≥ π(Q)]

]+
, (73)

which is the expression in (18). Next, given (∪j∈[Q]Ej)
c defined in (62), we want to find the range of K (rtx)

u [Q], u ∈

[2]. By (59) and (65), starting with Bu[1], given Ec1 , we have

K (rtx)
u [1] = Du[1] ∈

[
[E[Du[1]]− Qε]+ ,E[Du[1]] + Qε

]
, (74a)

where E[Du[1]] = ∆1

∑Q

q=1 Pr[Iu,π(q) = 1] > 0. For K (rtx)
u [2], given (E1 ∪ E2)2 and continuing with (74a),

K (rtx)
u [2] =

[
K (rtx)

u [1] +Du[2]
]+

∈

[[
[E[Du[1]]− Qε]

+
+ E[Du[2]]− Qε

]+
,

[E[Du[1]] + Qε+ E[Du[2]] + Qε]+
]

(74b)

⊆
[
[E[Du[1]] + E[Du[2]]− 2Qε]+ ,

[E[Du[1]] + E[Du[2]] + 2Qε]
+
]

(74c)

where E[Du[2]] = ∆2

(∑Q

q=2 Pr[Iu,π(q) = 1]− Pr[Nu ≥ π(1)]
)
, which may be positive or negative depending on

the channel statistics. Note that (74b) is a subset of (74c) because [a+ b]+ ≤ [[a]+ + b]
+
, for a, b ∈ R. Similarly,

after Q iterations, we can obtain that

K (rtx)
u [Q]

∈




∑

q∈[Q]

E[Du[q]]− Q2ε



+

,


∑

q∈[Q]

E[Du[q]] + Q2ε



+

+

. (74d)

Now that we have all the components to show that the RVs (K (rtx)
u [Q], u ∈ [2]) concentrate to their mean, i.e.,

Pr[∃u ∈ [2] :
∣∣K (rtx)

u [Q]− E[K (rtx)
u [Q]]

∣∣ > ε5]

≤ Pr[∪j∈[Q]Ej ]

+ Pr
[
∃u ∈ [2] :

∣∣K (rtx)
u [Q]− E[K (rtx)

u [Q]]
∣∣ > ε5

∣∣∣(∪j∈[Q]Ej)
c
]

(75a)

≤ Pr[∪j∈[Q]Ej ]

+Pr


∃u ∈ [2] :


∑

q∈[Q]

E[Du[q]] + Q2ε



+

− E[K (rtx)
u [Q]] > ε5


 (75b)

+Pr


∃u ∈ [2] :


∑

q∈[Q]

E[Du[q]]− Q2ε



+

− E[K (rtx)
u [Q]] < −ε5


 (75c)

≤ Pr[∪j∈[Q]Ej ] + 0, if ε5 = Q
2ε, (75d)
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where (75a) follows by the axioms of probability; (75b) and (75c) hold since conditioning on (∪j∈[Q]Ej)
c gives

the range of Bu[Q] characterized in (74d). By choosing ε5 = Q2ε, the terms in (75b) and (75c) become zero. The

reason is explained below.

To simplify the notations, let x =
∑

q∈[Q] E[Du[q]] ∈ R. We want to show that

0 ≤ [x+ ε5]
+ − [x]+ ≤ ε5, (76a)

−ε5 ≤ [x− ε5]
+ − [x]+ ≤ 0. (76b)

It can be proved by considering the following cases.

1) x ∈ (−∞,−ε5]:

[x+ ε5]
+ − [x]+ = 0− 0 = 0,

[x− ε5]
+ − [x]+ = 0− 0 = 0.

2) x ∈ (−ε5, 0]:

[x+ ε5]
+ − [x]+ = x+ ε5 − 0 = x+ ε5 ∈ (0, ε5],

[x− ε5]
+ − [x]+ = 0− 0 = 0.

3) x ∈ (0, ε5]:

[x+ ε5]
+ − [x]+ = x+ ε5 − x = ε5,

[x− ε5]
+ − [x]+ = 0− x = −x ∈ [−ε5, 0).

4) x ∈ (ε5,+∞):

[x+ ε5]
+ − [x]+ = x+ ε5 − x = ε5,

[x− ε5]
+ − [x]+ = x− ε5 − x = −ε5.

Thus, we have shown (76) which implies
[∑

q∈[Q] E[Du[q]] + Q2ε
]+
− E[K (rtx)

u [Q]] ∈ [0,Q2ε], u ∈ [2], and
[∑

q∈[Q] E[Du[q]]− Q2ε
]+
−E[K (rtx)

u [Q]] ∈ [−Q2ε, 0]. Thus, we choose ε5 = Q2ε and the bound in (75d) indicates

that K (rtx)
u [Q], u ∈ [2] has a sharp concentration to its mean E[K (rtx)

u [Q]] characterized by (73).

D. Duration of Phase2

In Phase2 the expression of the time needed for this phase is the same as the single-layer case, namely

T (NC) := min


ℓ :

ℓ∑

j=1

Nu,j ≥ K (rtx)
u [Q], ∀u ∈ [2]


 . (77)

Then, by similar steps as in (40)–(46), we obtain the right and left tail bounds for T (NC).

Right Tail Bound for T (NC): Recall that (T (unc),K (rtx)
1 [Q],K (rtx)

2 [Q]), which are functions of the channels gains

in Phase1, are independent of the channel gains in Phase2 because the channel is memoryless. For all ℓ ≥ 0, we

bound the right tail of T (NC) as

Pr
[
T (NC) > ℓ

]

= Pr

[
∃u ∈ [2] :

ℓ∑

t=1

Nu,t < K (rtx)
u [Q]

]
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≤ Pr

[
∃u ∈ [2] :

ℓ∑

t=1

Nu,t < ℓE[Nu]− ε

]

+ Pr
[
∃u ∈ [2] : K (rtx)

u [Q] > E[K (rtx)
u [Q]] + ε5

]

+ Pr
[
∃u ∈ [2] : ℓE[Nu]− ε < E[K (rtx)

u [Q]] + ε5
]

(78a)

where the term in (78a) is zero if ℓ ≥ t(NC) + (ε5 + ε)maxu∈[2] {1/E[Nu]} , where

t(NC) = max
u∈[2]

{
E[K (rtx)

u [Q]]

E[Nu]

}
. (78b)

Left Tail Bound for T (NC): Similarly, we bound the left tail of T (NC) as

Pr
[
T (NC) < ℓ

]

= Pr

[
∀u ∈ [2] :

ℓ∑

t=1

Nu,t ≥ K (rtx)
u [Q]

]

≤ Pr

[
∃u ∈ [2] :

ℓ∑

t=1

Nu,t > ℓE[Nu] + ε

]

+ Pr
[
∃u ∈ [2] : K (rtx)

u [Q] < E[K (rtx)
u [Q]]− ε5

]

+ Pr
[
∀u ∈ [2] : ℓE[Nu] + ε > E[K (rtx)

u [Q]]− ε5
]

(79)

where the term in (79) is zero if ℓ ≤ t(NC) − (ε5 + ε)maxu∈[2] {1/E[Nu]} .

Concentration Result for T (NC): Combining the results in (78) and (79), we have

Pr
[∣∣∣T (NC) − t(NC)

∣∣∣ > ε6

]

= Pr
[
T (NC) > t(NC) + ε6

]
+ Pr

[
T (NC) < t(NC) − ε6

]

≤ Pr

[
∃u ∈ [2] :

∣∣∣∣∣
ℓ∑

t=1

Nu,t − ℓE[Nu]

∣∣∣∣∣ > ε

]

+ Pr
[
∃u ∈ [2] : |K (rtx)

u [Q]− E[K (rtx)
u [Q]]| > ε5

]
+ 0

≤ Pr[Cℓ] + Pr
[
(∪j∈[Q]Ej)

]
(80)

if 


t(NC) + ε6 ≥ t(NC) + (ε5 + ε)maxu∈[2] {1/E[Nu]}

t(NC) − ε6 ≤ t(NC) − (ε5 + ε)maxu∈[2] {1/E[Nu]}
.

By choosing ε6 = (Q2+1)εmaxu∈[2] {1/E[Nu]}, the bound in (80) implies that T (NC) concentrates to its expected

value given by t(NC) characterized in (78b). Therefore, for all ε6 > 0,

lim
minu∈[2],q∈[Q]:ku,p>0{ku,p}→∞

Pr
[∣∣∣T (NC) − t(NC)

∣∣∣ > ε6

]
= 0.
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E. Total Duration

Finally, we are interested in T := T (unc) + T (NC), for which we have

Pr
[∣∣T (unc) + T (NC) − (t(unc) + t(NC))

∣∣ > ε7
]

= 1− Pr
[∣∣T (unc) + T (NC) − (t(unc) + t(NC))

∣∣ ≤ ε7
]

(81a)

≤ 1− Pr
[∣∣T (unc) − t(unc)

∣∣ ≤ ε7
2
,
∣∣T (NC) − t(NC)

∣∣ ≤ ε7
2

]
(81b)

≤ Pr
[∣∣T (unc) − t(unc)

∣∣ > ε7
2

]
+ Pr

[∣∣T (NC) − t(NC)
∣∣ > ε7

2

]
(81c)

≤
∑

q∈[Q]

(Pr
[
O−

ℓq

]
+ Pr

[
O+

ℓq

]
) + Pr[Cℓ] + Pr

[
(∪j∈[Q]Ej)

]
(81d)

if

ε7 = max{2ε3, 2ε6}

= max

{
4ε

1− ε
, 2(Q2 + 1)εmax

u∈[2]
{1/E[Nu]}

}
, (81e)

where (81a) follows from the complement rule; (81b) follows from the triangle inequality; (81c) follows from the

complement rule and the union bound; (81d) follows from the results in (55) and (80). The bound in (81d) implies

that the total time T := T (unc) +T (NC) has a sharp concentration at the expected value E[T ] := t(unc) + t(NC), where

t(unc) + t(NC)

=
k1,π(Q) + k2,π(Q)

Pr[M ≥ π(Q)]
+ max

u∈[2]

(
1

E[Nu]
×

[ ∑

q∈[Q]

ku,q +
∑

q∈[Q]

kū,q
Pr[Nu ≥ q]

Pr[M ≥ q]
−

E[Nu]
k1,π(Q) + k2,π(Q)

Pr[M ≥ q]

]+
)
, (u, ū) ∈ [2]2 : u 6= ū. (82)

We define the (long-term average zero-error) rates as Ru,q =
ku,q

E[T (unc)+T (NC)] , u ∈ [2], q ∈ [Q], and Ru =
∑

q∈[Q] ku,q

E[T (unc)+T (NC)] =
∑

q∈[Q] Ru,q, which are well defined since E[T (unc) + T (NC)] = 0 if and only if all ku,q’s are zero

which is not interesting. Thus, the achievable region is given by

C in :=
{
(R1, R2) ∈ R

2
+ : Ru :=

∑

q∈[Q]

Ru,q, u ∈ [2],

R1,π(Q) +R2,π(Q)

Pr[M ≥ π(Q)]
+ max

u∈[2]

(
1

E[Nu]
×

[ ∑

q∈[Q]

Ru,q +
∑

q∈[Q]

Rū,q

Pr[Nu ≥ q]

Pr[M ≥ q]
−

E[Nu]
R1,π(Q) +R2,π(Q)

Pr[M ≥ q]

]+
)
≤ 1,

(u, ū) ∈ [2]2 : u 6= ū, for some Ru,q ≥ 0, u ∈ [2], q ∈ [Q]
}
.

September 10, 2021 DRAFT



xliv

APPENDIX D

PROOF OF THEOREM 3

A. Aim

In this section, we follow similar steps as in [18] with Lyapunov drift analysis, to show that if the arrival

rates are within the region S in characterized in (22), then the Markov chain {Ku,q[m], u ∈ [2], q ∈ [Q]}m∈N is

ergodic. Ergodicity implies that there exists a stationary distribution, which implies that the stochastic process

{|Q01;t|, |Q02;t|, . . . , |Q0Q;t|, |Q1;t|, |Q2;t|}t∈N
, characterizing the number of packets in the queues, is stable. The

difference is that [18] is based on the long-term rewards of the Markov chains, while our work is based on the

concentration result shown in Appendix C.

B. Proofs

Let us define a Lyapunov function

v(k) := max
{ k1,q + k2,q
Pr[M ≥ q]

, ∀q ∈ [Q],

∑

q∈[Q]

k1,q
E[N1]

+
∑

q∈[Q]

k2,q
E[N1]

Pr[N1 ≥ q]

Pr[M ≥ q]
,

∑

q∈[Q]

k2,q
E[N2]

+
∑

q∈[Q]

k1,q
E[N2]

Pr[N2 ≥ q]

Pr[M ≥ q]

}
, (83)

where k is the vector containing all the ku,q’s, where ku,q is the number of packets for user u in queue Q0q at

the beginning of epoch m. Let |k| :=
√
(
∑

q∈[Q] k1,q)
2 + (

∑
q∈[Q] k2,q)

2, K[m] := (Ku,q[m], ∀u, ∀q),m ∈ N.

From [18, Theorem 6], to show the ergodicity of the Markov chain we need that

E
[
v(K[m+ 1])

∣∣K[m] = k
]
<∞ (84)

holds for k inside a bounded region for all m ∈ N, and for some ǫ > 0

E
[
v(K[m+ 1])

∣∣K[m] = k
]
≤ (1 − ǫ)v(k) (85)

holds for k outside a bounded region for all m ∈ N.

Next, we characterize v(K[m + 1]). Denote by Ĝu,q(k) the number of packets destined to receiver u on layer

q that arrived to the system during epoch m, given that there are k packets at the beginning of epoch m. Let

Ĝ(k) := (Ĝu,q(k), ∀u, ∀q). We use T [m] to represent the total time needed for epoch m. Considering the definitions

and the operation of the scheme, we obtain Ku,q[m + 1] = Ĝu,q(k) =
∑

l∈T [m] |Au,q;l| for u ∈ [2], q ∈ [Q] and

v(K[m+ 1]) = v(Ĝ(k)).

Now that we showed v(K[m+ 1]) = v(Ĝ(k)), our next step is to characterize
E[v(Ĝ(k))]

v(k) . However, we should

first define some important limits.

We showed in (82) in Appendix C that T , the time needed to successfully complete the transmission of k packets,

has a sharp concentration to its mean value E [T ] = v(k) when |k| → ∞. Since we assume that the number of

packets to be transmitted is large enough at each epoch, also in (82), we showed that T [m] has a sharp concentration
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at v(k), i.e., for every ε > 0, we have limm→∞ Pr[∪∞i=m{|T [m] − v(k)| > ε}] = 0. Based on [27, Proposition

1.1], we have T [m]
a.s.
−−→ v(k), as m→∞. Thus,

lim
|k|→∞

T [m]

v(k)
= 1, lim

|k|→∞

E[T [m]]

v(k)
= 1. (86)

As |k| → ∞, T [m]→∞, and using the strong law of large numbers, we have lim|k|→∞

∑
l∈T [m] |Au,q;l|

T [m] = λu,q.

Now we return to our original goal of characterizing
E[v(Ĝ(k))]

v(k) . By Wald’s equation [28, Theorem 12],

E[Ĝu,q(k)] = E[
∑

l∈T [m]

|Au,q;l|] = λu,qE[T [m]] (87)

and considering (86), we have

lim
|k|→∞

Ĝu,q(k)

v(k)
= lim

|k|→∞

Ĝu,q(k])

T [m]

T [m]

v(k)
= λu,q, (88)

lim
|k|→∞

E[Ĝu,q(k)]

v(k)
= lim

|k|→∞

λu,qE[T [m]]

v(k)
= λu,q. (89)

According to [27, Corollary 4.1.], (89) implies that the sequence
{

Ĝu,q(k)
v(k) , u ∈ [2], q ∈ [Q]

}
is uniformly integrable.

Moreover,
v(Ĝ(k))
v(k) is uniformly integrable since the sum and the maximum of uniformly integrable functions are

also uniformly integrable. Let λ := (λu,q, ∀u ∈ [2], q ∈ [Q]). By (88), we can write

lim
|k|→∞

v(Ĝ(k))

v(k)
= lim

|k|→∞
max

{

Ĝ1,q(k) + Ĝ2,q(k)

Pr[M ≥ q]v(k)
,∀q ∈ [Q],

∑

q∈[Q]

Ĝ1,q(k)

E[N1]v(k)
+

∑

q∈[Q]

Ĝ2,q(k)

E[N1]v(k)

Pr[N1 ≥ q]

Pr[M ≥ q]
,
∑

q∈[Q]

Ĝ2,q(k)

E[N2]v(k)

+
∑

q∈[Q]

Ĝ1,q(k)

E[N2]v(k)

Pr[N2 ≥ q]

Pr[M ≥ q]

}
= v(λ)

and since
v(Ĝ(k))
v(k) is uniformly integrable, we have lim|k|→∞

E[v(Ĝ(k))]
v(k) = v(λ).

Next, for some ǫ > 0, pick k(ǫ) large enough such that |k| > k(ǫ); pick λ in S in, so that v(λ) ≤ 1 − ǫ. As a

result,

E[v(Ĝ(k))]

v(k)
≤ v(λ) +

ǫ

2
≤ 1− ǫ+

ǫ

2
= 1−

ǫ

2
. (90)

The inequality in (90) shows that the condition in (85) is satisfied. Let us now focus on the condition in (84),

and characterize E[v(Ĝ(k))]. It is quite straightforward to show that E[T [m]] <∞ when |k| ≤ k(ǫ). By (87), we

have E[Ĝu,q(k)] <∞. This indicates that the sequence
{
Ĝu,q(k), u ∈ [2], q ∈ [Q]

}
is uniformly integrable by [27,

Corollary 4.1], and v(Ĝ(k)) is uniformly integrable since the sum and the maximum of uniformly integrable

functions are also uniformly integrable. Thus, E[v(Ĝ(k))] < ∞, and this concludes that the condition in (84)

holds.

Now that we showed that both conditions in (84) and (85) are satisfied, we can conclude that the Markov Chain

{Ku,q[m], u ∈ [2], q ∈ [Q]}m∈N is geometrically ergodic by following [18, Theorem 6]. Also, {|Q01;t|, |Q02;t|,
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. . . , |Q0Q;t|, |Q1;t|, |Q2;t|}t∈N is regenerative concerning the renewal process characterizing the time needed for

successive returns of the process {(Ku,q[m], u ∈ [2], q ∈ [Q])}m∈N to the all-zero state. The renewal process is non-

lattice and the regenerative process is right-continuous and has left-hand limits. This implies that there exists a distri-

bution function F (x) satisfying the conditions in definition such that {|Q01;t|, |Q02;t|, . . . , |Q0Q;t|, |Q1;t|, |Q2;t|}t∈N

converges in distribution to it by [28, Theorem 20]. Finally, we conclude that if the arrival rates are in the interior of

the region S in, then the stochastic process
{
|Q01;t|, |Q02;t|, . . . , |Q0Q;t|, |Q1;t|, |Q2;t|

}
t∈N

representing the length

of queues is stable. This concludes the proof.

APPENDIX E

OPTIMALITY CONDITIONS OF THEOREM 4

A. Aim

In this section, we demonstrate sufficient conditions for which the achievable region in Theorem 3 coincides

with the outer bound in Theorem 1 for K = 2 users and Q = 2 layers. They are given as (C1) either bound (28b)

and bound (28c) are the same and bound (28a) and bound (28d) are symmetric, and (C2) either bound (28b) or

bound (28c) is redundant, (C3) either
Pr[N1≥2]
Pr[N1≥1] ≥

Pr[M≥2]
Pr[M≥1] ≥

Pr[N2≥2]
Pr[N2≥1] or

Pr[N2≥2]
Pr[N2≥1] ≥

Pr[M≥2]
Pr[M≥1] ≥

Pr[N1≥2]
Pr[N1≥1] .

In general, if all the inequalities in (28) are active, the region of the outer bound has three corner points. The idea

behind these conditions is that we are simplifying the outer bound in (28) by reducing the number of corner points.

Specifically, (C1) has one corner point, (C2) and (C3) give two corner points. The key technique to prove (C1) is

that we assign the number of packets to be transmitted on each layer specifically depends on the property of the

channel model in Table II (i.e., user 1 and 2 have the same ability to receive packets on layer 1 and 2 separately

and user 1 and 2 either receive or erase a packet on layer 2 at the same time), and to prove (C2) and (C3) is the

Fourier Motzkin Elimination (FME) procedure.

B. Proof of (C1)

Based on the channel statistics in Table II, we have the outer bound

R1 +
x2 + x3 + x4

2x2 + x3 + x4
R2 ≤ x2 + x3 + 2x4, (91a)

R1 +R2 ≤ 2x2 + x3 + 2x4, (91b)

x2 + x3 + x4

2x2 + x3 + x4
R1 +R2 ≤ x2 + x3 + 2x4. (91c)

The intersection point P of (91a) and (91c) is ( (2x2+x3+x4)(x2+x3+2x4)
3x2+2x3+2x4

, (2x2+x3+x4)(x2+x3+2x4)
3x2+2x3+2x4

). After some

simple linear algebra steps, we can obtain that the corner points of (x2 + x3 + 2x4, 0), P and (0, x2 + x3 + 2x4)

all satisfy (91b), which implies that (91b) is redundant. The corner points on the axes are trivial, and we only

need to check if P is in the achievable stability region of Theorem 3. In fact, the corner point P is achievable

when there are k packets for user 1 and 2 respectively. All the uncoded packets are transmitted on layer 1; the

overheard packets are transmitted on layer 2. Using the same notations as we introduced in Section III, we assign

k1,1 = k2,1 = k, k1,2 = k2,2 = 0. The number of slots to finish the uncoded packets are t(unc)

π(1) =
k+k

Pr[M≥1] , t(unc)

π(2) = 0.
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Also, t(unc) = t(unc)

π(1). The numbers of overheard packets to be transmitted in a network coded manner in Phase2 for

two users are k(rem)
1 =

[
k(1− Pr[N1≥1]

Pr[M≥1] )− 2kPr[N1≥2]
Pr[M≥1]

]+
and k(rem)

2 =
[
k(1− Pr[N2≥1]

Pr[M≥1] )− 2kPr[N2≥2]
Pr[M≥1]

]+
. Since

Pr[N1 ≥ 1] = Pr[N2 ≥ 1] and Pr[N1 ≥ 2] = Pr[N2 ≥ 2], we have k(rem)
1 = k(rem)

2 , which is positive when

x2 ≥ 2x4. The number of slots to finish Phase2 is t(NC) =
k

(rem)
1

E[N1]
. The total number of slots is t = t(unc) + t(NC).

Therefore, R1 = R2 = k
t
= (2x2+x3+x4)(x2+x3+2x4)

3x2+2x3+2x4
, which is the corner point P . Thus, with this packet assignment

method, the single corner point P besides the two on the axes in the outer bound is achievable, which implies that

the optimality holds under condition (C1).

C. Proof of (C2) and (C3)

Since there are four bounds in (28) for the capacity outer bound, besides the two axes, our idea is to simplify the

outer bound of the capacity region by making some of the four bounds redundant. Comparing the inequality set of

the inner bound after FME with the outer bound, we obtain the conditions for these two regions coincide. For the

sake of notation simplicity, let Pr[N1 ≥ q] = aq, Pr[N2 ≥ q] = bq, Pr[M ≥ q] = cq, ∀q ∈ [2]. Define (28a) as

bound.A, (28b) as bound.B, (28c) as bound.C and (28d) as bound.D. Rewrite the inner bound of Theorem 2 as

R1,1 +R2,1

c1
< 1,

R1,2 +R2,2

c2
< 1, (92a)

R1

a1 + a2
+

a1
c1

R2,1

a1 + a2
+

a2
c2

R2,2

a1 + a2
< 1, (92b)

R2

b1 + b2
+

b1
c1

R1,1

b1 + b2
+

b2
c2

R1,2

b1 + b2
< 1; (92c)

rewrite (27) as ξ1 := max
(

c1
a1
, c2
a2

)
≥ ξ2 := min

(
c1
a1
, c2
a2

)
≥ 1 ≥ ξ3 := max

(
b1
c1
, b2
c2

)
≥ ξ4 := min

(
b1
c1
, b2
c2

)
≥ 0.

To easily express all the corner points, we also represent the axis of R1 as bound.1, the axis of R2 is as bound.2.

Let (RXY
1 , RXY

2 ) denote the intersection point between bound.X and bound.Y. It is easy to check that when

Pr[N1≥2]
Pr[N1≥1] =

Pr[N2≥2]
Pr[N2≥1] =

Pr[M≥2]
Pr[M≥1] , both bound.B and bound.C are redundant and the outer bound in (28) becomes

identical to the inner bound in (92).

Next, we focus on the case
Pr[N1≥2]
Pr[N1≥1] 6=

Pr[N2≥2]
Pr[N2≥1] 6=

Pr[M≥2]
Pr[M≥1] . By FME, the region in (92) can be equivalently

written as follows in terms of R1 and R2,

bounds (28a) to (28d), (93a)

R1 +R2 ≤ c1 + c2, (93b)

bound in (94) next, (93c)

where (93c) has the following expression, depending on the case:

1) ξ1 = c1
a1

> ξ2 = c2
a2

, ξ3 = b1
c1

> ξ4 = b2
c2

:

b1c2
b1c2 − c1b2

R1 + (1 +
c1c2

b1c2 − c1b2
)R2 ≤

c1 + c2 + c1c2
b1 + b2

b1c2 − c1b2
. (94a)

2) ξ1 = c2
a2

> ξ2 = c1
a1

, ξ3 = b1
c1

> ξ4 = b2
c2

:

(
c1

a1c2 − c1a2
+

b1
b1c2 − c1b2

)R1 + (
c1

b1c2 − c1b2
+
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a1
a1c2 − c1a2

)R2 ≤ 1 + c1
a1 + a2

a1c2 − c1a2
+ c1

b1 + b2
b1c2 − c1b2

. (94b)

3) ξ1 = c2
a2

> ξ2 = c1
a1

, ξ3 = b2
c2

> ξ4 = b1
c1

:

(1 +
c1c2

a1c2 − a2c1
)R1 +

a1c2
a1c2 − a2c1

R2 ≤ c1 + c2

+ c1c2
a1 + a2

a1c2 − a2c1
. (94c)

4) ξ1 = c1
a1

> ξ2 = c2
a2

, ξ3 = b2
c2

> ξ4 = b1
c1

:

(1 +
c1c2

a2c1 − a1c2
)R1 + (

c2
b2

+
a2c1

a2c1 − a1c2
)R2 ≤

c1 + c2 +
c2b1
b2

+ c1c2
a1 + a2

a2c1 − a1c2
. (94d)

First, consider the condition (C1) that one of bound.B and bound.C in the outer bound is redundant. To give

the explicit expressions of C1, we define the convex polygonal region surrounded by (bound.1, bound.A, bound.C,

bound.D, bound.2) as RnoB, and the convex polygonal region surrounded by (bound.1, bound.B, bound.2) as RonlyB.

Similarly, define the convex polygonal region surrounded by (bound.1, bound.A, bound.B, bound.D, bound.2) as

RnoC, and the convex polygonal region surrounded by (bound.1, bound.C, bound.2) as RonlyC.

The condition of bound.B in (28) redundant is that RnoB is a subset of RonlyB. Likewise, bound.C in (28)

is redundant if RnoC is a subset of RonlyC. Also, RnoB is the convex-hull of [(0, 0), (R1A
1 , 0), (RAC

1 , RAC
2 ),

(RCD
1 , RCD

2 ), (0, RD2
2 )];RnoC is the convex-hull of [(0, 0), (R1A

1 , 0), (RAB
1 , RAB

2 ), (RBD
1 , RBD

2 ), (0, RD2
2 )], where

R1A
1 = E[N1], RD2

2 = E[N2], R
AC
1 = ξ1E[N1]−ξ3E[M ]

ξ1−ξ3
, RAC

2 = ξ1ξ3
E[M ]−E[N1]

ξ1−ξ3
, RCD

1 = ξ3E[M ]−E[N2]
ξ3−ξ4

, RCD
2 =

ξ3E[N2]−ξ3ξ4E[M ]
ξ3−ξ4

, RAB
1 = ξ1E[N1]−E[M ]

ξ1−ξ2
, RAB

2 = ξ1E[M ]−ξ1ξ2E[N1]
ξ1−ξ2

, RBD
1 = E[M ]−E[N2]

ξ2−ξ4
, RBD

2 = ξ2E[N2]−ξ4E[M ]
ξ2−ξ4

.

Hence, we need all the corner points of RnoB inside the region of RonlyB to make bound.B inactive. It is obvious

that the corner points on the R1- and R2-axis of RonlyB are outside RnoB. So we further need



ξ2R

AC
1 +RAC

2 ≤ E[M ]

ξ2R
CD
1 + RCD

2 ≤ E[M ].

(95)

Plugging the coordinates of (RAC
1 , RAC

2 ) and (RCD
1 , RCD

2 ) into (95), we obtain




ξ1(ξ2−ξ3)E[N1]
ξ1(1−ξ3)+ξ3(ξ2−1) ≤ E[M ]

E[M ] ≤ (ξ2−ξ3)E[N2]
ξ4(1−ξ3)+ξ3(ξ2−1) .

(96)

Similarly, bound.C in (28) is redundant if R1,AB +
R2,AB

ξ3
≤ E[M ] and R1,BD +

R2,BD

ξ3
≤ E[M ], which gives

(ξ2−ξ3)E[N2]
ξ4(1−ξ3)+ξ3(ξ2−1) ≤ E[M ] and E[M ] ≤ ξ1(ξ2−ξ3)E[N1]

ξ1(1−ξ3)+ξ3(ξ2−1) . Furthermore, concerning condition (C2) and taking

bound.B redundant as an example, after some simple algebra, we list all possible conditions of (96) as follows.

1) ξ1 = c1
a1

> ξ2 = c2
a2

; ξ3 = b1
c1

> ξ4 = b2
c2

: b1(c1 + c2) ≤ a2b1 + c21 and a2b1 + c22 ≤ a2(c1 + c2).

2) ξ1 = c2
a2

> ξ2 = c1
a1

; ξ3 = b1
c1

> ξ4 = b2
c2

: b1(c1 + c2) ≤ a1b1 + c1c2 and a1b1 + c1c2 ≤ a1(c1 + c2).

3) ξ1 = c1
a1

> ξ2 = c2
a2

; ξ3 = b2
c2

> ξ4 = b1
c1

: b2(c1 + c2) ≤ a2b2 + c1c2 and a2b2 + c1c2 ≤ a2(c1 + c2).

4) ξ1 = c2
a2

> ξ2 = c1
a1

; ξ3 = b2
c2

> ξ4 = b1
c1

: b2(c1 + c2) ≤ a1b2 + c22 and a1b2 + c21 ≤ a1(c1 + c2).
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When bound.B is redundant and also ξ1 = c1
a1
≥ ξ2 = c2

a2
; ξ3 = b1

c1
≥ ξ4 = b2

c2
holds, we can simplify the corner

points of bound.A & bound.C and bound.C & bound.D as follows

R1,AC =
c21(a1 + a2)− a1b1(c1 + c2)

c21 − a1b1
, (97a)

R2,AC =
b1c1[(c1 + c2)− (a1 + a2)]

c21 − a1b1
, (97b)

R1,CD = c2, R2,CD = b1. (97c)

Plugging (97) into (93), one can verify that all the inequalities in (93) are satisfied. Similarly, when bound.C is

redundant and also ξ1 = c1
a1
≥ ξ2 = c2

a2
; ξ3 = b1

c1
≥ ξ4 = b2

c2
holds, we compute the coordinates of the corner

points, then plug the values into (93) and obtain that (93) holds as well.

Considering all possible cases in (93), we conclude that the scheme in Theorem 2 is optimal when (C1) either

bound.B or bound.C in (28) is redundant, and (C2) ξ1 = c1
a1

> ξ2 = c2
a2

, ξ3 = b1
c1

> ξ4 = b2
c2

which is
Pr[N1≥2]
Pr[N1≥1] ≥

Pr[M≥2]
Pr[M≥1] ≥

Pr[N2≥2]
Pr[N2≥1] or ξ1 = c2

a2
> ξ2 = c1

a1
, ξ3 = b2

c2
> ξ4 = b1

c1
which is

Pr[N2≥2]
Pr[N2≥1] ≥

Pr[M≥2]
Pr[M≥1] ≥

Pr[N1≥2]
Pr[N1≥1] .
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