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QUANTITATIVE FORM OF BALL’S CUBE SLICING IN R
n AND

EQUALITY CASES IN THE MIN-ENTROPY POWER INEQUALITY

JAMES MELBOURNE AND CYRIL ROBERTO

Abstract. We prove a quantitative form of the celebrated Ball’s theorem on cube slicing
in R

n and obtain, as a consequence, equality cases in the min-entropy power inequality.
Independently, we also give a quantitative form of Khintchine’s inequality in the special case
p = 1.

1. Introduction

In his seminal paper [1], Keith Ball proved that the maximal (n−1)-dimensional volume of
the section of the cube Cn := [−1

2 ,
1
2 ]

n by an hyperplane is
√
2. Therefore proving a conjecture

by Hensley [10].

More precisely, for a = (a1, . . . , an) ∈ R
n with |a| :=

√

a21 + · · ·+ a2n = 1, put σ(a, t) =
|Cn ∩ Ha,t|n−1 for the volume of the intersection of the cube with the hyperplane Ha,t =
{x ∈ R

n : 〈x, a〉 = t}, where 〈·, ·〉 is the usual scalar product in R
n and | · |n−1 stands for the

((n− 1)-dimensional) volume.

Theorem 1 (Ball [1]). For all unit vector a and all t ∈ R, it holds σ(a, t) ≤
√
2. Moreover,

equality holds only if t = 0 and a has only two non-zero coordinates having value 1√
2
.

Ball’s result means that the maximal volume of the sections of the cube by hyperplanes
are achieved when the section is a product of a (n − 2)-dimensional cube Cn−2 with the
diagonal of a 2-dimensional cube C2. The original proof is based on Fourier tansform and
series expansion. Alternative proofs can be found in [23] (based on distribution functions)
and very recently in [22] (by mean of a transport argument).

Ball used Theorem 1 to give a negative answer to the famous Busemann-Petty problem in
dimension 10 and higher [2]. His paper has inspired many research in convex geometry and is
still very current. We refer to [11, 14, 16, 15, 6] to quote just a few of the most recent papers
in the field and refer to the reference therein for a more detailed description of the literature.

Our first main result is the following quantitative version of Ball’s theorem.

Theorem 2. Fix ε ∈ (0, 1
75). Let a ∈ R

n with |a| = 1 and t ∈ R be such that σ(a, t) ≥
(1− ε)

√
2. Then, there exists two indices jo, j1 such that

1√
2
(1− 37.5ε) ≤ |ajo |, |aj1 | ≤

1√
2
(1 + 2ε).

Moreover,
∑

j 6=jo,j1
a2j ≤ 50ε and in particular, for all j 6= jo, j1, |aj | ≤

√
50ε.
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Ball’s slicing theorem, combined with a result of Rogozin [27], was used by Bobkov and
Chistyakov [3] to derive an optimal inequality for min-entropy power. Namely, they proved
that

(1) N∞(X1 + · · ·+Xn) ≥
1

2

∞
∑

i=1

N∞(Xi)

for any independent random variables X1, . . . ,Xn, with N∞ the min-entropy power we now
define. We may call the latter Bobkov-Chistyakov’s min-entropy power inequality.

For a (R valued) random variable X, the min-Entropy power is defined as

N∞(X) = M−2(X).

when

M(X) := inf {c : P(X ∈ A) ≤ c |A| for all Borel A} < ∞
and N∞(X) = 0 otherwise. When X is absolutely continuous with respect to the Lebesgue
measure, with density f , then M(X) = ‖f‖∞ is the essential supremum of f with respect to
the Lebesgue measure.

The nomenclature “min-entropy power” is information theoretic. In that field the entropy
power inequality refers to the fundamental inequality due to Shannon [28] which demonstrates
that Xi independent random variables with densities fi satisfy

N(X1 + · · ·+Xn) ≥
∑

i

N(Xi),

where N(X) = e2h(X) denotes the “entropy power”, with the Shannon entropy h(X) =

−
∫

f(x) log f(x)dx. The Rényi entropy [25], for α ∈ [0,∞] defined as hα(X) =
∫
fα(x)dx
1−α for

α ∈ (0, 1) ∪ (1,∞) and through continuous limits otherwise, gives a parameterized family of
entropies that includes the usual Shannon entropy as a special case (by taking α = 1). It can

be easily seen (through Jensen’s inequality, and the expression hα(X) =
(

Efα−1(X)
)

1
1−α )

that for a fixed variable X, the Rényi entropy is decreasing in α. Thus for a fixed variable
X, the parameter α = ∞, h∞(X) = − log ‖f‖∞, furnishes the minimizer of the family
{hα(X)}α, and is often referred to as the “min-entropy”. Hence the terminology and notation
min-entropy power used N∞(X) = e2h∞(X) is in analogy with the Shannon entropy power

N(X) = e2h(X). Entropy power inequalities for the full class of Rényi entropies have been a
topic of recent interest in information theory, see e.g. [4, 5, 17, 18, 21, 24, 26], and for more
background we refer to [19] and references therein.

In [3] it was observed in a closing remark that the constant 1
2 in (1) is sharp. Indeed by

taking n = 2 and X1 and X2 to be i.i.d. uniform on an interval (1) is seen to hold with
equality. In the following theorem, we demonstrate that this is (essentially) the only equality
case. In fact, thanks to the quantitative form of Ball’s slicing theorem above, we can derive
a quantitative form of Bobkov-Chistyakov’s min entropy power inequality, see Corollary 6
below, that, in turn, allows us to characterize equality cases in (1) which constitutes our
second main theorem.

Theorem 3. For X1, . . . ,Xn independent random variables,

N∞(X1 + · · ·+Xn) ≥
1

2

n
∑

i=1

N∞(Xi)(2)

with equality if and only if there exists i1 and i2 and x ∈ R such that Xi1 is uniform on a set
A, and Xi2 is a uniform distribution on x−A and for i 6= i1, i2, Xi is a point mass.



QUANTITATIVE CUBE SLICING AND MIN-ENTROPY POWER INEQUALITY 3

Note that this is distinct from the d-dimensional case, see [20], where sharp constants
can be approached asymptotically for Xi i.i.d. and uniform on a d-dimensional ball. More
explicitly, for d ≥ 2, if Λ denotes all finite collections of independent R

d-valued random
variables

sup
X∈Λ

N∞(X1 + · · ·+Xm)
∑m

i=1 N∞(Xi)
= lim

n→∞
N∞(Z1 + · · · + Zn)
∑n

i=1 N∞(Zi)
,

where Zi are i.i.d. and uniform on a d-dimensional Euclidean unit ball.

We end with a quantitative Khintchine’s inequality. Though our result is independent,
we stress that, as it is well known in the field and as it was pointed out by Ball himself
in [1, Additional remarks], the inequality σ(a, t) ≤

√
2 of Theorem 1 is however related to

Khintchine’s inequalities.
Denote by B1, B2, . . . symmetric −1, 1-Bernoulli variables. Khintchine’s inequalities assert

that, for any p ∈ (0,∞) there exist some constant Ap, A
′
p such that for all n and all a =

(a1, . . . , an) ∈ R
n it holds

(3) Ap

(

n
∑

i=1

a2i

)
p

2

≤ Rp(a) := E

[∣

∣

∣

∣

∣

n
∑

i=1

aiBi

∣

∣

∣

∣

∣

p]

≤ A′
p

(

n
∑

i=1

a2i

)
p

2

.

Such inequalities were proved by Khintchine in a special case [13], and studied in a more
systematic way by Littlewood, Paley and Zygmund.

The best constants in (3) are known. This is due to Haagerup [8], after partial results by

Steckin [29], Young [31] and Szarek [30]. In particular, Szarek proved that A1 = 1/
√
2, that

was a long outstanding conjecture of Littlewood, see [9].
The connection between Theorem 1 and Khintchine’s inequalities goes as follows: as fully

derived in [6], Ball’s theorem can be rephrased as

E





∣

∣

∣

∣

∣

n
∑

i=1

aiξi

∣

∣

∣

∣

∣

−1


 ≤
√
2

(

n
∑

i=1

a2i

)− 1
2

where ξi are i.i.d. random vectors in R
3 uniform on the centered Euclidean unit sphere S2. As

a result Ball’s slicing of the cube can be seen as a sharp L−1−L2 Khintchine-type ienquality.
Our last main result is a quantitative version of (the lower bound in) Khintchine’s inequality

for p = 1, that has the same flavour of Theorem 2 (thought being independent).

Theorem 4. Fix ε ∈ (0, 1/100), an integer n and a = (a1, . . . , an) ∈ R
n such that |a| = 1,

satisfying

R1(a) ≤
1 + ε√

2
.

Then, there exists two indices i1, i2 such that

1− 30ε√
2

≤ |ai1 |, |ai2 | ≤
1 + ε√

2

Also, it holds
∑

a2i ≤ 57ε and in particular, for any i 6= i1, i2, |ai| ≤
√
57ε.

The proofs of Theorem 2 and Theorem 4 are based on a careful analysis of Ball’s integral
inequality

∫ ∞

−∞

∣

∣

∣

∣

sin(πu)

πu

∣

∣

∣

∣

s

du ≤
√

2

s
, s ≥ 2
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and, respectively, Haagerup’s integral inequality

∫ ∞

0

(

1−
∣

∣

∣

∣

cos

(

u√
s

)
∣

∣

∣

∣

s) du

up+1
≥
∫ ∞

−∞

(

1− e−u2/2
) du

up+1
, s ≥ 2

in the special case p = 1. It is worth mentioning that Theorem 4 is restricted to p = 1 because
the latter integrals can be made explicit only in that case. In order to deal with general p
(at least p ∈ [po, 2), say, with po ≃ 1.85 implicitly defined through the Gamma function,

see [8]), one would need to study very carefully the map Fp : s 7→
∫∞
0

(

1−
∣

∣

∣
cos
(

u√
s

)∣

∣

∣

s)
du

up+1

and prove that it is increasing and then decreasing on [2,∞) with careful control of its
variations. The difficulty is also coming from the fact that, at p = po, Fp(2) = Fp(∞).
This in particular makes the quantitative version difficult to state properly. Indeed, for
0 < p < po, the extremizers in the lower bound of (3) are those a with two indices equal to
1/
√
2 and the others vanishing. While for p > po, there are no extremizers for finite n (the

”extremizer” is a = ( 1√
n
, . . . , 1√

n
) in the limit (by the central limit theorem)). At p = po the

two ”extremizers” coexist. Theorem 4 is therefore only a first attempt in the understanding
of quantitative forms of Khintchine’s inequalities.

The next sections are devoted to the proof of Theorem 2, Theorem 3 and Theorem 4.

2. Quantitative slicing: Proof of Theorem 2

In this section, we give a proof of Theorem 2. We need first to recall part of the original
proof by Ball, based on Fourier and anti-Fourier transform. We may omit some details that
can be found in [1].

By symmetry we can assume without loss of generality that aj ≥ 0 for all j. Reducing the
dimension of the problem if necessary, we will further reduces to aj 6= 0 for all j.

In [1] it is proved that σ(a, t) ≤ 1
aj

for all j (see also [23, step 1]). The argument is

geometric. Put ej := (0, . . . , 0, 1, 0, . . . 0) for the j-th unit vector of the canonical basis. Then
it is enough to observe that the volume of Cn ∩ Ha,t equals the volume of its projection to
the hyperplane Hej ,0 (orthogonal to the j-th direction) divided by the cosine of the angle of
a and ej , that is precisely aj , while the projection of Cn on Hej ,0 has volume 1. Therefore

aj ≤ 1√
2(1−ε)

≤ 1√
2
(1 + 2ε) for all j, which proves one inequality of Theorem 2.

We follow the presentation of [23, step 2]. Let Ŝ be the Fourier transform of S : t 7→ σ(a, t).
By definition, we have

Ŝ(u) =

∫

R

σ(a, t)e−2iπutdt

=

∫

Cn

e−2iπu〈x,a〉dx

=

n
∏

j=1

∫ 1
2

− 1
2

e−2iπuajajdxj

=

n
∏

j=1

sin(πaju)

πaju
.
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Therefore, taking the anti-Fourier transform, Ball obtained the following explicit formula1

for σ(a, t):

σ(a, t) =

∫ ∞

−∞
Ŝ(u)e2iπutdu

=

∫ ∞

−∞
e2πiut

n
∏

j=1

sin(πaju)

πaju
du.

Applying Holder’s inequality, since a21 + · · · + a2n = 1, one gets

σ(a, t) ≤
∫ ∞

−∞

n
∏

j=1

∣

∣

∣

∣

sin(πaju)

πaju

∣

∣

∣

∣

du

≤
n
∏

j=1

(

∫ ∞

−∞

∣

∣

∣

∣

sin(πaju)

πaju

∣

∣

∣

∣

1/a2j

du

)a2j

.(4)

Ball’s theorem follows from the fact that I(aj) :=
∫∞
−∞

∣

∣

∣

sin(πaju)
πaju

∣

∣

∣

1/a2j
du ≤

√
2 with equality

only if aj = 1/
√
2. Changing variable, this is equivalent to proving that

(5)

∫ ∞

−∞

∣

∣

∣

∣

sin(πu)

πu

∣

∣

∣

∣

s

du <

√

2

s

for every s > 2 (for s = 2 this is an identity). The latter is known as Ball’s integral inequality
and was proved in [1]2 (see [23, 22] for alternative approaches).

One key ingredient in the proof of Theorem 2 is a reverse form of Ball’s integral inequality
given in Lemma 5 below.

Turning to our quantitative question, observe that if for all j = 1, . . . , n, I(aj) < (1−ε)
√
2,

then (4) would imply that σ(a, t) < (1 − ε)
√
2, a contradiction. Therefore, there must exist

jo such that I(ajo) ≥ (1− ε)
√
2. The aim is now to prove that ajo is closed to 1/

√
2. In fact,

changing variables (s = 1/a2jo ≥ 2(1 − ε)), we observe that

I(ajo) =

∫ ∞

−∞

∣

∣

∣

∣

sin(πaju)

πaju

∣

∣

∣

∣

1/a2j

du

=
√
s

∫ ∞

−∞

∣

∣

∣

∣

sin(πu)

πu

∣

∣

∣

∣

s

du.

Hence, I(ajo) ≥ (1− ε)
√
2 is equivalent to saying that

∫ ∞

−∞

∣

∣

∣

∣

sin(πu)

πu

∣

∣

∣

∣

s

du ≥ (1− ε)

√

2

s
.

Lemma 5 guarantees that, if s ≥ 2, then s = 1
a2
jo

≤ 2 + 50ε. If s ≤ 2 then 1
a2
jo

≤ 2 which

amounts to ajo ≥ 1√
2
. In any case

ajo ≥ 1√
2 + 50ε

≥ 1√
2
(1− 25

2
ε)

1An alternative explicit formula is given by Franck and Riede [7] (with different normalization). The
authors ask if there could be an alternative proof of Ball’s theorem based on their formula.

2An asymptotic study of such integrals can be found in [12].
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since 1√
1+t

≥ 1− 1
2t for any t ∈ (0, 1).

Iterating the argument, assume that for all j 6= jo, I(aj) < (1− 3ε)
√
2. Since I(ajo) ≤

√
2,

(4) would imply that

σ(a, t) < (1− 3ε)1−a2jo
√
2

≤ (1− 3ε)
1− 1

2(1−ε)2
√
2

≤ (1− ε)
√
2

where we used that ajo ≤ 1/(
√
2(1−ε)) and some algebra. This is a contradiction. Therefore,

there exists a second index j1 6= jo such that I(aj1) ≥ (1 − 3ε)
√
2. Proceeding as for jo, we

can conclude that necessarily

aj1 ≥ 1√
2
(1− 75

2
ε).

The expected result concerning ajo, aj1 follows.
Since a21 + · · ·+ a2n = 1 we can conclude that

∑

j 6=j0,j1

a2j ≤ 1− 1

2
(1− 25

2
ε)2 − 1

2
(1− 75

2
ε)2 ≤ 50ε.

Thus, a2j ≤ 50ε for all j 6= jo, j1. This ends the proof of the theorem.

Lemma 5. Let s ≥ 2 be such that
∫ ∞

−∞

∣

∣

∣

∣

sin(πu)

πu

∣

∣

∣

∣

s

du ≥ (1− δ)

√

2

s

for some small δ > 0. Then, s ≤ 2 + 50δ.

Proof. Set σ = s
2 − 1. We use the technology developed in [1] where it is proved that

∫ ∞

−∞

∣

∣

∣

∣

sin(πu)

πu

∣

∣

∣

∣

s

du =
1

π

∫ ∞

−∞

∣

∣

∣

∣

sin2(t)

t2

∣

∣

∣

∣

1+σ

dt = 1−
∞
∑

n=1

|σ(σ − 1) . . . (σ − n+ 1)|
n!

βn

and
√

2

s
=

√

1

1 + σ
=

1

π

∫ ∞

−∞

(

e−t2/π
)1+σ

dt = 1−
∞
∑

n=1

|σ(σ − 1) . . . (σ − n+ 1)|
n!

αn

with

αn :=
1

π

∫ ∞

−∞
e−t2/π

(

1− e−t2/π
)n

dt, βn :=
1

π

∫ ∞

−∞

sin2(t)

t2

(

1− sin2(t)

t2

)n

dt.

Therefore, the assumption
∫ ∞

−∞

∣

∣

∣

∣

sin(πu)

πu

∣

∣

∣

∣

s

du ≥ (1− δ)

√

2

s

can be recast ∞
∑

n=1

|σ(σ − 1) . . . (σ − n+ 1)|
n!

(βn − αn) ≤ δ

√

1

1 + σ
.

Note that, in [1], it is proved that αn < βn so that the left hand side of the latter is positive
and in fact an infinite sum of positive terms. Hence, the first term of the sum must not

exceed the right hand side. Since β1 =
1
3 and α1 =

√
2−1√
2

, it holds

σ
3− 2

√
2

3
√
2

= σ(β1 − α1) ≤ δ

√

1

1 + σ
≤ δ.
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Returning to the variable s it follows that s ≤ 2 + δ 6
√
2

3−2
√
2
from which the expected result

follows since 6
√
2

3−2
√
2
≃ 49.46 ≤ 50. �

3. min-Entropy power inequality

In this section we extend the quantitative slicing results for the unit cube, to a quantitative
version (Corollary 6 below) of Bobkov and Chistyakov’s min-entropy power inequality (In-
equality (1)) for random variables in R. Then we prove the full characterization of extremizers
of this min-entropy power inequality, i.e. we prove Theorem 3.

The quantitative version of Bobkov and Chistyakov’s min-entropy power inequality reads
as follows.

Corollary 6. For Xi independent random variables and ε ∈ (0, 1/75) if

N∞

(

(1− ε)
n
∑

i=1

Xi

)

≤ 1

2

n
∑

i=1

N∞(Xi),(6)

then there exists indices io and i1 such that

(1− 37.5ε)2

(

1

2

n
∑

i=1

N∞(Xi)

)

≤ N∞(Xio), N∞(Xi1) ≤ (1 + 2ε)2

(

1

2

n
∑

i=1

N∞(Xi)

)

while

∑

i 6=io,i1

N∞(Xi) ≤ 50ε

n
∑

i=1

N∞(Xi).

Its proof relies on the following result by Rogozin.

Theorem 7 (Rogozin [27]). For Xi independent random variables, let Zi be independent ran-
dom variables uniform on an origin symmetric interval chosen such that N∞(Xi) = N∞(Zi),
with the interpretation that Zi is deterministic, and equal to zero, in the case that N∞(Xi) =
0. Then,

N∞(X1 + · · ·+Xn) ≥ N∞(Z1 + · · ·+ Zn).

Note that our frame work here is formally more general than [27] and [3]

Proof of Corollary 6. Suppose that, for δ > 1

N∞(X1 + · · · +Xn) ≤
δ

2

n
∑

i=1

N∞(Xi),(7)

then by Theorem 7,

N∞(Z1 + · · · + Zn) ≤
δ

2

n
∑

i=1

N∞(Xi).

Writing Ui =
Zi√

N∞(Zi)
and θi =

N∞(Xj)∑
j N∞(Zj)

we can re-write this inequality as

N∞(θ1U1 + · · ·+ θnUn) ≤
δ

2
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where we observe that θ = (θ1, . . . , θn) is a unit vector and U = (U1, . . . , Un) is the uniform
distribution on the unit cube. Moreover since Ui are log-concave and symmetric,

∑

i θiUi =

〈θ, U〉 is as well, and hence N∞(θ1U1 + · · · + θnUn) = f−2
〈θ,U〉(0) = σ−2(θ, 0). Thus, we have

σ(θ, 0) ≥
√

2

δ
.

Now observe that the min-entropy is 2-homegeneous, i.e.N∞(λX) = λ2N∞(X). Therefore,
(6) reads as (7) with δ = (1− ε)−2. Hence

σ(θ, 0) ≥ (1− ε)
√
2.

Thus by Theorem 2, there exist io and i1 such that

1√
2
(1− 37.5ε) ≤ θio , θi1 ≤ 1√

2
(1 + 2ε)

while
∑

i 6=io,i1

θ2i ≤ 50ε.

Interpreting this in terms of the definition θj =
√

N∞(Xj)/
∑

iN∞(Xi). This gives,

(1− 37.5ε)2

(

1

2

n
∑

i=1

N∞(Xi)

)

≤ N∞(Xio), N∞(Xi1)) ≤ (1 + 2ε)2

(

1

2

n
∑

i=1

N∞(Xi)

)

,

while,

∑

i 6=io,i1

N∞(Xi) ≤ 50ε
n
∑

i=1

N∞(Xi).

This ends the proof of the Corollary. �

Proof of Theorem 3. We distinguish between sufficiency and necessity. The former being sim-
pler.
- Necessity:
Writing for convenienceN∞(X1) ≥ N∞(X2) ≥ · · · ≥ N∞(Xn) by Corollary 6 whenN∞(X1) >
0, equality in (2) implies that

N∞(X1) = N∞(X2), N∞(Xk) = 0 for k ≥ 3.

That is

N∞(X1 +X2 +X3 · · ·+Xn) = N∞(X1 +X2) = N∞(X1).

and since symmetric rearrangement preserves min-entropy and reduces the entropy of in-
dependent sums, N∞(X1 + X2) ≥ N∞(X∗

1 + X∗
2 ) ≥ 1

2(N∞(X∗
1 ) + N(X∗

2 )) = N∞(X1) =
N∞(X1 +X2). Letting f, g represent the densities of X∗

1 and X∗
2 respectively, this implies

‖f ∗ g‖∞ = f ∗ g(0) =
∫

f(y)g(y)dy =

∫

{f=‖f‖∞}
‖f‖∞g(y)dy +

∫

{f<‖f‖∞}
f(y)g(y)dy = ‖f‖∞

which can only hold if {g > 0} ⊆ {f = ‖f‖∞}. Reversing the roles of f and g, we must also
have {f > 0} ⊆ {g = ‖g‖∞}. Since {f = ‖f‖∞} ⊆ {f > 0} obviously holds, we have the
following chain of inclusions,

{g > 0} ⊆ {f = ‖f‖∞} ⊆ {f > 0} ⊆ {g = ‖g‖∞} ⊆ {g > 0}.
For this it follows that X∗

1 and X∗
2 are i.i.d. uniform distributions.

Thus, X1 and X2 are uniform distributions as well. Without loss of generality we may
assume that X1 and X2 are uniform on sets of measure 1, K1 and K2. Denote fi = 1Ki

.



QUANTITATIVE CUBE SLICING AND MIN-ENTROPY POWER INEQUALITY 9

Then f1 ∗ f2 is uniformly continuous and f1 ∗ f2(x) → 0 with |x| → ∞. Indeed, because
continuous compactly supported functions are dense in L2, it follows3 that for gτy (x) :=
g(x + y), ‖gτy − g‖2 → 0 for y → 0. Further ‖gτy1 − gτy2‖2 = ‖gτy1−y2

− g‖2, so that for

|y1 − y2| sufficiently small, ‖gτy1 − gτy2‖2 can be made arbitrarily small as well. Thus,

|f1 ∗ f2(x)− f1 ∗ f2(x′)| ≤
∫

|f1(−y)||f2(x+ y)− f2(x
′ + y)|dy

≤ ‖f1‖2‖(f2)τx − (f2)τx′‖2
= ‖(f2)τx−x′

− f2‖2
hence f1 ∗ f2 is indeed uniformly continuous.

Taking ϕi to be continuous, compactly supported functions approximating fi in L2, we
have

‖ϕ1 ∗ ϕ2 − f1 ∗ f2‖∞ ≤ ‖f1 ∗ (ϕ2 − f2)‖∞ + ‖ϕ2 ∗ (ϕ1 − f1)‖∞
≤ ‖f1‖2‖ϕ2 − f2‖2 + ‖ϕ2‖2‖ϕ1 − f1‖2.

Since the right hand side goes to zero, and ϕ1 ∗ ϕ2 is compactly supported, it must be true
that f1 ∗ f2(x) tends to zero for large |x|. Thus f1 ∗ f2 attains its maximum value at some
point x, and thus we can rewrite the equality of the min-entropies of X1 +X2, X1 and X2,
as f1 ∗ f2(x) = |K1 ∩ (x−K2)| = |K1| = |K2| = 1. Thus almost surely x−K1 = K2.

Put Y = X2+· · ·+Xn. By the same argument, sinceN∞(X1+Y ) = 1
2 (N∞(X1) +N∞(Y )),

Y is uniform on a set x′ −K1. Thus, Var(Y ) =
∑n

i=2 Var(Xi) = Var(X2). Hence, for i > 2,
Var(Xi) = 0 and the Xi are deterministic. Letting A = K1, the proof of necessity is complete.

- Sufficiency:
To prove sufficiency, assume that X1 is uniform on a set A, X2 uniform on x− A and Xi a
point mass for i ≥ 3 then,

N∞(X1 +X2 +X3 + · · ·+Xn) = N∞(X1 +X2)

=

∥

∥

∥

∥

1A

|A| ∗
1x−A

|A|

∥

∥

∥

∥

−2

∞
.

Observe that

1A

|A| ∗
1x−A

|A| (x) =
1

|A|2
∫

1A(y)1x−A(x− y)dy

=
1

|A| ,

Thus |A|2 ≥ N∞(X1+X2) and it follows that |A|2 = N∞(X1+X2) = N∞(X1) = N∞(X2). �

4. Quantitative khintchine’s inequality

In this section we prove Theorem 4 that resembles the proof of Theorem 2. We need to
recall some results from [8].

Assume without loss of generality that ak 6= 0 for all k. Put

F (s) =
2

π

∫ ∞

0

(

1−
∣

∣

∣

∣

cos

(

t√
s

)
∣

∣

∣

∣

s) dt

t2
, s > 0.

3Given an ε > 0, there exists ϕ continuous and compactly supported such that ‖ϕ− g‖2 < ε/3. Since ϕ is
continuous and compactly supported, it is uniformly continuous, and hence for small enough y, ‖ϕτy − y‖2 <

ε/3, Thus ‖gτy − g‖ ≤ ‖gτy − ϕτy‖+ ‖ϕτy − ϕ‖+ ‖ϕ− g‖ < ε.
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From [8, Lemma 1.4 (and its proof)], we can extract that

F (s) =
2√
πs

Γ
(

s+1
2

)

Γ
(

s
2

) =

√

2

π

∞
∏

k=0

(

1− 1

(s+ 2k + 1)2

)
1
2

is an increasing function of s, with F (2) = 1/
√
2 and lims→∞ F (s) =

√

2
π . Haagerup also

proved [8, Lemma 1.3] that

(8) R1(a) ≥
n
∑

k=1

a2kF

(

1

a2k

)

with the convention that a2kF
(

1
a2
k

)

= 0 if ak = 0 (recall the definition of R1 from (3)). For

completeness, let us reproduce the argument using Nazarov and Podkorytov’s presentation
[23]. From the identity

|s| = 2

π

∫ ∞

0
(1− cos(st))

dt

t2

applied to s =
∑n

k=1 akBk, we have

R1(a) = E

(∣

∣

∣

∣

∣

n
∑

k=1

akBk

∣

∣

∣

∣

∣

)

=
2

π

∫ ∞

0

(

1− E

(

cos

(

t
n
∑

k=1

akBk

)))

dt

t2

=
2

π

∫ ∞

0

(

1−
n
∏

k=1

cos(akt)

)

dt

t2

where at the last line we used that

E

(

cos

(

t

n
∑

k=1

akBk

))

= Re
(

E

(

eit
∑n

k=1 akBk

))

=

n
∏

k=1

cos(akt).

Since
∑

a2k = 1, the following Young’s inequality
∏n

k=1 s
a2
k

k ≤ ∑

a2ksk holds for any non-

negative s1, . . . , sn. Therefore, (take sk = | cos(akt)|a
−2
k ), it holds

R1(a) ≥
2

π

∫ ∞

0

(

1−
n
∏

k=1

| cos(akt)|
)

dt

t2

≥ 2

π

∫ ∞

0

(

1−
n
∑

k=1

a2k| cos(akt)|a
−2
k

)

dt

t2

=

n
∑

k=1

a2k
2

π

∫ ∞

0

(

1− | cos(akt)|a
−2
k

) dt

t2

which amounts to (8).
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Now observe that R1(a) ≥ maxk |ak|. Indeed, given ko, multiplying by Bko , that satisfies
|Bko | = 1, it holds

R1(a) = E

(

|Bko |
∣

∣

∣

∣

∣

n
∑

k=1

akBk

∣

∣

∣

∣

∣

)

= E

(
∣

∣

∣

∣

∣

ako +

n
∑

k=1

akBkBko

∣

∣

∣

∣

∣

)

≥
∣

∣

∣

∣

∣

E

(

ako +

n
∑

k=1

akBkBko

)∣

∣

∣

∣

∣

= |ako |.

It follows by assumption that |ak| ≤ 1+ε√
2
for any k.

Assume that F (1/a2k) >
1+ε√

2
for all k. Then, by (8) and monotonicity of F , it would hold

R1(a) ≥
n
∑

k=1

a2kF

(

1

a2k

)

>
1 + ε√

2
.

This contradicts the starting hypothesis R1(a) ≤ 1+ε√
2
. Therefore, there exists at least one

index, say ko, such that F (1/a2ko) ≤
1+ε√

2
. Using Lemma 8 we can conclude that

|ako | ≥
1√
2

1√
1 + 20ε

≥ 1− 10ε√
2

since 1/
√
1 + t ≥ 1− t

2 for any t ∈ (0, 1).

We iterate the argument. Assume that F (1/a2k) > 1+3ε√
2

for all k 6= ko. From (8) and

monotonicity of F , it would hold (recall that |ak| ≤ 1+ε√
2
for any k and in particular for ko)

R1(a) ≥
n
∑

k=1

a2kF

(

1

a2k

)

>
1 + 3ε√

2

∑

k 6=ko

a2k+a2koF

(

1

a2ko

)

≥ 1 + 3ε√
2

∑

k 6=ko

a2k+a2koF

(

2

(1 + ε)2

)

.

Now Lemma 9 guarantees that F
(

2
(1+ε)2

)

≥ 1−αε√
2
, with α = π2

12 , so that, since
∑

k 6=ko
a2k =

1− a2ko and |ako | ≤ 1+ε√
2
, it holds

R1(a) >
1 + 3ε√

2

∑

k 6=ko

a2k + a2ko
1− αε√

2

=
1 + 3ε√

2
+ a2ko

(

1− αε√
2

− 1 + 3ε√
2

)

≥ 1 + 3ε√
2

−
(

1 + ε√
2

)2 (3 + α)ε√
2

=
1 + ε√

2
+

ε

4
√
2

(

4− (3 + α)(1 + ε)2
)

>
1 + ε√

2

since for ε ∈ (0, 1/100), 4 > (3+α)(1+ε)2 . This again contradicts the hypothesisR1(a) ≤ 1+ε√
2
.

Therefore, there exists a second index k1 6= ko, such that F (1/a2k1) ≤
1+3ε√

2
. Lemma 8 then
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implies that

|ak1 | ≥
1√
2

1√
1 + 60ε

≥ 1− 30ε√
2

(since, again, 1/
√
1 + t ≥ 1− t

2). This proves the first part of the Theorem.

For the second part we use the previous results together with
∑n

k=1 a
2
k = 1 to ensure that

∑

k 6=ko,k1

a2k = 1− a2ko − a2k1 ≤ 1−
(

1− 10ε√
2

)2

−
(

1− 30ε√
2

)2

≤ 80√
2
ε ≤ 57ε.

This ends the proof of the theorem.

Lemma 8. Fix ε ∈ (0, 3/100) and s > 0 such that F (s) ≤ 1+ε√
2
. Then

s ≤ 2(1 + 20ε).

Proof. Assume that s ≥ 2 (otherwize there is nothing to prove). By expansion, F (s) =
F (2) +

∫ s
2 F ′(t)dt ≤ 1+ε√

2
. Therefore, since F (2) = 1/

√
2,

∫ s

2
F ′(t)dt ≤ ε√

2
.

Observe that F (3) = 4
π
√
3

≃ 0.74 ≥ 0.71 ≃ 1.01√
2

≥ 1+ε√
2
. Hence, since F is increasing,

necessarily s ≤ 3. It follows that

(s− 2) inf
2≤t≤3

F ′(t) ≤ ε√
2

and we are left with estimating inf2≤t≤3 F
′(t). Using the expression of F above as a product,

we deduce that, for t ∈ (2, 3)

F ′(t) = F (t)

∞
∑

k=0

1

(t+ 2k)(t+ 2k + 1)(t+ 2k + 2)

≥ F (2)

∞
∑

k=0

1

(2k + 3)(2k + 4)(2k + 5)

≥ 1

40
√
2

where in the last inequality we used that F (2) = 1/
√
2 and estimated from below the infinite

sum by the first 5 terms4. The expected result follows. �

Lemma 9. Fix ε ∈ (0, 1/100). Then

F

(

2

(1 + ε)2

)

≥ 1− αε√
2

with α = π2/12.

Proof. By expansion,

F

(

2

(1 + ε)2

)

= F (2) +

∫ 2
(1+ε)2

2
F ′(t)dt ≥ 1√

2
−
(

2− 2

(1 + ε)2

)

sup
2

(1+ε)2
≤t≤2

F ′(t).

4Alternatively one can argue that
∑

∞

k=0
1

(2k+3)(2k+4)(2k+5)
≥

∑
∞

k=0
1

(2k+4)3
= 1

8
(ζ(3) − 1) where ζ(3) ≃

1.202 ≥ 1.2 is the Riemann zeta function, from which we deduce that the infinite series is bounded below by
1/40.
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Now, as in the proof of Lemma 8, for any t ∈ ( 2
(1+ε)2 , 2), it holds

F ′(t) = F (t)
∞
∑

k=0

1

(t+ 2k)(t + 2k + 1)(t+ 2k + 2)
≤ F (2)

∞
∑

k=0

1

8(k + 1)2
=

π2

48
√
2

where the inequality follows from the rought estimate (t+2k)(t+2k+1)(t+2k+2) ≥ 8(k+1)2,
valid for any k and any t ∈ ( 2

(1+ε)2
, 2) (this is trivial for t ≥ 1 and k ≥ 1, the case k = 0 has

to be treated separately, details are left to the reader).
Combining with the previous estimate, we get

F

(

2

(1 + ε)2

)

≥ 1√
2

(

1− π2

48

(

2− 2

(1 + ε)2

))

=
1√
2

(

1− π2

24

2ε+ ε2

(1 + ε)2

)

≥ 1√
2

(

1− π2

12
ε

)

which is the expected result. �

Remark 10. The range ε ∈ (0, 1/100) in Theorem 4 is technical and here to guarantee that
(1 + ε)/

√
2 ≤

√
2/
√
π = lims→∞ F (s) and also that F (3) ≥ (1 + ε)/

√
2 (see the proof of

Lemma 8 above).
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[12] R. Kerman, R. Oľhava, and S. Spektor. An asymptotically sharp form of Ball’s integral inequality. Proc.

Amer. Math. Soc., 143(9):3839–3846, 2015.
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