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Abstract

Physics-informed Machine Learning has recently become attractive for learning physical parameters and
features from simulation and observation data. However, most existing methods do not ensure that the
physics, such as balance laws (e.g., mass, momentum, energy conservation), are constrained. Some recent
works (e.g., physics-informed neural networks) softly enforce physics constraints by including partial differ-
ential equation (PDE)-based loss functions but need re-discretization of the PDEs using auto-differentiation.
Training these neural nets on observational data showed that one could solve forward and inverse problems
in one shot. They evaluate the state variables and the parameters in a PDE. This re-discretization of PDEs
is not necessarily an attractive option for domain scientists that work with physics-based codes that have
been developed for decades with sophisticated discretization techniques to solve complex process models and
advanced equations of state. This paper proposes a physics constrained machine learning framework, Ad-
jointNet, allowing domain scientists to embed their physics code in neural network training workflows. This
embedding ensures that physics is constrained everywhere in the domain. Additionally, the mathematical
properties such as consistency, stability, and convergence vital to the numerical solution of a PDE are still
satisfied. We show that the proposed AdjointNet framework can be used for parameter estimation (and
uncertainty quantification by extension) and experimental design using active learning. The applicability
of our framework is demonstrated for four cases — (1) flow in a homogeneous porous medium, (2) data as-
similation for homogeneous porous media flow, (3) flow in a heterogeneous porous medium, and (4) cavity
flow using the Navier-Stokes equation. Results show that AdjointNet-based inversion can estimate process
model parameters with reasonable accuracy. These examples demonstrate the applicability of using existing
software with no changes in source code to perform accurate and reliable inversion of model parameters.

Keywords: machine learning, physics constraints, partial differential equations, adjoint, neural networks,
inversion.

1. Introduction

State-of-the-art physics-informed machine learning (PIML) [1-3] or knowledge-guided machine learn-
ing (KGML) [4-6] approaches have been primarily data-driven. PIML model development involves data
generation from physics-based codes. Then, unsupervised (e.g., NMFk, NTFk, PCA, autoencoders) [7] or
supervised (e.g., deep neural networks) [1] learning methods are used to train on this data to obtain state
variables or quantities of interest. These approaches decompose complex coupled processes into various
features/signals that help domain scientists identify the unique physical mechanisms [7,8]. Furthermore,
popular PIML methods such as physics-informed neural networks (PINNs) [9-11] softly (e.g., in L?-norm)
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ensure physics constraints by training the PDE variables as neural networks. Auto-differentiation (e.g., in
TensorFlow [12], PyTorch [13,14]) is used to discretize the PDE. One then uses a weighted loss function
(e.g., based on mean squared error) that linearly combines the loss due to PDE residual and discrepancies
from data. This loss function ensures that the governing laws are ‘reasonably satisfied’ although not entirely
accurate locally at mesh/collocation points in the domain [15].

Existing PIML and KGML approaches also require large volumes of data to make reasonably accurate
predictions. As a result, ML model development becomes computationally intensive and time-consuming
as large data needs to be generated. For example, it takes several hours to a day to run a single at-
scale subsurface reservoir simulation [16] with degrees-of-freedom in the O(107) on state-of-the-art high-
performance computing (HPC) machines [17-19]. For this reason, existing PIML/KGML methods are not
ideal for approximating complex and natural systems, which require at least hundreds of realizations as
training data. Furthermore, for applications where heterogeneity is present in the systems, for instance,
different materials in different parts of the domain, optimizing the number of parameters can be significant.
For instance, in subsurface flow applications, properties such as permeability, a measure of how much a
porous material can allow flow, can be different in each grid cell of the model. In such scenarios, traditional
ML or PIML methods require Monte Carlo approaches (e.g., MCMC) to sample from the parameter spaces
and generate data [20]. These requirements make data generation even more challenging.

Most PIML/KGML methods do not include simulation data and experimental observations in the loop
during the ML training process. Training is usually a two-step process, where an ML model is first built
from simulations. Then real-time data streams are integrated later to infer system decision parameters (as
shown in Fig. (1)(a)). If new data is assimilated beyond the training range, one needs to generate more
training data from simulations and then re-train the ML model. Our proposed method overcomes this
serious technical gap by directly incorporating physics-based codes into the ML training procedure. We can
use our approach to perform ML while ensuring that a given physics constraint (e.g., the balance of mass, the
balance of momentum) is satisfied everywhere, as modeled by a physics-based code. Our innovation is the
use of adjoint sensitivities, which can be obtained directly from physics calculations, to calculate the gradients
of the loss function in the training process of a neural network. Since one needs to solve the forward problem
using the physics code to calculate these adjoint sensitivities, the underlying physics will be ‘automatically’
satisfied and constrained. Due to the ‘correct’ constraining of physics in the entire domain, one can still get
highly predictive ML models with limited, sparsely-sampled, and noisy data.

Our computational approach (see Fig. (1)(b)), AdjointNet, allows domain scientists to incorporate sim-
ulators into scalable ML workflows without any loss of physics (up to the accuracy of a simulator) and
simultaneously integrate observational data. Moreover, our method can directly assimilate real-time data
streams in the training step. The trained ML models can then be used to forecast system behavior or in-
form system optimization. Furthermore, this approach has the advantage that one can invert the unknown
parameters in training the ML model to measured data. We can use these parameters to forecast the sys-
tem behavior towards further decision-making. In this paper, we demonstrate the utility of this AdjointNet
framework by applying it to inversion and learn model parameters in porous media flow and Navier-Stokes
flow problems, where the balance laws — the balance of mass, the balance of momentum — are solved. The
following specific examples are solved: (1) flow in a homogeneous porous medium, (2) data assimilation for
homogeneous porous media flow, (3) flow in a heterogeneous porous medium, and (4) cavity flow using the
Navier-Stokes equation.

Below, we summarize the novelty of the proposed AdjointNet framework compared to current state-of-
the-art:

(1) Incorporating existing codes and extendability: Our framework can incorporate any existing
physics-based codes such as PFLOTRAN [21,22], E3SM [23], OpenFOAM [24], SWAT [25], PRMS [26],
HOSS [27], and WRF-Hydro [28]. For instance, these codes can simulate complex coupled processes
such as flow, chemical and thermal transport, and mechanics for various applications such as
climate, subsurface energy, and carbon and nuclear waste storage, etc. Most of the above codes
have undergone rigorous verification and validation over the years. As a result, we can simulate,
estimate, and invert for material or conceptual properties with no changes in existing codes reliably.
This provides a significant advantage over existing methods such as PINNs [9], where process models
and equations of state need to be re-written to perform the inversion.
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Balance laws: Even though the trained PIML models seemingly give reasonable predictions on
quantities of interest such as pressures, displacements, and temperatures, there are no guarantees
that the governing laws of physics (e.g., the balance of mass, energy, or momentum) will truly be
satisfied by the machine learning (ML) model. That is, the model can violate these laws locally
or globally, or both, as reported by the developers of PINNs [15]. For example, a significant
limitation of PINNs [15,29, 30] is the accuracy of the solution and associated local balance. In
PINNS, the absolute error does not go below O(107°) [15]. This is because of the reduced accuracy
in solving the high-dimensional non-convex optimization problem, resulting in local minima. Since
the AdjointNet framework directly calls the existing codes, which ensure that the balance laws are
satisfied up to machine precision, the final trained model will always be locally conservative [31,32].
Scalability: Over the decades, some of these codes mentioned above have been parallelized to scale
on leadership-class HPC machines [21-23]. Our AdjointNet framework can be scalable as it uses the
existing HPC codes under the hood. Moreover, the proposed algorithm uses discrete adjoint-based
methods, which are also scalable [33,34]. Hence, the overall approach can be scaled on the next
generation HPC machines geared towards exascale computing (e.g., Perlmutter, Aurora) [35-37].
This provides a significant advantage over other PIML methods (e.g., PINNs).

Agnostic to underlying numerical discretization: AdjointNet works with any numerical
method implemented in a physics code. Here, we demonstrate the utility with two physics codes
implemented with different numerical methods—finite volume and finite difference-but can be ex-
tended to any numerical method of choice.

Differentiable programming: Recently, programming languages like Julia have made differen-
tiable programming more accessible [38]. However, the governing equations in physics codes have to
be re-written in Julia to take advantage of this capability. As mentioned previously, this re-writing
of codes may not be attractive for domain scientists. AdjointNet leverages the infrastructure in
Tensorflow or PyTorch to perform auto-differentiation on the neural networks but does not require
differentiable programming of the underlying physics codes.

Computational cost: Another major limitation of PINNs in addition to inaccuracy is the signifi-
cant training cost associated with deep neural networks and long-time integration of the PDEs [15].
This is because the addition of a PDE-based loss function results in a stiff and non-convex opti-
mization problem [39,40]. Our AdjointNet framework does not do this but poses ML training as
a PDE-constrained optimization problem. Furthermore, since we can directly integrate existing
HPC physics-based codes, we can obtain the final trained model faster, thus allowing us to work
with more realistic and large-scale problems.

Desirable mathematical properties: Most of the existing physics codes satisfy the desirable
properties such as structure-preserving, coercivity, error estimates, consistency, convergence, ac-
curacy, and stability [31,41]. Whichever of these properties are satisfied by the underlying PDE
solver used in the AdjointNet framework, the final trained model will also satisfy that. On the
other hand, existing PIML methods do not ensure this.

eXplainable Artificial Intelligence (XAI): Typically, numerical methods like finite element,
finite volume, etc., [31,41] are employed to obtain the solution of a PDE. These numerical methods
are explainable, which results in the trustworthiness of the obtained solution. On the other hand,
existing PIML methods such as PINNs use neural networks to compute the solution of the variables
in a PDE. These neural networks are difficult to interpret, and XAI methods [42,43] (e.g., SHAPley
values [44], LRP [45], deep Taylor decomposition [46], LIME [47]) are needed to solve the solution.
When neural networks are employed to obtain the solution, this interpretation process needs to be
performed for each scenario of interest (e.g., changes in boundary conditions, initial conditions, or
domain). However, note that most of the PIML related works have rarely used XAI methods to
explain why such a method works.

Reproducability: Typically, in any PIML method, the solution to the PDE depends on the
trainable weights that need to be initialized randomly [48-50]. As a result, the procedure of
weights initialization plays a predominant role in the obtained solution, leading to inconsistency
and hence may not be reproducible. However, our AdjointNet is not affected by such initialization
as we rely on the existing physics codes to always provide reproducible solutions of the PDE.
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The outline of our paper is as follows: Sec. (2) presents the mathematical formulation and the linkage
between physics-based codes, which is the AdjointNet framework. Section (3) presents examples of our
proposed approach. Conclusions are drawn in Sec. (4).

2. AdjointNet Framework

Machine learning methods (e.g., neural networks) typically involve minimizing a loss function £. We
add a constraint that the PDE of interest needs to be satisfied in our underlying formulation. This turns
into a PDE-constrained optimization problem, that is,

min £ (2.1)
s.t. F(u(x,t);p) =0 (2.2)

where x is the position, w is the variable of interest (e.g., pressure, temperature, concentration), p is the
vector of parameters (e.g., permeability, thermal conductivity, diffusivity), and ¢ is time. Here, Eq. (2.2) is
the discrete form of the PDE that is solved by a physics-based code. For instance, in the case of porous
media, the parallel code PFLOTRAN solves the discrete form of the non-linear diffusion PDE [22]:

leptwd] _ 5, {p (“)kvu} =0 (2.3)
ot I

where u is the fluid pressure, k is the permeability parameter, ¢ is porosity, u is fluid viscosity, and p is
the fluid density. PDE discretization in PFLOTRAN is performed using a two-point flux finite volume method
with backward Euler for time-stepping. The resulting nonlinear algebraic equations are solved using a
Newton-Krylov solver.

If we assume that the parameters p are to be learnt from a set of observational data wuqps, then one can
use a loss function of £ = ||ju — ueps||. Also, suppose that p is a ML model such as a neural network, i.e.,
p = NN(z). If W) and b*) are the weights and biases for this neural network NN (z), then the gradients

oL oL

oW (®) 7 gpk)
the loss function; for instance, stochastic gradient descent is a commonly used algorithm. Now, using the
chain rule, one can write these gradients as

0L  OLOu Op  OL  OLOu dp
OW® — oudp oOW®’* 9bk) — du dp Ob*)

are needed. These gradients must be supplied to the optimization algorithm that minimizes

(2.4)

ou
Notice that in both sets of gradients, we need the sensitivity 5’ calculated through the adjoint form of
p

Eq. (2.2), which is obtained by taking the derivative of Eq. (2.2) with respect to p:
OF OF Ou
op + ou Op
We have dropped time ¢t in Eq. (2.5) assuming steady-state, for the sake of illustration. However, in the
case of transient problems, if one discretizes the PDE with time first, we get a similar form for the adjoint
equation Eq. (2.5). In each epoch of the optimization loop, one needs to solve Eq. (2.5) to get the sensitivity.
oL Op Op
du’ k) W k)
auto-differentiation; ML packages like TensorFlow or PyTorch provide them. One can use the discrete adjoint
method [51] to solve Eq. (2.5).

Discrete adjoint methods involve solving the forward problem and checkpointing the solution; then
the adjoint (backward) solve is performed by integrating Eq. (2.5) using the saved forward solution at
checkpoints. Hence, the cost of an adjoint solve is approximately the cost of a forward solve, which is
independent of the number of parameters. For this reason, discrete adjoint methods are popular in the
area of design, for example, in shape optimization of airfoils in the aerospace industry [52,53]. Since in
the discrete adjoint method to solve Eq. (2.5), one must solve the forward problem Eq. (2.2), we ensure

u
ap’ by
perturbing each parameter in p, re-solving the PDE Eq. (2.2), and then calculating the gradients numerically.
Even for this approach, since one needs to solve the PDE, the physics is thus constrained in each epoch.
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The other terms in the chain rule, the derivatives can be obtained directly through

that the physics is constrained within each epoch. Alternatively, one can obtain the sensitivities



However, the cost of evaluating gradients with the proposed approach is N, + 1 forward solves, where N,
is the number of parameters. Thus as the unknown parameters increase, this approach becomes relatively
expensive. An approach to overcome this problem is to integrate prior information (e.g., domain expertise,
local and global sensitivity analysis, mutual information theory) with unsupervised learning (e.g., k-mean
clustering) to reduce the dimensions of unknown parameters before applying our AdjointNet framework.
This provides an efficient way to parameterize the high-dimensional space of unknown parameters before
performing inversion efficiently.
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FIGURE 1. AdjointNet framework: Comparison between the state-of-the-art ML workflow with
the proposed workflow. A major advantage is that the proposed workflow requires minimal simu-
lations, as it calls the physics-based code on the fly, to perform data assimilation and ML training.

3. Numerical Examples

In this section, we present representative numerical examples to demonstrate the applicability of our
AdjointNet framework for parameter inversion and data assimilation.

3.1. Porous media flow: Inversion of homogeneous permeability under sparse data. Through
a synthetic case, we perform porous media simulations using PFLOTRAN to invert for homogeneous permeabil-
ity. PFLOTRAN is an open-source, state-of-the-art massively parallel subsurface flow and reactive transport
code [21,22]. We use the pressure data sampled at different locations in the domain as ground truth to
perform the inversion. The model domain is 100 x 1 x 1 m? in dimension and consists of one layer. A uniform
mesh of 100 grid cells is used to generate data. The permeability value 107'* m? is assigned for all grids,
which is assumed to be the ground truth. The initial condition for the PFLOTRAN simulation includes the
pressure of 1.5x10° Pa throughout the model domain. Flow is driven by pressure boundary conditions,
1.0x10° Pa and 1.5x10° Pa at the left and right faces, respectively.

To check the validity of the proposed framework, first, we generate ground truth pressure data using
the homogeneous numerical simulation. Next, we sparsely sampled ten out of 100 data points for training
the permeability neural network. Random noise (with a magnitude of & 0.1 MPa) is added to the training
data to perform inversion under noisy data. A permeability neural network is created that has two layers
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FIGURE 2. AdjointNet for inversion of homogeneous permeability: Training of permeability
using AdjointNet. As the model trains to the pressure data (with noise added) as shown in (b), the
model learns the permeability as shown in (a). (b) also compares the prediction using the trained
permeability against the original pressure data.

containing 256 neurons in each layer. The loss function is formulated based on the mean-squared error
between the true and predicted pressure values at these ten points. The learning rate is set to 1073, and the
neural network weights and biases are initialized based on Glorot uniform initialization. The homogeneous
permeability neural network is trained for 100 epochs, and convergence is reached within 30 epochs as
shown in Fig. (2)(a). During each epoch, the neural network is updated as the flow process is simulated by

0
PFLOTRAN. Neural network provides gradient of permeability with respect to weights % while the numerical

oL 0
model provides 9u and % The loss value plateaued to 0.0015. Figure (2)(a) shows that the AdjointNet

estimated permeability is very close to the ground truth. Figure (2)(b) compares the predicted pressures
to ground truth and shows that pressure data predictions are robust to noise compared to actual values in
the entire domain. This case study instills confidence that AdjointNet methodology can provide reasonably
accurate permeability estimates even under sparsely sampled data and its model predictions are robust to
observational noise.

3.2. Porous media flow: Data assimilation. This case study shows a proof-of-concept towards
data assimilation applications. The simulation setup is the same as the previous use case. However, the
homogeneous permeability neural network is trained in three sequential phases (Phase 1, Phase 2, and
Phase 3). The neural network is first trained against two randomly selected pressure data points with added
random noise (with a magnitude of 0.1 MPa) in Phase 1 (Fig. (3)(a)). This is followed by further training by
assimilating an additional data point in each of Phase 2 (Fig. (3)(b)) and Phase 3 (Fig. (3)(c)). Training in
each phase is run for 200 epochs, which totals 600 epochs. Figure (3)(d) shows the permeability predictions
for three phases and compares them with the ground truth. It is evident that as we progressively add more
pressure data, we can better constrain permeability. As a result, Phase 3 permeability prediction is closer
to the ground truth than Phase 2 and Phase 1 (see Fig. (3)(d)).

3.3. Porous media flow: Heterogeneous permeabilities. For this case study, the model domain
consists of two zones with different permeabilities. The domain is meshed in the same manner as in Sec. (3.1).
The total number of grid cells is equal to 100. The initial condition for the PFLOTRAN simulation includes
the pressure of 1.5x10° Pa throughout the model domain. Pressure boundary conditions are prescribed on
the left and right sides of the model domain, which are 1.0 and 0.5 MPa. For ground truth, we assume
the first and last 50 grid cells have permeability values of 1072 and 10~ m?, respectively. Based on
these permeability values, we generate pressure data for AdjointNet-enabled inversion. The solid red line in
Fig. (4) shows the ground truth pressure distribution. Two neural networks with two layers and 256 neurons
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FIGURE 3. AdjointNet for data assimilation with homogeneous permeability: Training of
permeability using a neural network as data is assimilated in three sequential phases shown in (a),
(b), and (c). The trained permeability is shown in (d).

in each layer are trained to estimate the permeabilities until a loss value of 1078 is reached. The training
process converged within 100 epochs, as shown in Fig. (5). The AdjointNet learned permeabilities were able
to predict the pressure distribution accurately, as seen in Fig. (4).

3.4. Lid-driven cavity flow using the Navier-Stokes equation. In this section, we show the
applicability of AdjointNet methodology to simulate 2D lid-driven cavity flow. The domain is 4 x 4m?
discretized by 41 x 41 uniform grid points. We used a pressure Poisson finite difference solver written in
Python [54]. The initial condition is u,v,p = 0 everywhere. The boundary conditions are: u =1 at y = 4;
u,v=0at y=0; % =0aty=0,p=0at y=4, % =0 at x = 0,4. The ground truth is simulated using
p and v to be equal to 1kg/m? and 0.1 m? /s, respectively.

The model is run for 100 iterations, and for each iteration total time step is 300. Simulations are
performed to generate pressure data for AdjointNet-enabled inversion. A pressure snapshot (Figure (6))
with 1,681 pressure points is used to learn the kinematic viscosity. A neural network for the kinematic
viscosity is created that has two layers containing 64 and 32 neurons in each layer. Convergence is reached
in around 200 epochs with the loss value of less than 1078 (Fig. (7)). AdjointNet estimated kinematic
viscosity is 0.1021 compared to the ground truth of kinematic viscosity 0.1, which shows the applicability of
AdjointNet for inversion of flow parameters with the Navier-Stokes equation.
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FIGURE 4. AdjointNet for inversion of heterogeneous permeability: This figure shows the
actual and AdjointNet predicted pressure distribution over the model domain. AdjointNet can
capture the pressure profiles with reasonably good accuracy even under discontinuities.
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FIGURE 5. AdjointNet for inversion of heterogeneous permeability: This figure shows the
training progress of the two permeability neural networks. We can see that the permeability esti-
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4. Conclusions

Currently, neural network models are black-box models, making it challenging to interpret and trust
the results. Recently, XAI techniques (e.g., deep Taylor decomposition) were developed to make neural
networks interpretable, but they are not universally applicable (i.e., trustworthiness is always problem-
specific). This paper proposed a new ML methodology called AdjointNet and demonstrated its utility to
solve inverse problems. The proposed AdjointNet framework overcomes these pitfalls, as the existing codes
are interpretable and physics is constrained everywhere. Through representative numerical examples, we
showed that one could invert material parameters by embedding a physics-code (e.g., PFLOTRAN, Navier-
Stokes solver) in AdjointNet without modifying the underlying physics-code, or without the need to re-write
a code for a PDE from scratch, which is a significant bottleneck for existing PIML methods such as PINNs.
We demonstrated AdjointNet’s capability on four examples: (1) homogeneous permeability inversion; (2)
data assimilation; (3) heterogeneous permeability inversion; and (4) estimating material properties in a
Navier-Stokes lid-driven cavity flow.

In addition to satisfying the physics constraint, the results also showed that we could successfully in-
terpret and trust them as the existing codes are verified and validated by domain experts over decades.
Since AdjointNet requires sensitivities of the underlying variable (e.g., pressure, temperature) with respect
to the input parameters, this can be a limitation in cases where there are many parameters, such as spatially
distributed permeability, in the case of porous flow. In such cases, numerically evaluating the sensitivities by
perturbing the input parameters may be computationally intractable. One will have to resort to the discrete
adjoint method, which is agnostic to the number of model parameters but may need some intervention to
the underlying physics code. Alternatively, one can resort to a priori dimensionality reduction, where one
can integrate local/global sensitivity analysis with unsupervised learning (e.g., k-mean clustering) to iden-
tify the most critical parameters and estimate them using AdjointNet. Finally, since AdjointNet can learn
the underlying parameters while constraining the physics, it can perform well beyond the training range.

As a result, this framework is attractive for domain scientists who use complex codes to simulate physical
processes.

ABBREVIATIONS

HPC: High Performance Computing

LIME: Local Interpretable Model-Agnostic Explanations
LRP: Layer-Wise Relevance Propagation

KGML: Knowledge-Guided Machine Learning

MCMC: Markov Chain Monte Carlo

ML: Machine Learning



NMFk: Non-negative Matrix Factorization with custom k-means Clustering

NTFk: Non-negative Tensor Factorization with custom k-means Clustering

PDE: Partial Differential Equation

PFLOTRAN: An open source, state-of-the-art massively parallel subsurface flow and reactive transport
code

PIML: Physics-informed Machine Learning

e PINN: Physics-informed Neural Network

e XAIL: eXplainable Artificial Intelligence
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