
Automated Security Assessment
for the Internet of Things

Xuanyu Duan∗, Mengmeng Ge†, Triet Huynh Minh Le‡, Faheem Ullah‡,
Shang Gao∗, Xuequan Lu∗,¶ and M. Ali Babar‡,§

∗School of Information Technology, Deakin University, Geelong, Australia
†School of Computing Technologies, RMIT University, Melbourne, Australia
‡School of Computer Science, The University of Adelaide, Adelaide, Australia

§Cyber Security Cooperative Research Centre, Australia
Emails: xuanyuduan@gmail.com, mengmeng.ge@rmit.edu.au, triet.h.le@adelaide.edu.au,

faheem.ullah@adelaide.edu.au, shang.gao@deakin.edu.au, xuequan.lu@deakin.edu.au, ali.babar@adelaide.edu.au

Abstract—Internet of Things (IoT) based applications face an
increasing number of potential security risks, which need to
be systematically assessed and addressed. Expert-based manual
assessment of IoT security is a predominant approach, which
is usually inefficient. To address this problem, we propose an
automated security assessment framework for IoT networks. Our
framework first leverages machine learning and natural language
processing to analyze vulnerability descriptions for predicting
vulnerability metrics. The predicted metrics are then input into a
two-layered graphical security model, which consists of an attack
graph at the upper layer to present the network connectivity
and an attack tree for each node in the network at the bottom
layer to depict the vulnerability information. This security
model automatically assesses the security of the IoT network by
capturing potential attack paths. We evaluate the viability of our
approach using a proof-of-concept smart building system model
which contains a variety of real-world IoT devices and poten-
tial vulnerabilities. Our evaluation of the proposed framework
demonstrates its effectiveness in terms of automatically predicting
the vulnerability metrics of new vulnerabilities with more than
90% accuracy, on average, and identifying the most vulnerable
attack paths within an IoT network. The produced assessment
results can serve as a guideline for cybersecurity professionals to
take further actions and mitigate risks in a timely manner.

Index Terms—Internet of Things, Vulnerability Assessment,
Machine Learning, Natural Language Processing, Graphical
Security Model

I. INTRODUCTION

Internet of Things (IoT) based applications are being widely
deployed for providing intelligent services underpinning smart
cyber-physical systems like smart buildings and smart citi-
zens [1], [2]. Nowadays, most of the efficiency and optimiza-
tion efforts in various personal, social, and business sectors,
such as healthcare, manufacturing, transportation, and smart
home, are incorporating IoT based applications [3]. At the
same time, IoT systems are also becoming a prime target for
cybersecurity attacks [4], due to the ever-growing amount of
sensitive data that such systems support. Hence, there is an
increasing realization that it is critical to timely identify the
risks within the interconnected systems and deploy appropriate
security countermeasures.

¶Corresponding author.

Researchers and practitioners have devised and applied a
number of security assessment models to identify the security
issues in IoT systems. A security assessment model analyzes
an entity (e.g., IoT network) to make sure it complies with
certain security objectives [5]. One type of security assessment
models is graphical security models, that offer systematic
ways for assessing security vulnerabilities of systems [6].
Attack graphs (AGs) [7] and attack trees (ATs) [8] are two
of the most widely used ones. AGs analyze the security of
networked systems by identifying all conceivable attack se-
quences used by attackers to reach the potential target areas of
systems [9]. ATs describe the security of systems formally and
systematically by presenting various means by which a system
can be attacked [6]. However, these single-layered security
models (e.g., AGs and ATs) do not scale well to an increasing
number of devices in complex networks [10]. To address such
scalability issue, a Hierarchical Attack Representation Model
(HARM) [6] was proposed. It combines AGs and ATs into
a two-layer model where they can be constructed in parallel.
HARM has been successfully applied to assess security of
complex network, including IoT systems [11].

Despite the performance improvement, the security assess-
ment using HARM is not fully automated [11]. In particu-
lar, the assessment metrics (i.e., the Common Vulnerability
Scoring System (CVSS) severity scores [12]) of vulnerabili-
ties are not always available in vulnerability databases (e.g.,
National Vulnerability Database (NVD) [13]) as inputs for
security assessment with HARM.1 Some vulnerabilities only
have vulnerability descriptions without the assessment metrics
when being added into NVD [14], and these metrics are
important for vulnerability assessment. Some approaches have
been proposed to automate software vulnerability assessment
to address the issues in the prediction of severity scores based
on a vulnerability description [15], [16], [17], [18], [19].
However, to the best of our knowledge, there has been no work
on automated network-level security assessment with missing
vulnerability-related metrics.

1Vulnerability assessment is different from security assessment as the
former is applied to individual devices and is a step in performing the security
assessment of an interconnected system containing multiple devices.

ar
X

iv
:2

10
9.

04
02

9v
1

 [
cs

.C
R

]
 9

 S
ep

 2
02

1

To fill this gap, our paper aims to design and implement
a novel end-to-end security assessment framework for IoT
networks. Specifically, the framework consists of an auto-
mated vulnerability assessment model, a graphical security
model and a visualization model. The vulnerability assess-
ment model uses Natural Language Processing (NLP) and
Machine Learning (ML) techniques to process the vulner-
ability descriptions on NVD for predicting severity scores.
The reason to adopt ML techniques rather than rule-based
techniques is the emergence of new terms in the descriptions
of new vulnerabilities which may cause the frequent update
of rules with the inclusion of new terms. Taking the network
connectivity information and vulnerability information of each
node (including severity scores from the vulnerability assess-
ment model) as inputs, the graphical security model produces
potential attack paths and evaluates the security of the network
using the attack path information and security metrics. Finally,
the visualization model is used to visualize the attack paths
with the highest security risks.

The main contributions of this paper are summarized as
follows:

1) Propose an end-to-end security assessment frame-
work combining automated vulnerability assessment and
graphical security modeling to determine the attack
probability, attack impact and risk in interconnected
systems;

2) Evaluate the framework using a smart building system;
3) Develop a visualization interface to generate network

diagrams for better representation and understanding of
security assessment results.

The rest of the paper is organized as follows. Section II
introduces the background knowledge and related work. Sec-
tion III explains our proposed framework. Section IV describes
the implementation of the proposed framework as well as
presents the evaluation and visualization results. Section V
discusses the findings and limitations of the proposed frame-
work, followed by the conclusion and suggestions on future
research directions in Section VI.

II. RELATED WORK

This section discusses current work on automated assess-
ment of vulnerabilities and security assessment for IoT net-
works.

A. Automated Assessment of Vulnerabilities

Approaches have been proposed for automated assessment
of vulnerabilities. Guo et al. [20] offered a featherweight
virtual machine (FVM) solution to address the issue of
vulnerability testing safety. The FVM technology enables a
vulnerability assessment tool to test the exact duplicate of a
production-mode network service while maintaining complete
isolation of the production-mode network service from the
testing process. Besides of ensuring safety, the vulnerability
assessment support system presented in this work may also
automate the entire vulnerability testing process, making it
possible to conduct vulnerability testing automatically and

frequently. Shah et al. [21] developed NetNirikshak 1.0, an
automated Vulnerability Assessment and Penetration Testing
(VAPT) tool that assists organizations in assessing their appli-
cations/services and analyzing the security posture. This pro-
gram identifies vulnerabilities in a target system’s applications
and services. The automatic report generated by the tool is
emailed to a given email address, and all traces of the scan are
deleted from the hard disk along with the report, ensuring the
report’s confidentiality. Le et al. [15] indicated that the method
of automatically assessing software vulnerabilities based on
NLP was affected by concept drift. Concept drift occurs as
a result of lacking proper handling of new (out of vocabu-
lary) terms in the vulnerability descriptions. Therefore, they
proposed a vulnerability assessment method that incorporates
both character and word features. Furthermore, they designed
a time-based cross-validation method to identify the optimal
ML model for predicting each vulnerability metric. Blinowski
et al. [22] used a vulnerability classification scheme for IoT
devices based on real-world data. The authors first categorize
the vulnerabilities into seven categories, then further classify
them using standard descriptors in the Common Platform
Enumeration (CPE). They leverage ML techniques to achieve
automatic classification to mitigate the threats posed by new
vulnerabilities.

B. Security Assessment for IoT Systems

The security of IoT systems has been explored by several
studies. Radomirovic et al. [23] proposed an asynchronous
communication network and a security model with fingerprint
recognition capability based on fundamental assumptions and
observations about potential security and privacy threats. This
security model facilitates research on the security and privacy
of protocols used in IoT networks. Ge et al. [11] established
a paradigm for modeling and assessing IoT security. The
framework is used to develop a graphical security model
and a security evaluator to automate the security analysis of
IoT. The security evaluator assesses security using a variety
of security metrics and outputs the analysis results via an
analytic modeling and assessment tool called Symbolic Hi-
erarchical Automated Reliability and Performance Evaluator
(SHARPE) [24]. Park et al. [25] adopted an integrated fuzzy
MCDM (FMCDM) technique to develop a framework for
assessing the security of IoT services. The integrated method
utilizes an analytic network process (ANP) combined with a
decision-making trial and evaluation laboratory (DEMATEL)
technique based on fuzzy set theory to raise the sensitivity of
interrelationships amongst various security metrics. Wang et
al. [26] developed a security model based on blockchain and
InterPlanetary File System (IPFS). The study and experimental
findings demonstrate that many security issues associated with
traditional IoT architecture can be avoided. In addition, system
performance has been significantly improved on distributed
large-capacity storage, concurrency and query.

Bugeja et al. [27] designed an innovative IoT Security
Model (IoTSM) based on the Software Assurance Maturity
Model (SAMM) framework. It has been extended with new

security practices and data collected from IoT practitioners.
As a result, IoTSM can be used to organize strategies and dis-
course IoT security from an end-to-end perspective. Matheu-
Garcı́a et al. [28] presented an IoT-specific security certifi-
cation methodology that would enable various stakeholders
to evaluate security solutions for large-scale IoT deployments
in an automated manner. Additionally, it promotes customer
openness at the IoT security level, as the methodology includes
a label as one of the primary outcomes of the certification
process. The certification methodology is an implementation
of the ETSI-presented Risk-based Security Assessment and
testing methodologies based on ISO 31000 and ISO 29119.
It is built on top of a variety of security testing and risk
assessment technologies and approaches targeting the IoT
landscape. Martin et al. [29] proposed a novel security model
capable of analyzing the properties of IoT systems. The secu-
rity model can assist designers of IoT systems in creating more
secure systems by highlighting vulnerabilities and weakest
links. Additionally, they intended to cover the data access
requirements in future work and support the formalization and
certification of access control mechanisms in IoT systems.
Waraga et al. [30] introduced an automated IoT security
testbed for assessing the security of IoT devices. The proposed
testbed is based on open source tools managed by an open
source management system, where changes are provided to
users via an easy-to-use GUI. This approach allows other
researchers to use the modular structure of the testbed to
create their own testing tools. This IoT testbed keeps track
of all exploits and CVEs discovered for the devices under
test, as well as the services it hosts through each port. This
testbed could also generate reports automatically that contain
the results of all devices.

C. Summary

Many prominent studies have been conducted on automat-
ing vulnerability assessment and utilizing security models
to assess the security of IoT devices. However, few studies
focused on combining these assessments to automate network
assessment under missing vulnerability assessment metrics. To
the best of our knowledge, our paper is the first to propose
a model for automatically assessing the security of intercon-
nected systems in terms of the probability, risk and impact of
network attacks based on node/device vulnerabilities.

III. PROPOSED FRAMEWORK

The proposed framework divides the security assessment
process into four phases: system model generation, vulner-
ability assessment, graphical security model modeling and
assessment, and data visualization, as illustrated in Fig. 1. The
implementation of the framework can be found at GitHub.2

Each phase is discussed in the following subsections.

A. System Model Generation

In Phase 1, we first consider a real-world IoT system and
generate a system model based on the specifications of smart

2https://github.com/mmge88/automated-security-assessment

System Model
Generation

IoT Device
related

Vulnerabilities

ML Model
Training

Data Pre-
processing

Model Testing Graphical
Security
Model

Security
Assessment

Model
Generation

Vulnerability
Assessment

Security
Modeling

Visualization

Documents

Dashboard

Graphs

Reports

NVD
Database

ML
Model

Fig. 1: The proposed framework for automated security as-
sessment

devices in the system and the connectivity of all devices. We
then extract the vulnerability records from the NVD. Details
of the vulnerability extraction can be found in Section IV-A2.
This system model will later be combined with the graphical
security model in Phase 3 for the security assessment. The
framework can be applied to any IoT system as long as the
network connectivity and vulnerabilities of devices can be
obtained.

B. Vulnerability Assessment

In Phase 2, we adopt the NLP techniques to preprocess
the vulnerability descriptions and apply ML techniques to
predict CVSS version 2 metrics based on the processed de-
scriptions of vulnerabilities. We also utilize an over-sampling
approach to mitigate the impact of imbalanced data. We tune
the ML model to identify optimal hyperparameters and train
the optimal model over the dataset downloaded from NVD
after the preprocessing and over-sampling steps to predict the
vulnerability scores of devices in the IoT system.

C. Graphical Security Model and Assessment

In Phase 3, we adopt a graphical security model based on
a previous IoT network assessment research [11] in which
a two-layer HARM was utilized, with the upper layer (an
attack graph for the network connectivity) and the lower layer
(an attack tree for each node) to capture the information of
how vulnerabilities can be exploited to gain a privilege. The
approach has been proven to be more efficient in identifying
a network’s most severe attack paths than single-layer attack
graphs due to the parallel construction of the two layered
models. As a result, we choose to retain this structure and
adjust the program by integrating our automated vulnerability
assessment module. The predicted scores from the vulnerabil-
ity assessment are used as inputs to the graphical security
model and compute the network-level security metrics to
evaluate the security of the IoT system. The network-level
security metrics are computed based on original scores of
the vulnerabilities and the expected/ground-truth results are
compared with prediction results.

D. Data Visualization

In Phase 4, we develop a web-based visualization interface
to better present the assessment results. A network graph is
used to visualize the relationships between all devices in the
system and the attack path with highest risk based on the
security evaluation results. A flask [31] project is used to
combine all network graphs and present them on the website.

IV. EVALUATION

To evaluate the proposed framework, a smart building
system is used as the test system where IoT technologies are
heavily adopted.

A. System Model Generation

The design of the test system is mainly derived from [32],
[33]. Hachem et al. [32] conducted a study on the smart
building of the Adelaide University Health and Medical School
(AHMS). Jia et al. [33] undertook an assessment on the
adoption of IoT in smart building applications and categorized
them according to their critical functions and aims, which
improved our test system based on the AHMS. The test system
includes major functionalities of a smart building system that
leverages IoT techniques.

Our test system incorporates a variety of smart sensors
and consists of seven subsystems, each of which serves a
distinct purpose and is in charge of implementing a part of
functionalities in the smart building. The seven subsystems
are: lighting, audiovisual, security, fire detection, maintenance,
resource tracking and HVAC subsystems, as shown in Fig. 2.
Since several subsystems have shared sensors, we obtain
two combined subsystems by linking them via the common
devices. As shown in Fig. 3, the security and the resource
tracking are combined via the burglar alarm device, named
as a combined security system. The audiovisual, lighting, fire
detection and HVAC systems are combined via the brightness
sensor, occupancy sensor and thermometer, referred to as a
combined smart building automation system. The maintenance
system does not have a common device with other subsystems
thus not being included in any combined system.

1) Design and generation of subsystems: The devices and
functionality of each subsystem are described in Table I. As
devices of the same type are usually purchased from the same
manufacturer (e.g., light sensors in the lighting subsystem),
we assume they have identical vulnerabilities. We select one
device from each type in the test system to capture attack
scenarios among different types of devices. More device types
can be added and modeled via the framework.

2) Vulnerability filtering: To filter vulnerabilities for the
related devices, the vulnerability data dated from 2002 to 2020
is first downloaded from NVD, which contains 144,345 vul-
nerability records. All of the records are merged and potential
vendors of IoT devices are identified. The records associated
with the potential vendors are extracted. Then, the records
related to the subsystems are extracted after we manually
examine whether the vulnerability descriptions are associated

with the corresponding subsystems. Subsequently, an extrac-
tion based on the potential subsystem devices is performed.
This set of extracted vulnerability data will be used for model
training, validation and testing in the vulnerability assessment
process. The dataset is split into 80% for training, 10% for
validation, and 10% for testing, excluding the evaluation set.

Finally, the vulnerability records related to the actual sub-
system devices of various vendors (e.g., Broadcom, Panasonic,
and Schneider Electric) are extracted. We utilize these device
related vulnerabilities as evaluation data in the vulnerability
assessment process and take the predicted results as inputs into
the graphical security modeling and assessment. The number
of records used in the vulnerability assessment is shown in
Table II. Note that the vulnerabilities in each dataset are unique
and do not overlap with the other sets.

B. Vulnerability Assessment

1) Data pre-processing: Each vulnerability record collected
from NVD consists of a description, CVSS v2 metrics (i.e.,
base score metric group captures the characteristics of a
vulnerability that do not change with time and across user
environment), and privileges. In particular, the base score is
measured by impact and exploitability. The impact is based
on confidentiality, integrity, and availability. The exploitability
is identified by the access vector, access complexity and
authentication. There are three types of privileges, including
all (i.e., root), user, and other privileges [34].

To preprocess these records, the descriptions are first passed
through NLP. For each vulnerability record, the stop words
are removed, and all words in the description are converted to
lowercase. Then term frequency-inverse document frequency
(TF-IDF) vectorizer with n-gram (1-3) is applied to transform
the text to vectors. TF-IDF is adopted because it has been
proved to be well performed for vulnerability analysis [15].
Other relevant algorithms are to be investigated in our future
work. The processed vulnerability descriptions are taken as
the input to the ML model. The CVSS metrics and privilege
values are predicted as the output.

We evaluate the processed data before predicting the six
metrics in CVSS base score and types of privileges. As
illustrated in Fig. 4a, each of the six metrics has three distinct
values. A multi-class classification is needed from an ML
perspective. In comparison, Fig. 4b shows two values for
each privilege, addressing the binary classification in ML.
Additionally, as indicated in both figures, the distribution of
each class is severely imbalanced for access vector, access
complexity, authentication, and the three types of privileges.
To mitigate the impact of imbalanced data and avoid the
ignorance of critical data during model training, we utilize
an over-sampling approach, RandomOverSampler [35], to
duplicate the instances in the minority class. By randomly
reproducing instances in a minority class, this approach raises
the number of instances until the minority and majority classes
are balanced. The dataset after oversampling is shown in
Fig. 5.

Light

Occupancy
Sensor

Brightness
Sensor

Motion
Sensor

(a) Lighting

Screen
Projector

Media
Player Speaker

Brightness
Sensor

Smart
TV

(b) Audiovisual

Burglar
Alarm

Door/Window
Alarm Sensor

Electronic
Entrance Guard

Surveillance
Camera

(c) Security

CO Detection
Sensor

Smoke
Sensor

Thermometer Fire Alarm

(d) Fire detection

Repair Alarm

Electrical Current
Monitoring Sensor

Water Monitoring
Sensor

(e) Maintenance

Burglar Alarm

Asset Tag

Wearable Device

(f) Resource tracking

VentilatorCO2 Sensor

Heater

Humidity Sensor

Window Sensor

Occupancy
SensorThermometer

Air Conditioner

(g) HVAC

Fig. 2: Smart building subsystems

TABLE I: Devices and functionality of the subsystems

Subsystem Devices Functionality

Lighting 2 light sensors, 1 light controller, 1 occupancy sensor,
1 brightness sensor, 1 motion sensor

Illuminate the smart building by controlling the lights in response to
occupancy and the brightness sensors in response to the motion sensor

Audiovisual 1 media player, 1 screen projector, 1 smart TV, 1
brightness sensor, 1 speaker Regulate the operation of audiovisual devices in response to users

Security 2 door and window alarm sensors, 1 burglar alarm,
1 electronic entrance guard, 1 surveillance camera Monitor the security of the smart building and respond to security incidents

Fire detection 1 CO detection sensor, 1 thermometer, 1 smoke
sensor, 1 fire alarm

Detect and prevent potential fire incidents based on the carbon monoxide
concentration, temperature and smoke concentration

Maintenance 1 electrical current monitoring sensor, 1 water mon-
itoring sensor, 1 repair alarm

Monitor and record the usage of electricity and water and report problems
in a timely manner

Resource tracking 2 asset tags, 2 wearable devices, 1 burglar alarm Monitor and track the status of assets and wearable devices, and protect
these resources from being stolen or damaged

HVAC
1 heater, 1 air conditioner, 1 ventilator, 1 humidity
sensor, 1 CO2 sensor, 1 thermometer, 2 window
sensors, 1 occupancy sensor

Increase the comfort level of the smart building by controlling the
temperature and humidity

TABLE II: The number of unique vulnerabilities in each
dataset used in our study

Dataset No. of vulnerabilities/records
Training 115,395
Validation 14,424
Testing 14,424
Evaluation 102

2) Model tuning: The model tuning is done using the train-
ing and validation datasets, as shown in Table II. Specifically,
for tuning, a model is first trained on the training set and then
evaluated on the validation set. The Light Gradient Boosting
Machine (LGBM) [36] is used for the classification. LGBM
has been proven to outperform other ML models (such as
Naive Bayes, Logistic Regression, Support Vector Machine,
Random Forest and XGBoost [37]) and thus being the optimal
model for classifying vulnerability assessment metrics [15]. Its
primary advantage is scalability, as the sub-trees are formed

leaf-wise rather than level-wise compared to other gradient
boosting techniques [36]. As indicated previously, the predic-
tion of metrics in the base score is a multi-class classification
problem, whereas the prediction of privileges is a binary clas-
sification problem. As such, we set the objective for predicting
metrics of the base score to multi-class and privileges to
binary. The complexity of LGBM is mainly determined by
the maximum depth and leaf count [36]. Therefore, we use
100, 300 and 500 as the number of leaves for tuning. To limit
the tree depth and avoid overfitting [36], we set 100, 200 and
300 as the maximum depth during tuning. These values follow
the previous practices in this domain (e.g., [15], [38], [39]).

Additionally, the grid search approach is adopted to de-
termine the optimal (with the highest value of evaluation
metric on the validation set) combination of hyperparameters
by considering all possible hyperparameter combinations. We
set the evaluation metric as F1 score to tune the model for
the binary classification. F1-score is a measure of predictive
effectiveness and capable of balancing recall (i.e., the number

Humidity
Sensor

Heater Air Conditioner

Occupancy
Sensor

Window
Sensor

CO Detection
Sensor

Ventilator CO2 Sensor

Light Thermometer Fire Alarm

Smoke SensorBrightness
Sensor

Motion
Sensor

SpeakerSmart TVScreen
Projector

Media
Player

(a) Combined smart building automation system

Asset Tag

Door/Window
Alarm Sensor

Electronic
Entrance Guard

Wearable
Device

Burglar
Alarm

Surveillance
Camera

(b) Combined security system

Fig. 3: Combined systems in the smart building system

of correct positive class predictions among all actual positive
instances) and precision (i.e., the number of correct positive
class predictions among all positive predictions) [40].

Due to the fact that the prediction of metrics in the base
score is a multi-class classification problem, we quantify the
result using the F1-weighted method, i.e. calculate F1 score for
each label and use the number of true instances for each label
as the weight for the average value. The model with the highest
F1-weighted score on the validation set is selected as the
optimal model. Table III illustrates the optimal combination
of hyperparameters for each privilege where “no. leaves”
denotes number of leaves, “max depth” denotes maximum
depth, “std dev” represents the standard deviation and the
time unit of “running time” is second. Table IV illustrates
the optimal combination of hyperparameters for each metric.
We will perform sensitivity analysis to examine the impact
of different combinations of hyperparameters on the model
performance in the future work.

3) Model testing: The optimal hyperparameters from the
previous phase are used to build the model for testing. The
model is trained with the training and validation datasets
and is then tested on the testing set, as given in Table II.
The F1 score and accuracy score are utilized to evaluate the
model performance for the binary classification problem. F1-
weighted, F1-macro and accuracy are used for the multi-class

(a) Number of label instances for each metric in the base score

(b) Number of label instances for privileges

Fig. 4: Number of label instances before sampling

TABLE III: The validation results (F1 score) and the optimal
combination of hyperparameters (i.e., max depth and number
of leaves) for each privilege

Privilege Max
depth

No.
leaves Mean Std dev F1

score
Running
time (s)

All privilege 300 500 0.942 0.003 0.978 133.615
Other privilege 300 500 0.914 0.006 0.965 130.612
User privilege 300 500 0.964 0.003 0.988 132.743

TABLE IV: The validation results (F1-weighted score) and the
optimal combination of hyperparameters (i.e., max depth and
number of leaves) for each CVSS metric in base score

Metric Max
depth

No.
leaves Mean Std dev F1-

weighted
Running
time (s)

Confidentiality 200 500 0.825 0.007 0.895 394.004
Integrity 100 500 0.848 0.004 0.914 407.055
Availability 100 100 0.806 0.003 0.835 317.599
Access vec-
tor 200 500 0.953 0.003 0.988 461.245

Access com-
plexity 300 500 0.825 0.005 0.913 401.231

Authentication 100 300 0.944 0.002 0.974 389.540

(a) Number of label instances for each metric in the base score.

(b) Number of label instances for privileges

Fig. 5: Number of label instances after sampling

TABLE V: Test results for privileges

Privilege Accuracy Score F1 Score
All privilege 0.9786 0.9789

Other privilege 0.9680 0.9693
User privilege 0.9878 0.9879

problem. The F1-macro calculates the F1 score of each label
and finds an unweighted mean.

As shown in Table V and Table VI, all scores for the
prediction of privileges are greater than 95%, and scores for
the prediction of integrity and exploitability metrics achieve
90%. Scores for predicting confidentiality are approximately
90%, while scores for predicting availability are roughly
83%. This indicates that the model performs well with the
hyperparameters tuned in the previous stage.

4) Severity score prediction: With the trained model, we
use the evaluation data (extracted vulnerability data related
to the subsystem devices, as described in Section IV-A2)
to predict metrics values in base score and privileges. The
predicted exploitability and impact metrics are then utilized
to calculate the predicted CVSS base/severity score using
the CVSS equations [34], as given in equations (1), (2), (3)
and (4). The ConfImpact, IntegImpact and AvailImpact quan-

TABLE VI: Test result for metrics in the base score

Metric Accuracy
Score

F1-
macro

F1-
weighted

Confidentiality 0.8910 0.8908 0.8905
Integrity 0.9145 0.9138 0.9140
Availability 0.8358 0.8347 0.8344
Access vector 0.9886 0.9886 0.9886
Access complexity 0.9126 0.9124 0.9122
Authentication 0.9741 0.9741 0.9741

IoT
Vulnerabilities

Network
Information

Network Generator
(Main Function)

HARM

Potential Attack
Paths

Security
Evaluator

Fig. 6: Structure of the Graphical Security Model

tify the impact of a successfully exploited vulnerability on the
confidentiality, integrity and availability of a system of interest,
respectively. The f(Impact) depends on the value of Impact.
More details can be found in [34].

Base score = (.6× Impact + .4× Exploitability− 1.5)× f(Impact) (1)

Impact = 10.41× (1− (1− ConfImpact)× (1− IntegImpact) ×
(1− AvailImpact))

(2)

Exploitability = 20× AccessComp.× Authentication× AccessVector (3)

f(Impact) =

{
0, if Impact = 0

1.176, otherwise
(4)

C. Graphical Security Model and Assessment

To better illustrate the assessment results in the network
level, a graphical security model is adopted. It is built on
a previous Python project [11] with modified modules to
accommodate the requirements of this work.

1) Model description: As illustrated in Fig. 6, the network
generator contains the main function for constructing a smart
building network of devices and vulnerabilities in the IoT
context. It first initializes each device (i.e., node in the
program) with the prediction results from the vulnerability
assessment by representing the exploitation of vulnerabilities
on each device based on privileges and assigning impact and
exploitability scores to each vulnerability for network-level
metric calculation. In particular, an integer value from 1 to 3
is assigned to each Privilege (All/Other/User), representing the
access level an attacker obtains when a node is compromised.
When “other privilege” is true, the default privilege value of 1
is retained; the value rises to 2 if “user privilege” is true, and

to 3 if “all privilege” is true. We primarily focus on the three
security metrics for the security assessment of networks [12]:
the probability of a successful attack, the impact of an attack,
and the risk of an attack. The probability of a successful attack
(ranging from 0 to 1) is measured by the exploitability score
(in equation (3) ranging from 0 to 10) divided by 10, the
impact of an attack refers to impact score (in equation (2)),
and the risk of attack is impact times probability. The network
generator then connects the devices according to the pre-
defined topology of each subsystem presented in Section IV-A.

After that, the generated network is taken as input to the
graphical security model generator, generating a Hierarchical
Attack Representation Model (HARM) [6]. This HARM con-
sists of an upper layer attack graph and a lower layer attack
tree for each vulnerable node. To calculate the attack paths,
we also specify the potential entry points and attack targets in
the network. Using the lighting subsystem as an example, the
sensors can be used as entry points due to their lack of security
protections; the light controller can be used as the attack target
as the attacker can use the compromised controller to control
all lights.

The most significant attack paths (e.g., with the maximum
risk) can be identified through the security metrics computed
via the security evaluator. We use a bottom-up approach to
calculate the metrics via the HARM. Values in an attack
tree are calculated first and populated to the node via the
security evaluator. Multiple exploitable vulnerabilities may
exist on a single device, which can be analyzed by two types
of gates in the attack tree: AND gate and OR gate. An
AND gate means that all vulnerabilities must be exploited
to compromise a node. In contrast, an OR gate implies
that an attacker can gain control of the node by exploiting
only one of the vulnerabilities. These two scenarios result in
different evaluation methods in the security evaluator, where
AND is accumulative and OR is selective. In the attack
path level, we calculate the metric value by accumulating
the values of all nodes along the path (i.e., multiplication
of probability values of nodes; sum of impact/risk values
of nodes). We then choose the attack path with the highest
risk value in the network-level assessment. Security evaluation
results are passed back to the main function for final output and
visualization. When comparing the ground-truth and predicted
values at the network level, we use the percentage error to
determine the model’s prediction accuracy by Equation 5.

percentage error =(|ground-truth value− predicted value|)
/ground-truth value ∗ 100

(5)
2) Result analysis: The path with the highest risk in each

subsystem and combined system is shown in Table VII.
The graphical security model is able to capture the attack
path with highest risk and present the sequences of nodes
(in a subsystem or across multiple subsystems) that can be
potentially compromised by an attacker.

We show the percentage error of each subsystem and
combined system in Table VIII. According to Table VIII, the

TABLE VII: The most risky attack paths in subsystems and
combined systems

Subsystem name Attack path with highest risk

Lighting
attacker→motion-sensor→brightness-sensor
→light1→occupancy-sensor→light2→light-
controller

Audiovisual attacker→media-player→projector→speaker

Security
attacker → door-window-alarm-sensor1
→ door-window-alarm-sensor2 → burglar-
alarm → surveillance → entrance-guard

Fire detection attacker→CO-sensor→fire-alarm

Maintenance attacker→electrical-current-monitoring-
sensor→repair-alarm

Resource tracking attacker→wearable-device1→wearable-
device2→burglar-alarm

HVAC attacker→window-sensor1→window-
sensor2→heater

Combined
smart building
automation

attacker→motion-sensor→brightness-
sensor→light1→light2→light-
controller→occupancy-sensor→air-conditioner

Combined security
attacker→door-window-alarm-sensor1→door-
window-alarm-sensor2→burglar-
alarm→surveillance→entrance-guard

TABLE VIII: Percentage error in predicting probability, im-
pact, risk, and base score for subsystems and combined
systems

Subsystem name Probability Impact Risk Base
score

Lighting 0.00% 1.48% 17.84% 11.50%
Audiovisual 0.00% 2.94% 18.62% 1.61%
Security 0.00% 30.41% 22.00% 11.54%
Fire detection 0.00% 13.26% 8.40% 6.72%
Maintenance
system 0.00% 22.83% 31.50% 15.73%

Resource tracking 0.00% 13.13% 8.97% 4.18%
HVAC 0.00% 2.21% 33.04% 10.05%
Combined
smart building
automation

0.00% 13.60% 27.27% 17.07%

Combined security 0.00% 17.73% 5.34% 11.54%

lowest percentage error of predicting attack probability is 0,
while the percentage errors of predicting impact, risk, and base
score range from 1.61% to 33.04%. Among the subsystems,
HVAC has the highest error for risk (i.e., 33.04%), which is
reasonable as it is the most complex subsystem with the most
number of devices. The combined smart building automation
system contains HVAC subsystem, and thus also has higher
errors than the combined security system.

D. Data Visualization

We utilize a network graph by AnyChart [41] (i.e., library
support for javascript and HTML) to display the network
connectivity and the attack path with the highest risk, and
merge all the network graphs into a flask project for web
presentation. All attack paths in Table VII can be visualized via
the web-based user interface. As an example, we demonstrate
the attack path with the highest risk in the lighting subsystem
in Fig. 7, where the sequence of nodes compromised by the
attacker along that path are also visualized. Specifically, each
node represents a device within the subsystem and has a

Light 2

Occupancy Sensor

Brightness Sensor

Light Controller

Attacker

Motion Sensor

Attacker Motion
Sensor

Brightness
Sensor Light 1 Occupancy

Sensor

Light 2Light
Controller

Light 1

Fig. 7: Our web-based visualization of the attack path targeting
the Light Controller with the highest risk (highlighted in red
color) in the lighting subsystem

unique color in the connection diagram. The blue lines indicate
the connection between the nodes, while the red line indicates
the riskiest attack path of the subsystem. The bottom part of
the figure gives the sequence of the nodes on the most risky
path from the attacker’s entry point (i.e., Motion Sensor) to
the targeted device/node (i.e., Light Controller).

V. DISCUSSION

In this work, we integrated ML-driven vulnerability as-
sessment and network security assessment for the IoT, and
identified a few interesting findings from the analysis results.

Over 90% accurate predictions of security metrics using
ML based on NLP: ML models based on NLP can generate
predictions with accuracy of approximately 90% for all secu-
rity metrics of each vulnerability. We focus on the professional
vulnerability descriptions from the NVD source for both train-
ing and testing. Future work can investigate the applicability
of the framework to predict user-reported descriptions and
descriptions from various databases and sources. Besides for-
mal vulnerability sources like NVD, informal sources such as
technical forums like Stack Overflow [42] can also be explored
for security assessment of IoT systems. In addition, the usage
of deep learning models [43] is worth further exploration, as
well as the examination of the degree to which the NLP-based
prediction model relies on the professionality and consistency
of vulnerability sources.

Higher prediction error at network level: The prediction
error is more significant at the network level compared to the
errors for individual vulnerability entries. This is expected
as the inaccuracy of vulnerability predictions accumulates
along with the devices in the attack path. The differences in
errors among impact, risk and probability are significant. The
predicted probability is identical to the original probability,
as the majority of vulnerabilities in the network have a high
possibility of being exploited successfully. This demonstrates

that the accuracy of the network-level prediction is dependent
upon the actual selection of vulnerabilities.

Limitations: A potential issue exists with the resource
tracking subsystem. Wearable devices are often movable in
a realistic environment. In this work, we only consider the
situation that the wearable devices are directly connected to
the burglar alarm, and we assume they can maintain the
connection when they are moving. Therefore, the topology
did not change when we used the HARM as the graphi-
cal security model to compute attack paths. However, in a
complex network, the topology can change due to moving
devices, and the security model needs to be updated whenever
the topology changes. To address this issue, an extension
to HARM, called temporal HARM can assess dynamically
changing networks [44]. Additionally, the graphical security
model has scalability issue when dealing with computationally
complex networks, necessitating further optimization of the
algorithms for computing attack paths. The impact of this
issue can be potentially reduced by dividing the network into
multiple sub-networks.

VI. CONCLUSION AND FUTURE WORK

The growing use of the Internet of Things (IoT) exposes
these systems to a variety of vulnerabilities due to their
hyper-connectivity. However, security assessment based on
vulnerability metrics is not fully automated due to manual
analysis of vulnerabilities, which is a time-consuming and
tedious task.

This paper proposed a framework for automating the se-
curity assessment process by employing ML techniques and
graphical security modeling. To evaluate our proposed frame-
work, we developed a proof-of-concept smart building system
that simulates real-world IoT systems. Using data downloaded
from the NVD, we filtered IoT device-related vulnerabilities
and utilized ML methods to predict Common Vulnerability
Scoring System (CVSS) metrics and privileges. The proposed
smart building system model and predicted data were used to
evaluate the security of IoT systems in terms of probability,
risk, and impact using the Graphical Security Model (GSM).
The GSM computes all potential attack paths, identifies the
most vulnerable path, and visualizes them using a web-based
user interface, making it easier for system designers to identify
possible vulnerabilities.

In the future, we plan to study various IoT scenarios
using the framework and explore the usage of other ML and
deep learning techniques to improve the prediction accuracy.
Additionally, we will investigate the impact of defences on the
change of vulnerability scores to compare the effectiveness of
defences.

REFERENCES

[1] A. Taivalsaari and T. Mikkonen, “On the development of iot systems,”
in 2018 Third International Conference on Fog and Mobile Edge
Computing (FMEC). IEEE, 2018, pp. 13–19.

[2] S. Madakam, V. Lake, V. Lake, V. Lake et al., “Internet of things (iot):
A literature review,” Journal of Computer and Communications, vol. 3,
no. 05, p. 164, 2015.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[4] A. N. Duc, R. Jabangwe, P. Paul, and P. Abrahamsson, “Security
challenges in iot development: a software engineering perspective,” in
Proceedings of the XP2017 Scientific Workshops, 2017, pp. 1–5.

[5] R. Leszczyna, “Standards on cyber security assessment of smart grid,”
International Journal of Critical Infrastructure Protection, vol. 22, pp.
70–89, 2018.

[6] J. Hong and D. S. Kim, “HARMs: Hierarchical attack representation
models for network security analysis,” in Proceedings of the
10th Australian Information Security Management Conference, AISM
2012. SRI Security Research Institute, Edith Cowan University,
Perth, Western Australia, dec 2012, pp. 74–81. [Online]. Available:
https://ro.ecu.edu.au/ism/146

[7] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated
generation and analysis of attack graphs,” in Proceedings 2002 IEEE
Symposium on Security and Privacy. IEEE, 2002, pp. 273–284.

[8] T. R. Ingoldsby, “Attack tree-based threat risk analysis,” Amenaza
Technologies Limited, pp. 3–9, 2010.

[9] S. Y. Enoch, J. B. Hong, and D. S. Kim, “Security modelling and as-
sessment of modern networks using time independent graphical security
models,” Journal of Network and Computer Applications, vol. 148, p.
102448, 2019.

[10] J. B. Hong and D. S. Kim, “Towards scalable security analysis using
multi-layered security models,” Journal of Network and Computer
Applications, vol. 75, pp. 156–168, 2016.

[11] M. Ge, J. B. Hong, W. Guttmann, and D. S. Kim, “A framework
for automating security analysis of the internet of things,” Journal of
Network and Computer Applications, vol. 83, pp. 12–27, 2017.

[12] Cve.mitre.org. (2021) Nvd - vulnerability metrics. [Online]. Available:
https://nvd.nist.gov/vuln-metrics/cvss#

[13] Nvd.nist.gov. (2020) Nvd - general. [Online]. Available: https:
//nvd.nist.gov/general

[14] A. Feutrill, D. Ranathunga, Y. Yarom, and M. Roughan, “The effect of
common vulnerability scoring system metrics on vulnerability exploit
delay,” in 2018 Sixth International Symposium on Computing and
Networking (CANDAR). IEEE, 2018, pp. 1–10.

[15] T. H. M. Le, B. Sabir, and M. A. Babar, “Automated software vulnerabil-
ity assessment with concept drift,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp.
371–382.

[16] G. Spanos and L. Angelis, “A multi-target approach to estimate software
vulnerability characteristics and severity scores,” Journal of Systems and
Software, vol. 146, pp. 152–166, 2018.

[17] Y. Yamamoto, D. Miyamoto, and M. Nakayama, “Text-mining approach
for estimating vulnerability score,” in 2015 4th International Workshop
on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS). IEEE, 2015, pp. 67–73.

[18] G. Spanos, L. Angelis, and D. Toloudis, “Assessment of vulnerability
severity using text mining,” in Proceedings of the 21st Pan-Hellenic
Conference on Informatics, 2017, pp. 1–6.

[19] T. H. M. Le, H. Chen, and M. A. Babar, “A survey on data-driven
software vulnerability assessment and prioritization,” arXiv preprint
arXiv:2107.08364, 2021.

[20] F. Guo, Y. Yu, and T.-c. Chiueh, “Automated and safe vulnerability
assessment,” in 21st Annual Computer Security Applications Conference
(ACSAC’05). IEEE, 2005, pp. 10–pp.

[21] S. Shah and B. Mehtre, “An automated approach to vulnerability
assessment and penetration testing using net-nirikshak 1.0,” in 2014
IEEE International Conference on Advanced Communications, Control
and Computing Technologies. IEEE, 2014, pp. 707–712.

[22] G. J. Blinowski and P. Piotrowski, “Cve based classification of vul-
nerable iot systems,” in International Conference on Dependability and
Complex Systems. Springer, 2020, pp. 82–93.

[23] S. Radomirovic, “Towards a model for security and privacy in the
internet of things,” in Proc. First Int’l Workshop on Security of the
Internet of Things, 2010, p. 6.

[24] R. A. Sahner, K. Trivedi, and A. Puliafito, Performance and reliability
analysis of computer systems: an example-based approach using the
SHARPE software package. Springer Science & Business Media, 2012.

[25] K. C. Park and D.-H. Shin, “Security assessment framework for iot
service,” Telecommunication Systems, vol. 64, no. 1, pp. 193–209, 2017.

[26] Z. Wang, X. Dong, Y. Li, L. Fang, and P. Chen, “Iot security model and
performance evaluation: A blockchain approach,” in 2018 International
Conference on Network Infrastructure and Digital Content (IC-NIDC).
IEEE, 2018, pp. 260–264.

[27] J. Bugeja, B. Vogel, A. Jacobsson, and R. Varshney, “Iotsm: an end-
to-end security model for iot ecosystems,” in 2019 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops). IEEE, 2019, pp. 267–272.

[28] S. N. Matheu-Garcı́a, J. L. Hernández-Ramos, A. F. Skarmeta, and
G. Baldini, “Risk-based automated assessment and testing for the cyber-
security certification and labelling of iot devices,” Computer Standards
& Interfaces, vol. 62, pp. 64–83, 2019.

[29] T. Martin, D. Geneiatakis, I. Kounelis, S. Kerckhof, and I. N. Fovino,
“Towards a formal iot security model,” Symmetry, vol. 12, no. 8, p.
1305, 2020.

[30] O. A. Waraga, M. Bettayeb, Q. Nasir, and M. A. Talib, “Design
and implementation of automated iot security testbed,” Computers &
Security, vol. 88, p. 101648, 2020.

[31] M. Grinberg, Flask web development: developing web applications with
python. ” O’Reilly Media, Inc.”, 2018.

[32] J. E. Hachem, V. Chiprianov, M. A. Babar, T. A. Khalil, and P. Aniorte,
“Modeling, analyzing and predicting security cascading attacks in smart
buildings systems-of-systems,” Journal of Systems and Software, vol.
162, p. 110484, 2020.

[33] M. Jia, A. Komeily, Y. Wang, and R. S. Srinivasan, “Adopting internet
of things for the development of smart buildings: A review of enabling
technologies and applications,” Automation in Construction, vol. 101,
pp. 111–126, 2019.

[34] S. R. Peter Mell, Karen Scarfone. (2021) A complete guide
to the common vulnerability scoring system. [Online]. Available:
https://www.first.org/cvss/v2/guide

[35] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine
learning,” Journal of Machine Learning Research, vol. 18, no. 17, pp.
1–5, 2017. [Online]. Available: http://jmlr.org/papers/v18/16-365.html

[36] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, pp. 3146–
3154, 2017.

[37] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[38] T. H. M. Le, D. Hin, R. Croft, and M. A. Babar, “Puminer: Mining
security posts from developer question and answer websites with pu
learning,” in Proceedings of the 17th International Conference on
Mining Software Repositories, 2020, pp. 350–361.

[39] ——, “Deepcva: Automated commit-level vulnerability assessment with
deep multi-task learning,” arXiv preprint arXiv:2108.08041, 2021.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[41] AnyChart. (2021) Anychart. [Online]. Available: https://www.anychart.
com

[42] T. H. M. Le, R. Croft, D. Hin, and M. A. Babar, “A large-scale study of
security vulnerability support on developer q&a websites,” in Evaluation
and Assessment in Software Engineering, 2021, pp. 109–118.

[43] T. H. M. Le, H. Chen, and M. A. Babar, “Deep learning for source code
modeling and generation: Models, applications, and challenges,” ACM
Computing Surveys (CSUR), vol. 53, no. 3, pp. 1–38, 2020.

[44] S. Y. Enoch, M. Ge, J. B. Hong, H. Alzaid, and D. S. Kim, “Eval-
uating the Effectiveness of Security Metrics for Dynamic Networks,”
in Proceedings of the 16th IEEE International Conference On Trust,
Security and Privacy in Computing and Communications (TrustCom
2017). IEEE, August 2017, pp. 277–284.

https://ro.ecu.edu.au/ism/146
https://nvd.nist.gov/vuln-metrics/cvss#
https://nvd.nist.gov/general
https://nvd.nist.gov/general
https://www.first.org/cvss/v2/guide
http://jmlr.org/papers/v18/16-365.html
https://www.anychart.com
https://www.anychart.com

	I Introduction
	II Related Work
	II-A Automated Assessment of Vulnerabilities
	II-B Security Assessment for IoT Systems
	II-C Summary

	III Proposed Framework
	III-A System Model Generation
	III-B Vulnerability Assessment
	III-C Graphical Security Model and Assessment
	III-D Data Visualization

	IV Evaluation
	IV-A System Model Generation
	IV-A1 Design and generation of subsystems
	IV-A2 Vulnerability filtering

	IV-B Vulnerability Assessment
	IV-B1 Data pre-processing
	IV-B2 Model tuning
	IV-B3 Model testing
	IV-B4 Severity score prediction

	IV-C Graphical Security Model and Assessment
	IV-C1 Model description
	IV-C2 Result analysis

	IV-D Data Visualization

	V Discussion
	VI Conclusion and Future Work
	References

