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Abstract—Federated learning is a distributed machine learn-
ing paradigm that trains a global model for prediction based
on several local models at clients while local data privacy is
preserved. Class imbalance is believed to be one of the factors
that degrades the global model performance. However, there has
been very little research on if and how class imbalance can affect
the global performance in various imbalance scenarios. Class
imbalance in federated learning is much more complex than that
in traditional non-distributed machine learning, due to different
class imbalance situations at local clients. Class imbalance needs
to be re-defined in distributed learning environments, so that
corresponding solutions can be proposed. In this paper, first,
we propose two new metrics to define class imbalance – the
global class imbalance degree (MID) and the local difference
of class imbalance among clients (WCS). Class imbalance is
categorized into four scenarios under the definition. Then, we
conduct extensive experiments to analyze the impact of class
imbalance on the global performance in various scenarios. Our
results show that a higher MID and a larger WCS degrade more
the performance of the global model. Besides, WCS is shown to
slow down the convergence of the global model by misdirecting
the optimization.

Index Terms—class imbalance, federated learning, multiclass
classification

I. INTRODUCTION

As the rapid development of advanced computing hardware
and machine learning algorithms, edge computing and ubiq-
uitous computing systems have sprung forth. Local devices,
such as mobile phones and wearable devices, have become a
major source of data [1]–[3]. A large number of devices are
interconnected and are equipped with sensors that constantly
generate potentially useful data [4]. To learn from such data,
local data from clients have to be gathered together. However,
these local generated data tend to contain sensitive informa-
tion, such as end users’ personal information and clients’
medical records. Transmitting data among devices directly
can cause privacy leakage and security issues. Traditional
machine learning approaches that collect and centralize user
data will become legally impossible. Federated learning was
thus proposed to learn from data, protect data privacy and
improve network security [4].

Federated learning trains a global model at the central server
based on a group of local models trained and maintained
at the clients [5], [6]. Instead of transmitting data to the

central server, only intermediate local model updates are
communicated periodically with the server. In each round
of training, the central server selects a group of clients and
broadcasts the current global model to them. Then, the selected
clients train the received model using their local data and
feedback the model updates to the server. Lastly, the central
server aggregates the updates from the clients. This iterative
training process continues across the network [6].

Federated learning is able to make use of local data for
training without violating privacy or breaking data island be-
tween clients. Currently, federated learning has been deployed
by major service providers and plays a critical role in privacy-
sensitive applications [2]. While most research in federated
learning focuses on reducing communication loads and pro-
tecting data privacy [1], [2], [5], little work has looked into
how local data can affect the performance of the global model.
Data from different clients are always not independently and
identically distributed (Non-IID). Class imbalance is a type of
non-iid distributions in federated learning environments. In a
classification task, such as fraudulent phone call detection and
diagnoses of rare diseases, class imbalance refers to the situa-
tion where some classes of data (minority) are significantly
under-represented compared to other classes (majority). In
traditional non-distributed machine learning, class imbalance
can cause great performance degradation, especially the poor
accuracy on minority classes [7], [8].

Class imbalance is also common in federated learning. For
example, in real-world health data, severe class imbalance is
a norm, rather than an exception [9]. However, it is unclear
if and how local class imbalance in federated learning can
affect the performance of the global model. Compared with
the traditional non-distributed learning case, class imbalance
in federated learning is much more complex. Local models and
their regular updates could be affected by local imbalanced
data, but it is unclear how many affected clients or how the
severity of local imbalance may cause a global degradation.
Meanwhile, the class imbalance status between clients can
vary. For example, a client A has a minority class c1 and
a majority class c2, but a client B has class c1 as majority
and class c2 as minority. Therefore, various class imbalance in
federated learning should be categorised properly for potential
solution to tackle them. This paper aims at providing a full
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understanding of the impact of class imbalance in federated
learning that will shed lights on suitable solutions of tackling
class imbalance in federated learning. We will answer three
specific questions in this paper:

1) How should we define class imbalance in federated
learning? This will include a global class imbalance de-
gree (applicable to multi-class data) and the differences
of class imbalance between clients.

2) Would the local and global class imbalance affect the
performance of the global model and how?

3) Would the class imbalance difference between clients
affect the performance of the global model and how?

The contribution of this paper are listed bellow:
• We propose two new metrics to measure class imbal-

ance in federated learning: Global Imbalance Degree
using Multiclass Imbalance Degree (MID) and Local
and Global Imbalance Relation using Weighted Cosine
Similarity (WCS).

• Based on the new definition, we conduct extensive exper-
iments on real-world datasets to investigate the impact of
class imbalance. Four different scenarios are considered.
Results show that the global class imbalance degrades the
global model performance. The difference of local class
imbalance also causes global performance degradation
and slows down the model convergence.

The rest of this paper are organized as below. Section II
presents related works. We define class imbalance in federated
learning in Section III. Section IV presents 4 class imbalance
scenarios to be investigated and describes the datasets used in
our experiments. Section V provides the experimental analysis.
We conclude this paper and discuss the possible future work
in Section VI.

II. RELATED WORKS

There is extensive investigation into class imbalance in
non-distributed machine learning [10], [11]. The impact of
class imbalance depends on the imbalance level, concept
complexity and size of training data [7]. Lack of information
caused by small sample size, class overlapping, and small
disjuncts within class are main reasons of class imbalance
causing performance degradation [11]. To tackle different
types of class imbalance, the traditional approaches can be
classified into five groups – sampling approaches, re-weighting
approaches, feature selection, one class learning, cost-sensitive
learning [12] and ensemble learning [13].

The nature of federated learning makes it different from
non-distributed machine learning when dealing with class
imbalance. In federated leaning, class imbalance presented
at local data may or may not result in global class imbal-
ance when the central server aggregates the model updates.
Therefore, we need to separately define and discuss local class
imbalance and global class imbalance. Furthermore, the local
and global class imbalance can be totally different [14]. A
majority class at some clients can be the minority class at
the global level, and vice versa. The privacy protection of

federated learning further increases the difficulty of estimating
the class imbalance degree at the central server. As a result,
existing class imbalance mitigating approaches can be only
used locally, which may not help with global performance.

A few very recent papers [14]–[17] have noticed the neg-
ative impact of class imbalance in federated learning and
proposed techniques to tackle it. Fed-Focal Loss [16] used
a modified loss function that down-weights the loss of well-
classified samples based on Binary Cross Entropy (BCE) Loss.
By doing so, the majority class with a larger number of
examples contributes less to the model when it reaches high
prediction accuracy. Correspondingly, the minority-class sam-
ples contribute more to the local model. Astraea [15] added
mediators between the central server and clients to re-balance
the datasets. Imbalanced clients are rearranged to different
balance mediators according to their imbalance levels and label
distributions. Within the mediator, the clients perform training
sequentially on a single balanced dataset. Then, the mediators
communicate with the central server in parallel as clients
in original federated learning. Ratio Loss [14] employed a
monitor scheme on the server to estimate local class imbalance
without asking for label distributions. The monitoring scheme
uses the relation between the gradient magnitude and the
sample quantity to estimate global class imbalance at the
server. Then, Ratio Loss based on BCE Loss is deployed at
the local training process to strengthen the impact of minority-
class examples. Similarly, Yang et al. [17] proposed a local
class imbalance estimator based on gradient magnitude. Then
clients selection is used to achieve class balance globally.

The aforementioned papers proposed new techniques to
tackle class imbalance in specific setting, which shows the
necessity of studying the class imbalance issue in federated
learning. However, they all treated a small part of class
imbalance scenario as the full picture of class imbalance in
federated learning. Astraea was only valid with slightly global
imbalance, while Ratio Loss can do nothing with a balanced
global dataset consisted of imbalance local datasets. Ratio Loss
addressed the impact of mismatch between local and global
imbalance, while the conclusion is drawn based on particular
experiments setting without considering more general case
with other imbalance degree. In addition, Metrics used in
those works include imbalance ratio, cosine similarity cannot
fully reflect the imbalance states. Likelihood-ratio imbalanced
degree (LRID) [18] failed to measure the multiclass imbalance
degree as well. The comparison between those metrics and
ours will be discussed in Section III. This paper thus aims
at an in-depth understanding of class imbalance in various
federated learning scenarios, which will help to develop the
most suitable solutions in the future.

III. CLASS IMBALANCE DEFINITION

Local imbalance and global imbalance were briefly men-
tioned in [14] as two types of class imbalance in federated
learning. Their experiment on dedicated setting showed that a
mismatch between local and global imbalance leads to global
model performance degradation. However, there is no clear



definition to measure the global class imbalance degree and the
relation between local and global imbalance. In this section,
we propose two metrics to define class imbalance status in
federated learning environments.

A. Federated Learning Problem Formulation

Assume there are P clients with local dataset D1, . . . , DP

in a size of n1, . . . , nP respectively. If merging them together,
the global dataset D has C classes and N samples in total. At
global time t, the global model is denoted as wt. The selected
client p performs local training to derive a new local model
wt+1

p by:
wt+1

p = wt
p −∇L(wt, Dp) (1)

where L(wt, Dp) denotes the loss of model wt on dataset Dp.
The update global model following the FedAvg [4] will be:

wt+1 = wt −
P∑
i=1

ni
N
∇L(wt, Di) (2)

B. Global Imbalance Degree.

To measure the global imbalance degree, we are inspired
by (LRID) [18]. It was designed to measure class imbalance
level in multi-class datasets. The commonly used Imbalance
Ratio (denoted as Γ below), referred to as the ratio between
the numbers of the majority and minority classes, cannot fully
describe the imbalance status in multi-class data as only two
classes are considered. For a dataset with N data samples and
C possible classes, the number of samples with label c is nc.
The class imbalance level according to [18] is defined as:

LRID = −2

C∑
c=1

nc ln
N

Cnc
(3)

The LRID of an absolutely class balanced dataset is 0. The
larger LRID is, the more class imbalanced the dataset is.
However, LRID is sensitive to the size of datasets. For two
datasets D1 and D2 where D2 contains exactly k times the
samples of D1 for each class, LRID2 based on Equation (3)
becomes −2k

∑C
c=1 nc ln N

Cnc
, which is k times larger than

that of D1 as Equation (3) even though the proportion of each
class remains the same.

Given an extreme case where a C-class dataset con-
tains [N, 0, . . . , 0] samples for each class, LRIDextreme =
2N logC according to Equation (3). This LRID value
changes with the total sample number N , which is misleading
as a measure of class imbalance. Therefore we improve LRID
and propose Multiclass Imbalance Degree (MID):

MID =
LRID

LRIDextreme
=

C∑
c=1

nc
N

logC

Cnc
N

(4)

MID eliminates the impact of the size of dataset and ranges
between 0 and 1. MID equal to 0 implies a strictly balanced
dataset. The larger the MID, the more imbalanced the dataset
is. In our experiments, we use MID to express how class
imbalanced the global dataset D is.

C. Local and Global Imbalance Relation.

Mean cosine similarity (MCS) has been used to evaluate
the mismatch between local and global imbalance [14]. Cosine
similarity of vector A and B is defined as

similarity(A,B) = cos(θ) =
A ·B

‖ A ‖2‖ B ‖2
(5)

where θ is the angle between A and B and ‖ A ‖ denotes
the L2 norm of vector A. Label distribution vector of client
j is lj =

[
n1
j , . . . , n

c
j , . . . , n

C
j

]
where ncj is the number of

samples with label c. The Global label distribution vector
is L =

[∑P
i=1 n

1
i , . . . ,

∑P
i=1 n

C
i

]
. Mean cosine similarity

averages the similarity of global label distribution vector L
and local label distribution vector l as below:

MCS =
1

P

P∑
i=1

L · li
‖ L ‖2‖ li ‖2

(6)

It treats all clients equally and does not consider the sample
size, which can be misleading. For example, a two-client
federated dataset with label distribution vectors l1 = [100, 99]
(client1) and l2 = [0, 1] (client2) has MCS = 1/2( L·l1

‖L‖2‖l1‖2 +
L·l2

‖L‖2‖l2‖2 ) = 0.853 according to Equation (6). However, the
similarity of global and local class imbalance should be nearly
1 as client2 contributes little to the global model. In this case,
the small local dataset with extreme class imbalance leads to
a biased estimation of the local and global imbalance relation
when using MCS. Therefore we propose Weighted Cosine
Similarity (WCS) to measure the relationship between local
and global imbalance that considers the contribution of local
datasets. WCS is defined as:

WCS =

P∑
i=1

‖ li ‖1
‖ L ‖1

similarity(L, li)

=

P∑
i=1

‖ li ‖1 L · li
‖ L ‖1‖ L ‖2‖ li ‖2

=
1

‖ L ‖1‖ L ‖2

P∑
i=1

‖ li ‖1
‖ li ‖2

L · li

(7)

‖ li ‖1 denotes the total number of samples of client j, the
same as

∑C
i=1 n

i
j .

For example, a federated learning network has 3 clients with
label distribution vectors l1 = [2, 0, 0], l2 = [0, 4, 0], and l3 =
[0, 0, 6]. As shown in Fig. 1, L = [2, 4, 6]. Follow Equation
(7), L = [2, 4, 6]. Let αi be the angle between L and li, then
we have

WCS =
2 cosα1 + 4 cosα2 + 6 cosα3

2 + 4 + 6
= 0.62

Consider the extreme circumstance when the all distribution
vectors l1, lp are in same direction, we have αi = 0(i ∈
{1, . . . , P}) and WCS = 1. When the label distribution
vectors are completely in different directions lilj = 0(i 6= j)
and same length, WCS = 1√

C
, which is also the minimum

of WCS.



Fig. 1. Weighted Cosine Similarity

IV. CLASS IMBALANCED SCENARIOS AND DATA
GENERATION

We use two metrics to define the class imbalance degree in
Section III – MID and WCS. Based on the definitions, there
exist 4 kinds of class imbalance scenarios.

1) MID = 0, WCS = 1 (scenario 1): the global data is
strictly class balanced; all of the local label distribution
vectors follow the same direction..

2) MID > 0, WCS = 1 (scenario 2): the global data
presents to be class imbalanced; all of the local label
distribution vectors follow the same direction.

3) MID = 0, WCS < 1 (scenario 3): the global data is
strictly class balanced; the local label distribution vectors
present discrepancy in directions.

4) MID > 0, WCS < 1 (scenario 4): the global data
presents to be class imbalanced; the local label distribu-
tion vectors present discrepancy in directions.

When the local label distribution vectors presents discrep-
ancy in directions, it means that some local datasets are class
imbalanced. In the following experiments, we will discuss how
the global model performs in these four scenarios, in particular
the last three scenarios when either global or local data are
class imbalanced.

A. Dataset Description and Preprocessing

We select three popular datasets to simulate the three class
imbalanced scenarios (scenarios 2-4) as identified above.

MNIST [19] is a handwriting digits dataset with 60000 train
samples and 10000 test samples. Each data point consists of
28×28 gray pixels with a label range from 0 to 9. This dataset
is split to 100 clients.

FEMNIST [20] is a federated version of MNIST dataset
with 341873 samples from 3383 writers which is clients in
federated learning. With distinct writing styles, the data from
different writers is non-iid. The box plot in Fig. 2 shows the
number of samples from different classes. As shown in this
figure, the FEMNIST dataset is nearly globally class balanced,
while local imbalance exists among clients due to the outliers.
Each client in original FEMNIST dataset contains around
100 samples from 10 classes, which limits the experiments
on extreme class imbalance when the local class imbalance
ratio Γ which is the ratio of majority and minority classes
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Fig. 2. Nature of FEMNIST Dataset by Class

exceeds 10 : 1. Therefore, 3383 clients of FEMNIST dataset
are divided into 100 clients with a larger size local dataset that
allows much more extreme local class imbalance degree.

CIFAR10 [21] dataset contains 50000 32x32 colour images
in 10 classes. Each class has 5000 images. Similarly to
MNIST, CIFAR10 was originally a centralized dataset. We
split it to 100 clients randomly for federated learning.

All the three datasets are globally balanced with 10 classes
(labels 0 to 9). For MNIST and CIFAR10 datasets, each client
contains the same number of samples for every class, i.e.
locally balanced. FEMNIST dataset are nearly class balanced
as each class contains around 10 samples per client.

B. Global Class Imbalance – Scenario 2

To investigate the impact of global class imbalance, we let
all the local datasets have the same class imbalance degree. To
simulate more general case as in Focal Loss [16], 4 classes are
randomly selected as the minority classes (0, 1, 3, 6 classes).
Given a local imbalance ratio Γ, we randomly samples 1

Γ of
data points of classes 0, 1, 3, 6 and keep all the data from
classes 2, 4, 5, 7, 9. For the FEMNIST dataset, Γ is set to
10 : 1, 30 : 1, and 100 : 1 respectively. When Γ = 10 : 1,
every local dataset has only 3 data samples for classes 0, 1, 3,
and 6. To make sure the local datasets contain samples from
all the classes, L is set to 10 : 1, 20 : 1, 60 : 1 for MNIST
dataset, and 10 : 1, 20 : 1, 50 : 1 for CIFAR10 dataset.

C. Local imbalance – Scenario 3

To simulate local class imbalance for MNIST and CIFAR10
datasets, We randomly select S classes out of 10 for every
client and evenly assign samples from the selected classes to
that client. For example, CIFAR10 has 5000 training samples
for each class. If S is set to 2, every client contains 2 classes
with 250 data points from each class. For FEMNIST, it is
globally class balanced and contains class imbalanced local
datasets as shown in Fig. 2.Instead of assigning all the samples
to the clients, samples for classes that has not been selected
are dropped from the balanced FEMNIST dataset.



TABLE I
SIMULATED CLASS IMBALANCED DATA FOR SCENARIOS 1-4

Dataset Scenario Γ S LRID MID WCS

MNIST

1 1:1 10 171 0 1

2
10:1 10 22650 0.13 1
20:1 10 27758 0.17 1
60:1 10 32458 0.2 1

3
1:1 5 171 0 0.71
1:1 2 171 0 0.45
1:1 1 171 0 0.32

4
10:1 2 22650 0.13 0.49
20:1 2 27758 0.17 0.49
60:1 2 32458 0.2 0.5

CIFAR10

1 1:1 10 0 0 1

2
10:1 10 19352 0.13 1
20:1 10 24696 0.17 1
50:1 10 27123 0.19 1

3
1:1 5 0 0 0.71
1:1 2 0 0 0.45
1:1 1 0 0 0.32

4
10:1 2 19352 0.13 0.48
20:1 2 23647 0.17 0.5
50:1 2 27123 0.19 0.49

FEMNIST

1 1:1 10 761 0 1

2
10:1 10 129292 0.13 1
30:1 10 171270 0.18 1

100:1 10 193238 0.21 1

3
1:1 5 392 0 0.71
1:1 2 147 0 0.45
1:1 1 98 0 0.32

4
10:1 2 26479 0.13 0.48
30:1 2 34253 0.18 0.5

100:1 2 38650 0.21 0.51

D. Global and Local Imbalance – Scenario 4

It is more common to have class imbalance at both local
and global levels. We combine the data simulation steps from
both Scenarios 2 and 3. Given an imbalance ratio Γ bewteen
majority and minority classes, for MNIST and CIFAR10, data
samples from classes 0, 1, 3, 6 are sampled at a rate of Γ while
data from the other classes are all kept. Then the obtained
imbalanced data is distributed to 100 clients with S classes at
each client. For FEMNIST, We randomly select S classes for
each client. For every client, if the selected class belong to one
of the minority classes 0, 1, 3 and 6, the data is downsampled
at the rate of 1

Γ . The samples from non-selected classes are
dropped.

E. Summary of Generated Class Imbalanced Data

In summary, we have generated 10 datasets that covers all
four class imbalanced scenarios, based on each of the MNIST,
FEMNIST and CIFAR10 datasets. Table I summarizes all
the cases. Γ presents the global class imbalance. MID and
WCS, as defined in the previous section, show the global
class imbalance degree and the mismatch between local and
global imbalance.

From Table I, when the majority and minority classes are
fixed, MID follow the trend the global class imbalance ration
Γ. MID is more informative than Γ, especially When there are
not only majority and minority classes but also other classes

TABLE II
GLOBAL PERFORMANCE OF SCENARIOS 1 (BASELINE) AND 2

Dataset MID Accuracy F1

MNIST

0 0.9893 0.9892
0.13 0.9778 0.9777
0.17 0.9686 0.9682
0.2 0.9350 0.9326

CIFAR10

0 0.6254 0.6224
0.13 0.4781 0.4247
0.17 0.4389 0.3491
0.19 0.4274 0.3264

FEMNIST

0 0.9916 0.9916
0.13 0.9850 0.9849
0.18 0.9772 0.9769
0.21 0.9539 0.9532

TABLE III
GLOBAL PERFORMANCE OF THE 2nd CASE IN SCENARIO 3 (BASELINE)

AND ALL CASES IN SCENARIO 4

Dataset MID WCS Accuracy F1

MNIST

0 0.45 0.9704 0.9703
0.13 0.49 0.9312 0.9300
0.17 0.49 0.9241 0.9227
0.2 0.5 0.8598 0.8532

CIFAR10

0 0.45 0.4164 0.3880
0.13 0.48 0.3315 0.2673
0.17 0.5 0.3083 0.2268
0.19 0.49 0.3066 0.2223

FEMNIST

0 0.45 0.8380 0.8323
0.13 0.48 0.8247 0.8209
0.18 0.5 0.6635 0.6337
0.21 0.51 0.5375 0.4661

between them. Compared with LRID, MID is more stable
with varies size of datasets.

V. EXPERIMENTS

We adopt FedAvg [4] algorithm to train a convolution
neural networks (CNN) as the global model for each dataset.
As MNIST, FEMNIST and CIFAR10 are all image datasets,
we use the same CNN structure setting for all cases – two
convolutional layers followed by two dense layers. At each
round of training, 10 out of 100 clients are randomly selected
to participate [16]. SGD is used in the local training as the
optimizer with local learning rate equal to 0.1. The server’s
learning rate is set to 1.0 following the recommended value
of TensorFlow Federated framework. Each global model is
trained for 50 iterations with 5 local epochs every iteration
at a batch size of 128. All three datasets can converge with
this setting in scenario 1. In our experiment, the whole training
process is repeated 15 times to get an average result. As a class
imbalance problem, we add F1-Score as an implement metrics
to the overall accuracy to measure the model performance.

A. Impact of Global Class Imbalance Degree

Table II and Fig. 3 compare the performance of the global
model in scenario 1 (baseline case) and scenario 2, where
WCS = 1 and MID varies between [0, 0.21]. Table II shows
the final predictive accuracy and F1-Score. Fig. 3 shows the



0 20 40

round

0.4

0.6

0.8

1.0
va

ld
at

io
n

f1
MNIST

MID : 0.00
MID : 0.13
MID : 0.17
MID : 0.20

0 20 40

round

0.2

0.4

0.6

CIFAR10
MID : 0.00
MID : 0.13
MID : 0.17
MID : 0.19

0 20 40

round

0.4

0.6

0.8

1.0
FEMNIST

MID : 0.00
MID : 0.13
MID : 0.18
MID : 0.21

Fig. 3. Validation F1-Score of Scenarios 1 (baseline) and 2

0 20 40

round

0.5

1.0

va
ld

at
io

n
f1

MNIST

MID : 0.00
WCS: 0.45
MID : 0.13
WCS: 0.49
MID : 0.17
WCS: 0.49
MID : 0.20
WCS: 0.50

0 20 40

round

0.0

0.2

0.4

CIFAR10
MID : 0.00
WCS: 0.45
MID : 0.13
WCS: 0.48
MID : 0.17
WCS: 0.50
MID : 0.19
WCS: 0.49

0 20 40

round

0.00

0.25

0.50

0.75

FEMNIST

MID : 0.00
WCS: 0.45
MID : 0.13
WCS: 0.48
MID : 0.18
WCS: 0.50
MID : 0.21
WCS: 0.51

Fig. 4. Validation F1-Score of the 2nd case in scenario 3 (baseline) and all cases in Scenario 4

0 20 40

round

0.0

0.5

1.0

va
ld

at
io

n
f1

MNIST

WCS: 1.00
WCS: 0.32
WCS: 0.45
WCS: 0.71

0 20 40

round

0.0

0.2

0.4

0.6

CIFAR10

WCS: 1.00
WCS: 0.32
WCS: 0.45
WCS: 0.71

0 20 40

round

0.0

0.5

1.0

FEMNIST

WCS: 1.00
WCS: 0.32
WCS: 0.45
WCS: 0.71

Fig. 5. Validation F1-Score of Scenarios 1 (baseline) and 3

F1-Score curves along with training. The accuracy curves are
very similar to the F1-Score ones, so they are omitted from
the figure for the space reason. The results tell us how the
global class imbalance degree impacts the global performance.
We can observe a decrease of accuracy and F1-Score with
the increase of global class imbalance degree MID on all
three datasets. Table III shows the accuracy and F1-Score
of the global model in the second case from scenario 3
(baseline case) and all cases from scenario 4 with S = 2,
where WCS ≈ 0.5 and MID varies between [0, 0.21]. The
corresponding F1-Score curves are presented in Fig. 4. They

also show that a larger global class imbalance degree reduces
the global performance significantly.

B. Impact of Local Class Imbalance Difference
The difference of local class imbalance is a feature in fed-

erated learning that distinguishes itself from class imbalance
problems in centralized machine learning. Table IV shows
the accuracy and F1-Score of the global model in scenario
1 (baseline case) and scenario 3, where MID remains 0 and
WCS varies between [0.32, 1]. The corresponding F1-Score
curves are presented in Fig. 5. We observer that a smaller
similarity between local class imbalance results in degradation



TABLE IV
GLOBAL PERFORMANCE OF SCENARIOS 1 (BASELINE) AND 3

Dataset WCS Accuracy F1

MNIST

1 0.9893 0.9892
0.71 0.9863 0.9862
0.45 0.9704 0.9703
0.32 0.6718 0.6416

CIFAR10

1 0.6254 0.6224
0.71 0.5830 0.5757
0.45 0.4164 0.3880
0.32 0.1026 0.0214

FEMNIST

1 0.9916 0.9916
0.71 0.9833 0.9831
0.45 0.8380 0.8323
0.32 0.1012 0.0184

of the global model performance. Besides, the decrease of
WCS results in a larger fluctuation on the performance curves
especially in CIFAR10 and FEMNIST datasets as shown in
Fig. 5 and Fig. 4 in comparison with Fig. 3. As a result,
the convergence of the global model is significantly slowed
down. In scenario 3 when WCS = 0.32 for CIFAR10 and
FEMNIST (in the middle and right plots of Fig. 5), the global
model cannot even converge.

When comparing Scenario 4 (where MID > 0 and
WCS < 1) with Scenario 2 (where WCS = 1), we can
see that a large difference of local class imbalance not only
causes the degradation of the global model performance, but
also introduces performance fluctuation and slows down the
convergence of the global model. In short, by reducing WCS
(i.e. a larger difference), the global model becomes more
difficult to converge and suffers worse prediction accuracy.

VI. CONCLUSIONS

This paper investigates the impact of class imbalance in
federated learning. We focus on three research questions: Q1.
define class imbalance in federated learning. Q2. explore the
impact of global class imbalance on the global model. Q3.
explore the impact of imbalance differences between local
clients on the global model.

For Q1, we proposed two new metrics – MID and WCS.
MID measures the global class imbalance degree. It improves
the traditional Imbalance Ratio and LRID, which is suitable
to multi-class data and is insensitive to the size of datasets.
WCS is specifically designed for federated learning that mea-
sures the class imbalance differences among local clients and
considers the contributions of local datasets. Based on MID
and WCS, we looked into 4 class imbalanced scenarios to
answer Q2 and Q3. For Q2, we found that a larger MID leads
to more significant degradation of the global performance in
terms of prediction accuracy and F1-Score. For Q3, we showed
that a large difference of class imbalance degree among local
datasets not only reduces the global performance, but also
slows down the convergence by introducing fluctuation in
optimization.

This work suggests that 1) class imbalance in federated
learning should be studied separately considering MID and

WCS, 2) global class imbalance should be studied and tackled
appropriately in federated learning for better global model
performance, and 3) the differences of local class imbalance
should also be treated seriously that could affect the global
performance and convergence speed.
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